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Oblique stagnation point flow 
of magnetized Maxwell fluid 
over a stretchable Riga plate 
with Cattaneo‑Christov heat flux 
and convective conditions
Mirza Naveed Jahangeer Baig 1, Nadeem Salamat 1, Salman Akhtar 2 & Sohail Nadeem 2,3*

The current work deals with the oblique stagnation point flow phenomenon of a rate‑type Maxwell 
fluid with the significance of the Cattaneo‑Christov double diffusion theory. The Cattaneo‑Christov 
theory is illustrated through the modified form of Fourier’s and Fick’s laws. The steady magnetized 
flow mechanism is observed in two dimensions through a stretchable convective Riga plate. In the 
mass and heat transfer analysis, the consequences of chemical reactions and thermal radiation 
are also incorporated. With the contribution of relevant dimensionless quantities, the setup of 
dimensionless equations is acquired which further takes the form of nonlinear equations. The physical 
significance of the numerous parameters on different features of the flow phenomenon is graphically 
exhibited. The interesting physical quantities are computed and numerically evaluated relative to the 
pertinent parameters. This study reveals that the thermal relaxation time parameter lowers the rate 
of heat transfer, and the thermal Biot number enhances the rate of heat transport. Moreover, the 
Deborah number minimizes the flow field of both tangential and axial velocities.

List of symbols
V   Velocity field vector
Bi2  Concentration Biot number
P̂  Fluid pressure
µ̂  Dynamic viscosity
ξ̂   Chemical reaction rate constant
Rd  Radiation parameter
ω,�  Constants
γ̂C  Solutal relaxation time
q̂w  Surface heat flux
c∗, b∗, a∗  Positive constants
ĈP̂  Specific heat capacity at constant pressure
δc  Concentration relaxation time parameter
ĵ0  Applied current density
T̂∞  Ambient fluid temperature
J  Mass flux
γ̂E  Thermal relaxation time
Ŵ∗  Chemical reaction parameter
ϑ̂  Kinematic viscosity
σ1  Stefan-Boltzmann constant
ĥ1  Heat transfer coefficient
B  Magnetic field vector
ζ  Dimensional parameter
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ρ̂   Fluid density
M  Magnetic parameter
σ̂  Electrical conductivity
�̂  Relaxation time parameter
δ̂   Electrodes and magnets width
δe  Thermal relaxation time parameter
A  Modified Hartmann number
D̂  Mass diffusivity
ReX∗  Local Reynolds number
ĥ2  Mass transfer coefficient
k̂  Fluid thermal conductivity
Pr  Prandtl number(
Û , V̂

)
  Velocity components

β∗  Deborah number
τ   Extra stress tensor
M̂0  Magnets magnetization
Bi1  Thermal Biot number
q  Heat flux
k̂1  Mean absorption coefficient
Ĉ∞  Ambient fluid concentration(
X̂, Ŷ

)
  Cartesian coordinates

Sc  Schmidt number

Due to the numerous utilizations of stagnation point flows in different areas, the significance of such flows is 
enhanced. The applications of such flows include adhesive materials manufacturing, artificial fibers production, 
industrial problems, electrical device cooling, and paper  drying1. A flow in which the fluid obliquely imposes 
on the surface and makes an acute angle is identified as the oblique stagnation point flow. Such flows have been 
investigated by numerous researchers with the involvement of different physical effects. With the involvement 
of a stretchable medium, Ghaffari et al.2 scrutinized the oblique stagnant point flow mechanism of Walter’s fluid 
influenced by thermal radiation. They observed an increment in the rate of heat transfer with the improved Biot 
number. The time-independent flow phenomenon of a micropolar fluid near an oblique stagnation point with 
the impact of partial slip was addressed by Lok et al.3. They performed a stability analysis of the flow problem and 
acquired dual results. Nadeem and  Khan4 discussed the dual nature of magnetized nanofluid flow generated by a 
stretchable oscillatory medium near an oblique stagnant point. They examined that the stronger magnetic field 
augmented the physical quantities. Abbasi et al.5 demonstrate the flow mechanism and thermal characteristics 
of a non-Newtonian Maxwell fluid through an oblique stagnant point relative to a stretched convective medium. 
They examined that in the case of the non-convective medium, the fields of concentration and temperature are 
larger in contrast to the convective medium. More investigations related to oblique stagnation point flow with 
the contribution of numerous physical properties are discussed in Refs.6–11.

Due to the significant rheological characteristics of non-Newtonian fluids, such fluids exhibit many practical 
applications such as metal spinning, food processing, optical fibers, extrusion of polymers, plastic polymer 
production, etc. These fluids are very complicated in their nature and cannot be defined through an individual 
equation. To deliberate all the characteristics of such fluids, numerous model has been introduced. Among 
them, one of the significant models is the rate-type Maxwell fluid. The Maxwell fluid model has grabbed the 
attention of various researchers due to the effects of relaxation time. Through a porous medium, Wang and  Tan12 
studied the time-dependent flow mechanism of a viscoelastic Maxwell fluid with the contribution of physical 
effect. They performed stability analysis through linear and nonlinear theories and examined that the system’s 
instability intensifies with the relaxation time parameter. Ramzan et al.13 scrutinized the thermal features and 
three-dimensional flow phenomenon influenced by various physical effects in a Maxwell fluid. They observed 
a higher rate of heat transfer with a greater amount of heat source. A scrutinization of the chemically reactive 
radiative Maxwell fluid flow problem subject to a convective porous medium was conducted by Hosseinzadeh 
et al.14. They conclude that the higher magnitude of the radiation parameter yields the increasing behavior of 
the thermal field. Through a stretchable surface, Kumar et al.15 numerically analyze the two-dimensional time-
independent flow phenomenon of a Maxwell fluid conveying nanoparticles with the significance of the magnetic 
dipole. Abdal et al.16 studied the bioconvection radiative flow problem of a non-Newtonian Maxwell fluid with 
the significance of the physical boundary conditions. They observed the higher heat transfer rate of the Maxwell 
fluid due to the escalating nature of the thermal radiation parameter. With the involvement of the two-phase 
Buongiorno model, the radiative flow mechanism generated by two stretchable disks in a Maxwell fluid was 
addressed by Chu et al.17.

The heat transport phenomenon developed between two objects can be described through conventional 
theories.  Fourier18 initially discussed the heat transfer mechanism through Fourier’s law of heat conduction 
without the involvement of time. After that, with the contribution of thermal relaxation time, the modified 
form of Fourier’s law was proposed by  Cattaneo19. The theory of  Cattaneo19 was further modified by  Christov20. 
Afterward, to explore the heat transfer mechanism, the Cattaneo-Christov theory was introduced. Numerous 
researchers observe the thermal properties of physical problems with the collaboration of Cattaneo-Christov 
theory. Chu et al.21 worked on a second-grade fluid to discuss the Cattaneo-Christov theory on heat and mass 
transport mechanisms. They acquired the analytical results of the flow problem and physically explored the fluid 



3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:16389  | https://doi.org/10.1038/s41598-023-35263-9

www.nature.com/scientificreports/

properties. The study of the thermal features of a water-based nanofluid with the contribution of the Cattaneo-
Christov model was disclosed by Rawat et al.22. They analyzed the mechanism of mass and heat transport through 
the effects of chemical reaction and thermal radiation respectively. Moreover, a reduction in the magnitude 
of concentration and temperature curves was found corresponding to the escalating solutal and relaxation 
time parameters respectively. Through a stretchable curved surface, Madhukesh et al.23 explored the thermal 
mechanism of a hybrid nanofluid with the involvement of heat flux theory. Rasool et al.24 considered a porous 
surface to analytically scrutinize the mass and thermal features of second grade nanofluid with the significance 
of the Cattaneo-Christov theories and various physical effects.

The branch of magneto hydrodynamics is concerned with the behavior of electrically conducting fluid 
with the presence of magnetic characteristics. With the various implementations of MHD flows such as heat 
exchangers, filtration, power pumps, and medical sciences, such flows have become essential for researchers. The 
axisymmetric magnetized flow mechanism and heat transport phenomenon influenced by the thermal radiation 
of a nanofluid was inspected by Jyothi et al.25. A reduction in the flow field with the improved magnetic field was 
observed in their study. Through a stretched vertical medium, Ramamoorthy and  Pallavarapu26 explored the 
three-dimensional hydromagnetic flow of a Willamson fluid with the consequence of the chemical reaction and 
thermal radiation. They obtained the results of the flow phenomenon through numerical technique and physically 
visualized the impacts of the pertinent parameters on the flow system. An investigation of the magnetized 
time-independent flow phenomenon developed by a shrinking/stretchable surface in a Maxwell fluid through a 
stagnation point was disclosed by Khan et al.27. An exploration of the time-dependent flow problem of a Maxwell 
nanofluid with the significance of the variable physical property and magnetic field was investigated by Islam 
et al.28. They conclude that the reduction rate of the velocity field relative to the larger magnetic field is high for 
the cylindrical medium as compared to the sheet.

After analyzing the aforementioned literature review, we observe that the oblique stagnation point flow 
of Maxwell fluid due to a stretchable sheet has been studied but the oblique stagnation point flow of Maxwell 
fluid with the presence of Cattaneo-Christov double diffusion theory and chemical reaction over a stretchable 
convective Riga plate has not been examined until now. The current flow problem has the novelty of the 
two-dimensional steady oblique stagnant point flow behavior of a Maxwell fluid over a convective surface 
of a stretchable Riga plate. Moreover, the heat and mass transfer mechanisms are investigated through the 
implementation of heat and mass flux theories with the effects of thermal radiation and chemical reaction. 
The setup of dimensionless equations is obtained after the execution of the non-dimensional variables. These 
dimensionless equations are further transformed into a nonlinear system of ordinary differential equations. 
A physical visualization of different features of flow phenomenon (concentration, velocity, temperature) 
corresponding to the pertinent parameters is discussed through graphs. The current paper is organized in the 
following pattern, the problem’s mathematical formulation is described in Section “Problem’s formulation”, 
Section “Result and explanation” deals with the results and explanations of the flow problem, and the purpose 
of Section “Concluding remarks” is to conclude the main findings of the problem.

Problem’s formulation
Let us take a Riga stretchable plate to scrutinize the two-dimensional steady flow of a Maxwell fluid. In the 
Cartesian coordinates system, the Riga plate is taken along the X̂-axis and assumed to be stretched with the 
velocity Ûw = b∗X̂, (b∗ > 0) through the implementation of two opposite and equal forces. The direction of Ŷ
-axis is normal to the X̂-axis, as shown in Fig. 1. The electrically conducting fluid is obliquely impinging on a 
convective Riga plate and is considered to flow in the region of Ŷ > 0 . A magnetic field with uniform strength 
B̂0 is executed towards the Ŷ-axis. Moreover, the effect of thermal radiation with Rosseland approximation is 
involved in the thermal analysis.

For the current problem, the constituting equations can be written in vector form as  follows5,

(1)∇ .V = 0,

Figure 1.  Flow problem’s geometrical configuration.
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For the Maxwell fluid, the extra stress tensor has the following  expressions5,

The contravariant vector and first Rivlin-Ericksen tensor have the following  form5,

In Eq. (3), we have implemented the Cattaneo-Christov theory for heat and mass fluxes as  follows29,

Equations (7) and (8) yield the fundamental Fourier and Ficks laws with γ̂E = γ̂C = 0 . As, we have to deal 
with a steady and incompressible fluid. So, we get the following form of Eqs. (7) and (8).

For the ongoing two-dimensional flow problem, the velocity vector has the following components,

According to Eqs. (1), (2), (3), (4), (5), (6), (7), (8), (9), (10) and (11), the current flow problem has the 
following  equations2,5,29–31

(2)ρ̂

(
∂V

∂ t̂
+ (V .∇)V

)
= −∇P̂ +∇ .τ + σ̂ (V × B)× B,

(3)ρ̂ĈP̂

(
∂T̂

∂ t̂
+ (V .∇)T̂

)
= −∇ .q,

(4)

(
∂Ĉ

∂ t̂
+ (V .∇)Ĉ

)
= −∇ .J,

(5)τ + �̂
Dτ

Dt̂
= µ̂A,

(6)
Dτ

Dt̂
=

dτ

dt̂
− (∇V)τ − τ (∇V)t ,A = ∇V + (∇V)t ,

(7)q + γ̂E
(
qt̂ + (∇ .V)q + V.∇q − q.∇V

)
= −k̂∇T̂ ,

(8)J+ γ̂C
(
Ĵt + (∇ .V)J+ V.∇J− J.∇V

)
= −D̂∇Ĉ,

(9)q + γ̂E
(
V.∇q − q.∇V

)
= −k̂∇T̂ ,

(10)J+ γ̂C(V.∇J− J.∇V) = −D̂∇Ĉ,

(11)V =

(
Û , V̂

)
=

(
Û
(
X̂, Ŷ

)
, V̂

(
X̂, Ŷ

))
,

(12)∂Û

∂X̂
+

∂V̂

∂Ŷ
= 0,

Û
∂Û

∂X̂
+V̂

∂Û

∂Ŷ
= −

1

ρ̂

∂P̂

∂X̂
+ϑ̂

(
∂2Û

∂X̂2
+

∂2Û

∂Ŷ2

)
+

�̂

ρ̂

(
Û
∂2P̂

∂X̂2
+ Û

∂2P̂

∂X̂∂Ŷ
−

∂Û

∂X̂

∂P̂

∂X̂
−

∂Û

∂Ŷ

∂P̂

∂Ŷ

)

(13)−�̂

(
2ÛV̂

∂2Û

∂X̂∂Ŷ
+ V̂2 ∂

2Û

∂Ŷ2
+ Û2 ∂

2Û

∂X̂2

)
−

σ̂

ρ̂
B̂20Û +

π ĵ0M̂0

8ρ̂
exp

(
−

(
π

δ̂

)
Ŷ

)
,

Û
∂V̂

∂X̂
+V̂

∂V̂

∂Ŷ
= −

1

ρ̂

∂P̂

∂Ŷ
+ϑ̂

(
∂2V̂

∂X̂2
+

∂2V̂

∂Ŷ2

)
+

�̂

ρ̂

(
V̂
∂2P̂

∂Ŷ2
+ V̂

∂2P̂

∂X̂∂Ŷ
−

∂V̂

∂X̂

∂P̂

∂X̂
−

∂V̂

∂Ŷ

∂P̂

∂Ŷ

)

(14)−�̂

(
2ÛV̂

∂2V̂

∂X̂∂Ŷ
+ V̂2 ∂

2V̂

∂Ŷ2
+ Û2 ∂

2V̂

∂X̂2

)
,

(15)Û
∂T̂

∂X̂
+ V̂

∂T̂

∂Ŷ
+ γ̂E�̂E =

k̂

ρ̂ĈP̂

(
∂2T̂

∂X̂2
+

∂2T̂

∂Ŷ2

)
−

1

ρ̂ĈP̂

(
∂ q̂r

∂Ŷ
+

∂ q̂r

∂X̂

)
,
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Here

In view of the Rosseland approximation, the radiative heat flux in Eq. (15) has the following  form2,

For the above system of equations, the boundary conditions are expressed  as5

To acquire the dimensionless form of the above setup of equations, we adopt the following dimensionless 
 variables5,

The implementation of Eq. (21) to Eqs. (12), (13), (14), (15), (16), (17), (18) and (19) yield the following 
equations,

(16)Û
∂Ĉ

∂X̂
+ V̂

∂Ĉ

∂Ŷ
+ γ̂C�̂C = D̂

(
∂2Ĉ

∂X̂2
+

∂2Ĉ

∂Ŷ2

)
− ξ̂

(
Ĉ − Ĉ∞

)
,

(17)�̂E = Û2 ∂
2T̂

∂X̂2
+ Û

∂T̂

∂X̂

∂Û

∂X̂
+ Û

∂V̂

∂X̂

∂T̂

∂Ŷ
+ 2ÛV̂

∂2T̂

∂X̂∂Ŷ
+ V̂2 ∂

2T̂

∂Ŷ2
+ V̂

∂T̂

∂Ŷ

∂V̂

∂Ŷ
+ V̂

∂Û

∂Ŷ

∂T̂

∂X̂
,

(18)�̂C = Û2 ∂
2Ĉ

∂X̂2
+ Û

∂Ĉ

∂X̂

∂Û

∂X̂
+ Û

∂V̂

∂X̂

∂Ĉ

∂Ŷ
+ 2ÛV̂

∂2Ĉ

∂X̂∂Ŷ
+ V̂2 ∂

2Ĉ

∂Ŷ2
+ V̂

∂Ĉ

∂Ŷ

∂V̂

∂Ŷ
+ V̂

∂Û

∂Ŷ

∂Ĉ

∂X̂
,

(19)q̂r = −
16σ1T̂

3
∞

3k̂1

∂T̂

∂Ŷ
,

−D̂
∂Ĉ

∂Ŷ
= ĥ2

(
Ĉw − Ĉ

)
, V̂ = 0,−k̂

∂T̂

∂Ŷ
= ĥ1

(
T̂w − T̂

)
, Û = Ûw = b∗X̂,atŶ = 0,

(20)Ĉ → Ĉ∞, Û = c∗X̂ + a∗Ŷ ,T̂ → T̂∞asŶ → ∞.

C∗
=

(
Ĉw − Ĉ∞

)−1(
Ĉ − Ĉ∞

)
,X∗

= X̂

(
b∗

ϑ̂

)1/2

,V∗
= V̂(ϑ̂b∗)

−1/2
, P∗ =

1

ϑ̂ ρ̂b∗
,

(21)T∗
=

(
T̂w − T̂∞

)−1(
T̂ − T̂∞

)
,U∗

= Û(ϑ̂b∗)
−1/2

,Y∗
= Ŷ

(
b∗

ϑ̂

)1/2

(22)
∂U∗

∂X∗
+

∂V∗

∂Y∗
= 0,

U∗
∂U∗

∂X∗
+V∗

∂U∗

∂Y∗
= −

∂P∗

∂X∗
+

(
∂2U∗

∂X∗2
+

∂2U∗

∂Y∗2

)
+β∗

(
U∗

∂2P∗

∂X∗2
+ U∗

∂2P∗

∂X∗∂Y∗
−

∂U∗

∂X∗

∂P∗

∂X∗
−

∂U∗

∂Y∗

∂P∗

∂Y∗

)

(23)−β∗

(
2U∗V∗

∂2U∗

∂X∗∂Y∗
+ V∗2 ∂

2U∗

∂Y∗2
+ U∗2 ∂

2U∗

∂X∗2

)
−MU∗

+ Aexp
(
−ζY∗

)
,

U∗
∂V∗

∂X∗
+V∗

∂V∗

∂Y∗
= −

∂P∗

∂Y∗
+

(
∂2V∗

∂X∗2
+

∂2V∗

∂Y∗2

)
+β∗

(
V∗

∂2P∗

∂Y∗2
+ V∗

∂2P∗

∂X∗∂Y∗
−

∂V∗

∂X∗

∂P∗

∂X∗
−

∂V∗

∂Y∗

∂P∗

∂Y∗

)

(24)−β∗

(
2U∗V∗

∂2V∗

∂X∗∂Y∗
+ V∗2 ∂

2V∗

∂Y∗2
+ U∗2 ∂

2V∗

∂X∗2

)
,

U∗
∂T∗

∂X∗
+V∗

∂T∗

∂Y∗
+δe

(
U∗2 ∂

2T∗

∂X∗2
+ U∗

∂T∗

∂X∗

∂U∗

∂X∗
+ U∗

∂V∗

∂X∗

∂T∗

∂Y∗
+ 2U∗V∗

∂2T∗

∂X∗∂Y∗
+ V∗2 ∂

2T∗

∂Y∗2

(25)+V∗
∂T∗

∂Y∗

∂V∗

∂Y∗
+ V∗

∂U∗

∂Y∗

∂T∗

∂X∗

)
=

1

Pr

(
∂2T∗

∂X∗2
+

∂2T∗

∂Y∗2

)
+

4

3
Rd

(
∂2T∗

∂Y∗2
+

∂2T∗

∂X∗∂Y∗

)
,

U∗
∂C∗

∂X∗
+V∗

∂C∗

∂Y∗
+δc

(
U∗2 ∂

2C∗

∂X∗2
+ U∗

∂C∗

∂X∗

∂U∗

∂X∗
+ U∗

∂V∗

∂X∗

∂C∗

∂Y∗
+ 2U∗V∗

∂2C∗

∂X∗∂Y∗
+ V∗2 ∂

2C∗

∂Y∗2
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Equations (20) transform into the following form,

where,

Now we define the velocity components in terms of stream function as  follows2,

Now  using2

Now utilize Eqs. (29) and (30) into Eqs. (23), (24), (25) and (26). After eliminating the pressure terms and 
comparing the coefficients of X∗0 and X∗1 , we get the following nonlinear equations.

Equation (27) becomes,

After performing the integration to Eqs. (31) and (32), we obtain

(26)+V∗
∂C∗

∂Y∗

∂V∗

∂Y∗
+ V∗

∂U∗

∂Y∗

∂C∗

∂X∗

)
=

1

Sc

(
∂2C∗

∂X∗2
+

∂2C∗

∂Y∗2

)
− Ŵ∗C∗,

∂C∗

∂Y∗
= −Bi2

(
1− C∗

)
,V∗

= 0,
∂T∗

∂Y∗
= −Bi1

(
1− T∗

)
,U∗

= X∗atY∗
= 0,

(27)C∗
→ 0,U∗

=
c∗

b∗
X∗

+
a∗

b∗
Y∗,T∗

→ ∞, asY∗
→ ∞.

Rd =
4σ1T̂

3
∞

k̂1k̂
, β∗

= �̂b∗, ζ =
π

δ̂

(
ϑ̂

b∗

)1/2

, Pr =
µ̂ĈP̂

k̂
, M =

σ̂ B̂20
ρ̂b∗

, A =
π ĵ0M̂0

8ρ̂b∗(ϑ̂b∗)
1/2

,

(28)δe = γ̂Eb
∗, Sc =

ϑ̂

D̂
, Bi2 =

ĥ2

D̂

(
ϑ̂

b∗

)1/2

, δc = γ̂Cb
∗, Ŵ∗

=

ξ̂

(
Ĉw − Ĉ∞

)

b∗
,Bi1 =

ĥ1

k̂

(
ϑ̂

b∗

)1/2

.

(29)V∗
= −

∂ψ

∂X∗
,U∗

=
∂ψ

∂Y∗
,

(30)ψ = X∗F
(
Y∗

)
+H

(
Y∗

)
,T∗

= θ
(
Y∗

)
,C∗

= �(Y∗)

d4F

dY∗4
+F

(
Y∗

) d3F

dY∗3
+

(
d2F

dY∗2

)2

−2
dF

dY∗

d2F

dY∗2
+β∗

(
2

((
dF

dY∗

)2 d2F

dY∗2
+ F

(
Y∗

)( d2F

dY∗2

)2
)

(31)−
(
F
(
Y∗

))2 d4F

dY∗4

)
−M

d2F

dY∗2
= 0,

d4H

dY∗4
+F

(
Y∗

) d3H

dY∗3
−

d2F

dY∗2

dH

dY∗
+β∗

(
2
dF

dY∗

d2F

dY∗2

dH

dY∗
+2F

(
Y∗

) dH

dY∗

d3F

dY∗3
+2F

(
Y∗

) d2F

dY∗2

d2H

dY∗2

(32)−F
(
Y∗

) dF

dY∗

d3H

dY∗3
−

(
F
(
Y∗

))2 d4H

dY∗4

)
−M

d2H

dY∗2
− Aζ exp

(
−ζY∗

)
= 0,

(33)
(
1+

4

3
Rd

)
d2θ

dY∗2
+ Pr

(
F
(
Y∗

) dθ

dY∗
− δe

(
F
(
Y∗

) dF

dY∗

dθ

dY∗
+

(
F
(
Y∗

))2 d2θ

dY∗2

))
= 0,

(34)
d2�

dY∗2
+ Sc

(
F
(
Y∗

) d�

dY∗
− δc

(
F
(
Y∗

) dF

dY∗

d�

dY∗
+

(
F
(
Y∗

))2 d2�

dY∗2

)
− Ŵ∗�

(
Y∗

))
= 0,

dF

dY∗
= 1,

d�

dY∗
= −Bi2

(
1−�

(
Y∗

))
,
dH

dY∗
= 0, F

(
Y∗

)
= 0,

dθ

dY∗
= −Bi1

(
1− θ

(
Y∗

))
atY∗

= 0,

(35)
dF

dY∗
=

c∗

b∗
,
dH

dY∗
= �Y∗,

d2H

dY∗2
= �, θ

(
Y∗

)
→ 0,�

(
Y∗

)
→ 0asY∗

→ ∞.

(36)
d3F

dY∗3
+F

(
Y∗

) d2F

dY∗2
−

(
dF

dY∗

)2

+β∗

(
2F

(
Y∗

) dF

dY∗

d2F

dY∗2
−

(
F
(
Y∗

))2 d3F

dY∗3

)
−M

dF

dY∗
+C1 = 0,
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Now using condition at infinity given in Eq. (35), we have

Using Eq. (38) into Eqs. (36) and (37), we have

Equations (36), (37) and (39) becomes,

Now introducing dHdY∗ = �G(Y∗), Eq. (41) becomes

The relevant conditions are,

According to the engineering point of view, the physical quantities of interest (Sherwood number, skin friction 
coefficient, Nusselt number) are very significant. For the ongoing flow phenomenon, these important quantities 
have the following  form2,32,

Here Ref.32,

After using Eqs. (21), (30), and (45) in Eq. (44), we have

d3H

dY∗3
+ F

(
Y∗

) d2H

dY∗2
−

dF

dY∗

dH

dY∗
+ β∗

(
2F

(
Y∗

) dH

dY∗

d2F

dY∗2
−

(
F
(
Y∗

))2 d3H

dY∗3

)

(37)−M
dH

dY∗
+ Ae−ζY∗

+ C2 = 0,

(38)F
(
Y∗

)
=

c∗

b∗
Y∗

+ ω,
dF

dY∗
=

c∗

b∗
,
dH

dY∗
= �Y∗,

d2H

dY∗2
= �,

(39)C1 =
c∗

b∗

(
c∗

b∗
+M

)
,C2 = −ω�,

d3F

dY∗3
+ F

(
Y∗

) d2F

dY∗2
−

(
dF

dY∗

)2

+ β∗

(
2F

(
Y∗

) dF

dY∗

d2F

dY∗2
−

(
F
(
Y∗

))2 d3F

dY∗3

)

(40)+M

(
c∗

b∗
−

dF

dY∗

)
+

(
c∗

b∗

)2

= 0,

d3H

dY∗3
+ F

(
Y∗

) d2H

dY∗2
−

dF

dY∗

dH

dY∗
+ β∗

(
2F

(
Y∗

) dH

dY∗

d2F

dY∗2
−

(
F
(
Y∗

))2 d3H

dY∗3

)

(41)−M
dH

dY∗
+ Ae−ζY∗

− ω� = 0,

d2G

dY∗2
+ F

(
Y∗

) dG

dY∗
−

dF

dY∗
G
(
Y∗

)
+ β∗

(
2F

(
Y∗

)
G
(
Y∗

) d2F

dY∗2
−

(
F
(
Y∗

))2 d2G

dY∗2

)

(42)−MG
(
Y∗

)
+ A∗e−ζY∗

− ω = 0,

(43)G(0) = 0,
dG(∞)

dY∗
= 1.

(44)Sh =
X̂q̂m

D̂
(
Ĉw − Ĉ∞

) ,Cf =
τ̂w

ρ̂Û2
w

,Nu =
X̂(q̂w + q̂r)

k̂
(
T̂w − T̂∞

) ,

(45)q̂m = −D̂
∂Ĉ

∂Ŷ

∣∣∣∣∣
Ŷ=0

, τ̂w = µ̂
(
1+ β∗

) ∂Û
∂Ŷ

∣∣∣∣∣
Ŷ=0

, q̂w = −k̂
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∂Ŷ

∣∣∣∣∣
Ŷ=0

,

ShX∗(ReX∗)−0.5
= −

d�(0)

dY∗
,Cf (ReX∗)0.5 =

(
1+ β∗

)d2F(0)
dY∗2

,

(46)NuX∗(ReX∗)−0.5
= −

(
1+

4

3
Rd
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dθ(0)

dY∗
,ReX∗ =

X∗Ûw

ϑ̂
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Result and explanation
This section is prepared to numerically contemplate the nonlinear system of ordinary differential equations 
through the symbolic package Mathematica. For the validation and accuracy of the current analysis, a comparative 
study between the previous and current outcomes is carried out in Table 1. This Table demonstrates that a good 
relationship is established between the current and previous results. Table 2 is organized to numerically examine 
the consequences of different parameters on the physical quantities. From this Table, it is noticed that both the 
quantities (Nusselt number and Sherwood number) minimize with the improved Deborah number, but the 
quantity of skin friction coefficient enhanced for this parameter. The impact of the stretching ratio parameter 
on all these quantities is opposite as compared to the Deborah number. Both the quantities of the Nusselt 
number and Sherwood number deteriorate relative to the thermal and concentration relaxation parameters 
respectively. Various features of the flow phenomenon corresponding to the emerging pertinent parameters are 
graphically visualized. Figure 2 portrays the behavior of concentration distribution subject to the accelerating 

Table 1.  Comparison of −
(
1+ 4

3
Rd

)
dθ(0)
dY∗  for distinct values of Pr when c

∗

b∗
= 0.1,Bi1 = 0.1,Rd = Sc = 1.

Pr Present results Ghaffari et al.2

0.7 0.1758 0.1681

1 0.1766 0.1768

10 0.1879 0.2164

50 0.1948 0.2250

Table 2.  Numerical values of physical quantities subject to the various values of parameters.

c∗

b∗ β
∗

δe δc M ShX∗ (ReX∗ )
−0.5

−Cf (ReX∗ )
0.5 NuX∗ (ReX∗ )

−0.5

0.1 0.2 0.2 0.2 0.5 0.2644 1.5035 0.3117

0.2 0.2651 1.3870 0.3129

0.3 0.2659 1.2576 0.3142

0.3 0.2643 1.6503 0.3116

0.4 0.2642 1.8004 0.3114

0.5 0.2641 1.9540 0.3113

0.1 0.2644 1.5035 0.3121

0.2 0.2644 1.5035 0.3117

0.3 0.2644 1.5035 0.3113

0.1 0.2676 1.5035 0.3117

0.2 0.2644 1.5035 0.3117

0.3 0.2609 1.5035 0.3117

0.5 0.3949 1.5035 0.4827

0.7 0.3944 1.5722 0.4819

0.9 0.3938 1.6389 0.4810

Figure 2.  Curve of �(Y∗) relative to Sc.
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values of Schmidt number. It is examined that the improved Schmidt number deteriorates the profile of the 
concentration. The physical reason for this phenomenon is that the mass diffusivity is inversely related to the 
Schmidt number. The mass diffusivity diminishes with the enhanced Schmidt number. Consequently, the curve of 
the concentration distribution exhibits a descending nature. The consequence of the concentration Biot number 
on the profile of the concentration is revealed in Fig. 3. This graphic exhibits that the higher magnitude of 
the concentration Biot number develops an augmentation in the concentration distribution. Physically, the 
concentration Biot number is directly related to the mass transfer coefficient. The mass transfer rate is enhanced 
with the improved Biot number which further escalates the concentration behavior. Figures 4 and 5 are sketched 
to explore the nature of both axial and tangential velocities relative to the Deborah number. These graphics 
disclose the diminishing behavior of both velocities with the accelerating amount of the Deborah number. This 
phenomenon happens because the fluid’s viscosity is enhanced with the improved Deborah number. The higher 
intensity of the fluid viscosity generates resistance in the movement of the fluid and declines the velocity curve. 
Figure 6 is prepared to scrutinize the flow field of axial velocity influenced by the velocity ratio parameter. This 
figure reveals that the increasing impact of the velocity ratio parameter produces an escalation in the axial velocity 
field. The deteriorating nature of both velocities (axial and tangential) corresponding to the stronger magnetic 
field is manifested in Figs. 7 and 8. Physically, with the contribution of electric and magnetic fields, a resistive 
Lorentz force is generated. This resistive force functions in the reverse direction of the fluid flow and reduces 
fluid transport. Accordingly, the curves of axial and tangential velocities demonstrate the descending nature. 
The field of the fluid temperature in response to the improved thermal Biot number is depicted in Fig. 9. Due to 
the relation of the thermal Biot number with the heat transfer coefficient, the heat transport rate enhances with 
the greater intensity of the thermal Biot number. As a result, the temperature distribution portrays the escalating 
nature. The relation between the temperature field and the Prandtl number is manifested in Fig. 10. With a 
greater amount of the Prandtl number, there exists a reduction in the curve of the temperature. The reason is the 
inverse connection of thermal conductivity with the Prandtl number. The fluid’s thermal conductivity becomes 
lower with the larger Prandtl number. As a result, the rate of heat distribution is minimized, and the thermal 
field illustrates the dwindling behavior. The purpose of Fig. 11 is to investigate the nature of the temperature 
distribution compared to the thermal relaxation parameter. The higher magnitude of the thermal relaxation 

Figure 3.  Curve of �(Y∗) relative to Bi2.

Figure 4.  Curve of F ′(Y∗) relative to β∗.
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parameter depletes the field of the fluid temperature. With the greater thermal relaxation time parameter, the 
particles of the fluid consume more time to accomplish the process of heat transfer to its neighboring particles. 
Accordingly, the fluid temperature profile becomes diminishes. Figures 12, 13, 14 and 15 depict the streamline 
pattern for varying values of the magnetic parameter, Deborah number and velocity ratio parameter. Streamlines 
predict the path of suspended imaginary particles in the liquid and passed along with it. We consider steady 
flow where the streamlines are fixed meanwhile the fluid is in motion. On oblique stagnation is clearly evident 
through stream line graph.A Stagnation point can be seen at center 0 at some parameters.Stream lines show that 

Figure 5.  Curve of G(Y∗) relative to β∗.

Figure 6.  Curve of F ′(Y∗) relative to c
∗

b∗
.

Figure 7.  Curve of F ′(Y∗) relative to M.
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how the follow disperesed around the staganation point. Figure 12a–d depicts the streamline pattern by varying 
magnetic parameter (M). By changing the magnetic parameter M from 2.5 to 5.5, the stagnation point moves to 
the right of the flow pattern. As described earlier, with the contribution of electric and magnetic fields, a resistive 
Lorentz force is generated. This resistive force functions in the reverse direction of the fluid flow and reduces 
fluid transport. Hence, the stagnation point moves to axial location at zero. Figure 13a–d depicts the streamline 
pattern by changing Deborah number. Enhancement in Deborah number from 0.1 to 0.3 leads to negligible 
impact on the stagnation point and streamline pattern. Figure 14a–b depicts the streamline pattern by varying 

Figure 8.  Curve of G(Y∗) relative to M.

Figure 9.  Curve of θ(Y∗) relative to Bi1.

Figure 10.  Curve of θ(Y∗) relative to Pr.
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Figure 11.  Curve of θ(Y∗) relative to δe.

Figure 12.  Streamline pattern by varying M. (a) M = 2.5, (b) M = 3.5, (c) M = 4.5, (d) M = 5.5.
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velocities ratio. Enhancement in velocities ratio from 0.1 to 0.3 leads to negligible impact on the stagnation 
point and streamline pattern. Figure 15a–d depicts the streamline pattern by changing Prandtle number (Pr). 
Enhancement in Prandtle number from 1 to 4 leads impact on the stagnation point and streamline pattern are 
showed by changing Prandtle number.

Concluding remarks
An exploration of the hydromagnetic steady flow of a Maxwell rate-type fluid near an oblique stagnation 
point flow is carried out. A convective stretched Riga plate is considered to be the source of the radiative flow 
phenomenon. The two-dimensional flow problem is analyzed with the involvement of Cattaneo-Christov theory 
and the physical effects of the chemical reaction. The important results of this study are illustrated through the 
following points.

• The concentration distribution is the decreasing function of the Schmidt number.
• The improved concentration Biot number escalates the field of the concentration distribution.
• Both the velocities (tangential and axial) portray the dwindling behavior corresponding to the Deborah 

number and magnetic field.

Figure 13.  Streamline pattern by varying β = 0.1 , β = .4,β = .5,β = 1.
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• The ascending behavior of axial velocity is examined with the influence of the velocity ratio parameter.
• With the increment of the Prandtl number and thermal relaxation parameter, the temperature curve goes 

downward.
• A significant enhancement of heat transport rate is observed relative to the larger intensity of the thermal 

Biot number.
• The stretching ratio parameter enhances the heat and mass transfer rates.
• The current flow problem can be examined for numerous non-Newtonian fluids with the significance of 

nonlinear thermal radiation, inclined magnetic field, and partial slip effects. Moreover, the current flow 
phenomenon can be analyzed with the implementation of the two-phase Buongiorno model.

Figure 14.  Streamline pattern by varying c
∗

b∗
 . (a) c

∗

b∗
 = 0.1, (b) c

∗

b∗
 = 0.3.
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