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Organ donation is not meeting demand, and yet 30–60% of potential donors are potentially 
not identified. Current systems rely on manual identification and referral to an Organ Donation 
Organization (ODO). We hypothesized that developing an automated screening system based on 
machine learning could reduce the proportion of missed potentially eligible organ donors. Using 
routine clinical data and laboratory time‑series, we retrospectively developed and tested a neural 
network model to automatically identify potential organ donors. We first trained a convolutive 
autoencoder that learned from the longitudinal changes of over 100 types of laboratory results. We 
then added a deep neural network classifier. This model was compared to a simpler logistic regression 
model. We observed an AUROC of 0.966 (CI 0.949–0.981) for the neural network and 0.940 (0.908–
0.969) for the logistic regression model. At a prespecified cutoff, sensitivity and specificity were similar 
between both models at 84% and 93%. Accuracy of the neural network model was robust across 
donor subgroups and remained stable in a prospective simulation, while the logistic regression model 
performance declined when applied to rarer subgroups and in the prospective simulation. Our findings 
support using machine learning models to help with the identification of potential organ donors using 
routinely collected clinical and laboratory data.

Despite a modest growth in the number of organ donors in Canada over the last 20  years1, demand still exceeds 
supply for transplantable organs. In  20212, while 4043 patients were on waiting lists, only 2782 organs were 
transplanted. That same year, 250 patients died while waiting for an organ.

Organ transplantation is critically dependent on potential organ donor identification and conversion to 
actual donors. The former is a major challenge that relies heavily on the training of medical teams, an inefficient 
approach given the rarity of deceased organ donation, especially in small  centers3. Multiple retrospective cohort 
studies suggested that between 30 and 60% of potential organ donors are either not identified or not referred to 
an Organ Donation Organization (ODO)4–7. More efficient identification of potential organ donors could lead 
to an increase in the total number of referrals to an ODO and, therefore, to a potential increase in the number 
of organ donors.

Concurrently, there is a surge in the availability of healthcare data stemming from the rapid development and 
implementation of electronic health records (EHRs) and the interconnection of previously disjointed clinical 
databases. Advances in machine learning (ML) have shown great promise in making use of big data to improve 
health  outcomes8. Neural networks (NN), a type of biologically inspired ML model, are capable of feats such as 
autonomous driving, image recognition, and pattern analysis. The application of NN models in medicine has 
been met with  success9, including in the areas of medical imaging, and outcome prediction, such as mortality, 
and  readmission10, and real-time complication  prediction11.

The evolution of patients toward neurological death and potential candidacy for organ donation is a very 
complex clinical pattern. It remains unclear how ML approaches, such as NNs, would perform in such situations 
compared to simpler or more classical  models12. More complex models could potentially be capable of detecting 
subtle patterns that are missed by simpler approaches, thereby identifying potential organ donors with greater 
accuracy. Most of the current applications of machine learning in the field of organ transplantation have focused 
on predicting recipients’ outcomes. Published models have suggested an improvement in the ability to predict 
survival of patients on organ transplantation waiting  lists13, as well as survival of organ  recipients13–15 and risk 
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of graft  rejection16 after successful transplantation. Other models have suggested the potential to help clinicians 
in selecting anti-rejection drug regimens after renal  transplantation17. With respect to organ donor identifica-
tion, a clinical score has been developed to estimate the probability of successful donation after cardiac death 
once a potential organ donor has been  identified18. This score may be complementary to any predictive model 
identifying potential organ donors, but the latter has never been developed.

The primary objective of this study was to develop a predictive model for the identification of potential organ 
donors among patients admitted to an intensive care unit (ICU) using routinely collected clinical data. Our 
secondary objectives were: (1) to compare the discriminative property of a NN model compared to a logistic 
regression model used as a baseline, (2) to evaluate our models in prespecified subgroups of organ donor, and 
(3) to evaluate the model in a prospective simulation performed over a 48-h time.

Methods
Design, population, and outcome. This article follows the Transparent Reporting of a multivariable 
prediction model for Individual Prognosis or Diagnosis (TRIPOD)  checklist19 and the Guidance for Develop-
ment and Reporting of Prediction  Models20. This study was approved by the Centre Hospitalier de l’Université 
de Montréal (CHUM) Research Ethics Board, that waived the requirement for individual informed consents 
given the low risk and retrospective nature of the study. All experiments and data treatments were performed in 
accordance with guidelines and regulations concerning retrospective private identifying information.

This study was based on a cohort of patients admitted to an ICU at the CHUM from January 1st, 2012 to 
December 31st, 2019, which had a minimal hospital length of stay of 16 h. For patients with multiple ICU 
admissions, we included data only for the latest ICU stay to avoid handling correlated data. Data were collected 
retrospectively from EHR data.

The predicted outcome was becoming a potential organ donor. Potential organ donors were defined as patients 
belonging to one of the four subgroups: (1) actual organ donor locally identified (admitted to the CHUM for a 
condition that eventually evolved to death and organ retrieval); (2) actual organ donor with neurological death 
diagnosis made in another hospital and transferred to the CHUM for organ retrieval; (3) potential organ donors 
referred to the ODO for donation but deemed ineligible for donation (substituted decision maker refusal, medi-
cal contraindications detected in the workup, etc.); (4) potential organ donors not referred to ODO. This last 
category of patients was identified by the ODO through local continuous death audits, which excluded patients 
with any recent, active, or metastatic cancer, disseminated infection, or multi-organ failure. The death audit 
defined potential organ donors as either a patient with a severe neurological condition, mechanically ventilated, 
who died within 24 h of the end of care or as a patient without a severe neurological condition, mechanically 
ventilated, who died within 3 h of the end of care.

Predictors. Variable selection. Predictors included mainly time series of laboratory analyses and static 
clinical variables routinely collected as part of ICU care. We used only two static variables: the medical specialty 
responsible for the patient (neurosurgery, internal medicine, cardiology, etc.) and the presence or absence of a 
head radiological imaging exam.

Since patients identified as potential organ donors are cared for differently than other patients (e.g. more fre-
quent investigations of certain types, absence of other types of investigations), we implemented measures to avoid 
learning from differences in medical  practice20 stemming from evaluation for organ donation, rather than true 
clinical patterns. First, we did not include demographic and anthropomorphic variables (e.g. age, biological sex, 
height, or weight) as predictors, as they are not a priori exclusion criteria for becoming a potential organ donor. 
Second, we excluded rare laboratory analyses (defined as being ordered in less than 10% of all ICU patients) from 
the dataset. Finally, to mitigate the impact of an increased frequency of laboratory analyses often performed on 
potential organ donors, we only kept the last 72 h of a patient’s stay (defined as ending through ICU discharge or 
death) divided into 9 blocks of 8 h, keeping only the last value within each time block. The final list of laboratory 
variables used in the model is reported in table S1 (supplementary material).

Missing values. The pattern of data missingness was assessed to likely be partially missing at random (since 
associated with the outcome of interest) and partially missing not at random (since clinicians tend to avoid 
ordering a laboratory test likely to be normal)21. Missingness for the medical specialty was handled as a distinct 
category. To mimic a clinician thinking about missing laboratory values, and to increase the model usability in a 
real-world setting, temporal data was imputed in a two-step method. First, the last value carried forward (LVCF) 
method was applied such that the value of a laboratory analysis performed in the previous 8-h block was carried 
forward in all subsequent blocks until updated by a new result. For values still missing after LVCF, we imputed 
values that were randomly sampled from an arbitrarily chosen Gaussian distribution. The mean and variance 
were chosen so its distribution contains 95% of the physiological normal range of each laboratory analysis. The 
normal range for each laboratory analysis was provided by the laboratory. This decision was made to reflect the 
fact that the decision by a clinician not to order a laboratory test likely reflects the hypothesis that the value is 
similar to the previous value or is expected to be in the normal range, while adding a variability to the imputed 
values.

Model development. Model structure. We developed two models using different analytical approaches: a 
neural network temporal model (NN) and a logistic model (LM).

The NN model used the temporal aspect of the laboratory data combined with the static values. Its architecture 
is schematized in Fig S1 and Fig S2 (supplementary materials). We used a convolutive autoencoder (AE) to extract 
lower dimensionality features from time series of laboratory  data22,23. AE is a subtype of NN architecture used in 
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unsupervised learning. An AE is trained with the same information (image, text, laboratory data, etc.) presented 
at the entrance and at the exit of the network. The data is compressed and transformed into a representation 
of reduced size and dimensionality, called the latent representation, and is then decoded back to its original 
form. The AE learns to encode the data while minimizing loss of information. This type of architecture has been 
shown to be useful in multiple ways such as an embedding and dimensionality reduction tool, to reduce  noise24, 
for transfer learning and  pretraining25 and as an anomaly detection approach. We designed the convolutive AE 
based on  ResNet26, a well-known convolutional neural network (CNN)27 using Python (version 3.7.4) and Keras 
(version 2.2.4) with TensorFlow (version 1.14)28–30. We adapted it to slide only along the temporal dimension of 
laboratory data, and to detect patterns in the temporal evolution of the laboratory values. We used dropout lay-
ers and L2 regularization on our models to help avoid overfitting. We used our AE to (1) take the maximum out 
of the temporal component of the data, (2) embed the temporal data in a one-dimensional format, (3) act as an 
anomaly detector since it was trained only on non-donor patients, and (4) function as a pretraining for a smaller 
size classifier. Our AE was only trained with the temporal data on a cohort of only non-donor patients. For the 
classifier model, we used a deep NN consisting of four fully connected layers ending with a sigmoid activation 
layer. The number of layers was chosen to balance capacity and complexity. Temporal embedded data were con-
catenated with static clinical data. Static data were encoded either as binary data or target mean encoding with 
smoothing for multiclass data. The final architecture is presented in Fig. S1 and S2 (supplementary material).

The logistic model (LM) used is a lighter baseline comparison model, using only the last laboratory value 
prior to ICU discharge or death concatenated with the static values, with a sigmoid activation layer. This model 
was significantly lighter in term of complexity of the prediction algorithm, but also in terms of number of data, 
since it only included the last time point of the time series.

Data structure. Potential organ donors are a rare subpopulation, encompassing around 2% of ICU patients 
based on preliminary data exploration. We approached the class imbalance problem with a mixture of purpose-
ful subsampling and  oversampling31. 85% of the non-donor patients were randomly selected and used as the 
embedding training set. It allowed subsampling while using this data for the autoencoder that did not require 
the outcome to develop the latent representation. The rest of the patients (15% of non-donors and all potential 
donors) were randomly divided into a train/validation/test set (60%/20%/20%). During training, proportion-
ally more weight was put on the minority class. That means that if non-donors outnumber donors 100 to 2, the 
training weights of donors will be 100/2 = 50 and non-donors 1. The training and validation sets were used to 
develop the model, while the test set was excluded from the model development process. After a final model was 
developed, it was trained on both the train and validation datasets and results were estimated on the test set.

Statistical analysis. The final model was trained using the combined train and validation sets, and the 
results were estimated using the test dataset. We reported performance, discrimination, and calibration proper-
ties of our models (NN and LM). We compared the overall performance of our NN model to our LM model 
using a scaled Brier score, their discriminative properties using AUROC and their calibration using calibration 
 curves20. Confidence intervals were obtained using non-parametric bootstrapped percentiles (using 2000 resa-
mplings of the test set). AUROC and Brier score from different models were compared using a Z statistic with a 
bootstrapped-based standard error (2000 resamplings) developed for paired  models32.

In an approach to maximize potential donor detection, the goal was to choose a threshold with a high sensi-
tivity. Since this study might have a potential prospective application, the optimal cutoff had to be derived from 
the training data and not from the test data. The cutoff was derived using a threefold cross-validation approach 
performed on the training dataset choosing the average threshold that gave a 90% sensitivity.

We performed two subgroups analyses. First, we compared the AUROC curve of our four subgroups by 
computing discrimination in each subgroup compared to the non-donor population. Second, we simulated a 
prospective approach to compare accuracy 48 h, 24 h and 8 h before ICU discharge. That was done by using only 
datapoints available progressively further from discharge. Finally, we did two sensitivity analyses. First, to ensure 
the model was resilient to removal of rare laboratory values, we iteratively retrained the models after progressively 
removing predictors. We started with predictor present in less than 10% all ICU patients, then 20%, then 30%, 
and so on. By doing so, the model was trained on fewer laboratory types at each step, using progressively only 
the most frequent ones. We analyzed the model performance at each step in a bootstrap approach. Second, we 
manually reviewed the files of patients not reported as potential organ donors by the death audit, but who were 
predicted as such with a high degree of confidence (predicted probability of 75% or more) by either model. We 
described qualitatively this data to adjudicate their real outcome in case the manual audit missed any patient 
and to help better understand the potential systematic bias and error patterns of the models. Statistical analyses 
were done using R (version 4.1.3) and Python (version 3.7.4)29,33.

Results
Baseline characteristics of the population are reported in Table 1. Our complete dataset used 19 067 patients and 
included 397 potential donors. The prevalence of the outcome of interest was 2.1% in the study population, and 
12% in the sub-sample used to train, validate and test of our models. After excluding rare laboratory analyses, 
the NN model and LM were trained on 103 distinct laboratory analyses, reported in the table S1 (supplementary 
material), as well as the two static predictors (the medical specialty responsible for the patient admission and 
the ordering of any head scan).

Overall, in the test dataset, the AUROC of the NN model (0.966; 95% CI 0.949–0.981) was marginally superior 
to the LM model (0.940; 95% CI 0.908–0.969); this difference was statistically significant (p = 0.014). The scaled 
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Brier score was also statistically superior in the NN model (0.481 vs. 0.352, p = 0.049, Table 2). AUROC curves 
for each model as a whole and separated by organ donor subtypes are presented in Fig. 1.

The cutoff, obtained by the threefold cross-validation approach described in the methodology, was 0.4 for 
the NN model and 0.47 for the LM model. Both models had similar sensitivities (84%) and specificity (93%) 
(Table 2). There was a difference between the aimed sensitivity (90%) and the obtained one (84% for both NN 
and LM, see Table 3). Confusion matrices are presented in Table 3. Confusion matrices by subgroups are pre-
sented in tables S2 to S6 (supplementary materials). To obtain an actual 90% sensitivity, the actual cutoff on the 
test set was 0.21 for the NN model and 0.08 for the LM. The confusion matrix at those cutoffs is presented in the 
Table S7 (supplementary materials). At those cutoffs, specificity was 88% for the NN model and 74% for the LM.

Calibration curves show that both models tend to underestimate the actual proportion of potential organ 
donors especially between a predicted probability of 0.3 and 0.8 with better accuracy at low and high predicted 
probabilities (see Fig S3, supplementary materials).

Table 1.  Population characteristics. AE train auto-encoder training group; used only for the training of the 
unsupervised network.

AE train
n = 16,213

Training
n = 1972

Validation
n = 634

Testing
n = 644

Sex (female) n(%) 5871 (36.2%) 737 (37.4%) 249 (39.3%) 262 (40.7%)

Age mean (std) 67.2 (14.5) 66.4 (14.7) 67.2 (14.2) 65.4 (15.6)

Donors’ subtypes n (%)

 Non-donor 16.213 (100%) 1734 (87.9%) 555 (87.5%) 564 (87.6%)

 Transferred donors – 121 (6.1%) 32 (5.0%) 36 (5.6%)

 Local donors – 53 (2.7%) 25 (3.9%) 29 (4.5%)

 Referred but ineligible – 42 (2.1%) 13 (2.1%) 10 (1.6%)

 Potential not referred – 22 (1.1%) 9 (1.4%) 5 (0.8%)

Principals’ reasons for admission n (%)

 Ischemic heart diseases 3855 (22.9%) 375 (18.4%) 132 (20.8%) 130 (19.5%)

 Other forms of heart disease 1833 (10.9%) 235 (11.5%) 60 (9.5%) 55 (8.2%)

 Cerebrovascular diseases 1033 (6.1%) 175 (8.6%) 66 (10.4%) 59 (8.8%)

 Diseases of the arteries/arterioles/capillaries 677 (4.0%) 75 (3.7%) 22 (3.5%) 18 (2.7%)

 Total Diseases of the circulatory system 7907 (47.0%) 906 (44.5%) 306 (47.0%) 282 (42.3%)

 Neoplasms 2729 (16.2%) 305 (15.0%) 104 (16.0%) 95 (14.2%)

 Diseases of the digestive system 1649 (9.8%) 192 (9.4%) 49 (7.5%) 76 (11.4%)

 Consequences of external causes 1299 (7.7%) 141 (6.9%) 54 (8.3%) 53 (7.9%)

 Diseases of the respiratory system 1063 (6.3%) 132 (6.5%) 37 (5.7%) 43 (6.4%)

Most frequent admission services n (%)

 Cardiac surgery 5997 (37.0%) 615 (31.2%) 210 (33.1%) 199 (30.9%)

 General surgery 1616 (10.0%) 184 (9.3%) 58 (9.1%) 57 (8.9%)

 Hepatology 787 (4.9%) 121 (6.1%) 31 (4.9%) 33 (5.1%)

 Internal Medicine 692 (4.3%) 107 (5.4%) 33 (5.2%) 34 (5.3%)

 Neurosurgery 660 (4.1%) 99 (5.0%) 37 (5.8%) 34 (5.3%)

 Intensive care 519 (3.2%) 176 (8.9%) 54 (8.5%) 52 (8.1%)

 Burn unit 587 (3.6%) 64 (3.2%) 19 (3.0%) 27 (4.2%)

Length of stay in hours median [IQR] 50.7 [95.2] 51.6 [93.6] 51.4 [78.3] 48.5 [90.4]

Patients with any brain imaging n (%) 3381(20.9%) 538 (27.3%) 181 (28.5%) 133 (26.7%)

Death in ICU n (%) 1573 (9.7%) 413 (20.9%) 136 (21.5%) 133 (20.7%)

Table 2.  Models’ performance in the test set. Data presented as bootstrapped median with 95% confidence 
interval. p values were calculated based on bootstrapped data. *at the cutoff estimated on the training set to 
target a sensitivity of 90%.

NN model Logistic model p value

ROC AUC 0.966 (0.949–0.981) 0.940 (0.908–0.969) 0.014

Scaled Brier score 0.481 (0.306–0.614) 0.352 (0.135–0.518) 0.049

Sensitivity* 0.838 (0.750–0.914) 0.838 (0.750–0.917) 0.99

Specificity* 0.926 (0.903–0.947) 0.934 (0.913–0.954) 0.36
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As a prespecified sensitivity analysis, we manually reviewed the medical files of the 11 patients who died in 
the ICU but were not identified as potential donors by our death audit, while predicted as donor by either model 
with a predicted probability of 75% or more. Results are presented in Table S8 (supplementary materials). Of 11 
cases, almost half were potential donors who were excluded because of neoplasia. Two (# 10 and #11) could still 
have been referred because of the low likelihood of metastasis. From the non-neoplasia patients, two (#3 and 
#8) were actual potential organ donors missed by the death audit of our ODO. Sensitivity analysis showed that 
the model was resilient to laboratory removal, with only a small decrease in the AUROC when only the most 
frequent laboratory analyses were kept (Fig S4, supplementary materials). The simulated prospective approach 
(Fig. 2) showed that model AUROC decreased with longer delays between the ICU discharge and the test point. 
However, the NN keeps a better accuracy in the two longest delays of 24 and 48 h.

Discussion
We proposed an innovative approach to the problem of organ donor identification. We were able to develop and 
internally validate a NN model to detect potential organ donors based on routinely collected clinical and labora-
tory data. We used EHR data with minimal pre-processing and minimal human intervention. We focused our 
effort on laboratory analyses, which are impartial, standardized, and accessible electronically, even in hospitals 
without EHRs.

This model is the first evidence supporting the use of real-world data to help screen for potential organ donors. 
To our knowledge, there is only one related model  published34. This model was designed to identify catastrophic 
neurologic events using specific keyword identification on head CT scan reports. Given that most organ donors 
suffered a catastrophic neurologic event, this model could potentially be utilized to identify potential organ 
donors. It reported 77% sensitivity and 66% specificity. This approach required the scans to be interpreted, 
dictated, and transcribed by a radiologist, and thus required human intervention.

The more complex temporal model using NN marginally outperformed the non-temporal simpler version 
(LM). We compared the models with a bootstrap approach on a separate test set, instead of a cross-validation. 
Even if both approaches are similar in  performance35, this enabled us to estimate the distribution of the results 
and apply statistical testing. However, it reduced the amount of data on which both models were compared and 
doesn’t replace an external validation dataset. The NN seemed to keep good discrimination in patients with more 

Figure 1.  ROC Curves for all patients and subgroups of potential organ donors for the neural network (left) 
and the logistic model (right).

Table 3.  Confusion matrix in the test set.

True potential organ donors True non-potential organ donors

Neural network

 Predicted potential organ donors 67 42

 Predicted non-potential organ donors 13 522

Logistic model

 Predicted potential organ donors 67 37

 Predicted non-potential organ donors 13 527
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complex clinical patterns. It seemed to outperform the simpler LM when simulating a prospective identification 
of donors up to 48 h before the time of final donor classification. This could be explained by the added value of the 
clinical temporal evolution and by the fact that the NN had access to an embedded temporal vector of multiple 
laboratory data points, while the LM model only had access to the laboratory data measured at the latest time 
point before the outcome. Nonetheless, further work is needed to improve the model and to reduce the false 
positive rate. Since a lot of the false positives of the model were not eligible because of known neoplasia, that 
information could be in the future be used to update the models and improve their performance.

In subgroup analyses, we observed that our NN model performed better on donors that were also identi-
fied by the clinicians. These subpopulations represent the largest donor subtype making it likely that the model 
learned mostly from this subtype. Also, those subtypes may be more clinically distinct with more stable labora-
tory values, requested because of their donor status, making them easier to detect. Our model was also able to 
detect a significant proportion of potential organ donors that were missed or not referred by the clinical teams. 
Although the performance of the model was slightly lower in this group, our findings are of significant clini-
cal interest, since those patients were missed by clinicians and did not have the opportunity to be assessed for 
donation. Since the detection of even one additional patient is of clinical benefit, we believe that if externally 
validated, such models could help support clinicians in the screening of potential organ donors. Interestingly, 
when we conducted a review of the classification errors of the models, the NN model detected two patients that 
have been missed by both the manual death audit and by the clinicians, potentially suggesting a higher sensitivity 
than the manual death audit alone.

Our study has a few limitations. First, our design required that a proportion of the data be used to train the 
autoencoder, reducing the amount of data available for the development of the classifier. Our approach has other 
advantages such as the possibility of easily merging multimedia information in future iterations of the model 
(radiology images, CT scans, vital signs, etc.). In addition, the design of our LM did not model the laboratory 
data evolution and restricted the absolute number of data point available, limiting comparisons of models and 
possibly explaining the slightly smaller discriminative property of the LM model. However, such limitation does 
not alter the absolute accuracy we measured of either model. Second, it is a retrospective study based on the data 
of a single quaternary transplant center, where clinicians are highly trained in the detection of potential organ 
donors. Truly missed organ donors are rare. In most of the non-referred patients, we found that organ donation 
was considered by the clinician and the option was not pursued, often because of family refusal. However, those 
patients still have a clinical pattern resembling a truly missed potential organ donor. It is unknown how the 
accuracy of our model would translate in a true, unsimulated, prospective setting, or in a different institution, 
and will thus require external and prospective validation before being considered for clinical use. Finally, our 
model requires at least 16 h of temporal data, and as such, does not apply to patients with catastrophic neurologi-
cal events in whom a rapid decision would be required on a shorter time frame (e.g. in the emergency room). A 
decision for those patients will still need to be made by the clinician. Alternatively, those patients could benefit 
from an observation period in the ICU for better neurologic prognostication, as recommended by some experts, 
where our model would  apply36,37.

In conclusion, we demonstrated the performance of two models identifying potential organ donors leverag-
ing routinely collected clinical data. The more temporal NN model demonstrated slightly better and more stable 
performance. The models identified some patients that were not detected by the medical teams and manual death 
audits. Further work is required to validate the models externally and prospectively, and to further improve their 
prediction accuracy.

Figure 2.  Simulation of a prospective analysis over 48 h before ICU discharge. ROC curve at each time point 
for the neural network (left) and the logistic model (right).
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 Data availability
Access to the data is restricted to the research team by the ethical board according to provincial laws but may be 
made available for audit purposes after privacy assessments and appropriate legal agreements. For information, 
please contact Dr. Michaël Chassé, senior author of this work. Code for the NN and the LM model are available 
on the team’s github at https:// github. com/ compa ss- netwo rk/ clini cal.
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