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Active learning applied 
to automated physical systems 
increases the rate of discovery
Michael D. Shields 1*, Kurtis Gurley 2, Ryan Catarelli 2, Mohit Chauhan 1, Mariel Ojeda‑Tuz 2 & 
Forrest J. Masters 2

Active machine learning is widely used in computational studies where repeated numerical 
simulations can be conducted on high performance computers without human intervention. But 
translation of these active learning methods to physical systems has proven more difficult and the 
accelerated pace of discoveries aided by these methods remains as yet unrealized. Through the 
presentation of a general active learning framework and its application to large‑scale boundary layer 
wind tunnel experiments, we demonstrate that the active learning framework used so successfully in 
computational studies is directly applicable to the investigation of physical experimental systems and 
the corresponding improvements in the rate of discovery can be transformative. We specifically show 
that, for our wind tunnel experiments, we are able to achieve in approximately 300 experiments a 
learning objective that would be impossible using traditional methods.

Active learning is a subfield of machine learning (ML) in which an algorithm uses previously collected data to 
identify the most informative computational or physical experiment to run next, thus optimizing the learning 
rate for a specified  objective1. In the past 20 years, active learning has grown into a discipline much of its own, 
with particular emphasis on the development of novel learning functions and their coupling with different ML 
methods. Prior applications of active learning (e.g. for Bayesian  optimization2) have largely focused on the design 
of computer experiments in which the ML algorithm identifies the precise parameter values with which to initial-
ize a computer model. Very recently, some related approaches have employed reinforcement learning (often used 
for active control) for the design of computational experiments as well, e.g.3–6. Such applications are ubiquitous 
and are increasingly recognized as the state-of-the-art in design of computational experiments (see e.g.7–9).

In contrast to computational experiments, far fewer applications of active learning (or reinforcement 
 learning10) for physical experiments can be found, largely due to the cost and logistical challenges associated 
with the automation of complex physical experiments. Several authors have composed “how to” articles that 
shed important light on potential future capabilities—for example in  chemical11–14 and materials  discovery15–19, 
 physics20, and in the biological  sciences21–25. In the wind engineering field specifically, where large-scale physi-
cal testing is often required and numerical simulations remain an insufficient replacement, a few studies have 
used ML-based predictors derived from computational models with Boundary Layer Wind Tunnel (BLWT) 
experiments to validate the  results26 or to control active flow purely using a priori numerical  simulations27,28. But 
across fields, the potential for transformative discoveries remains largely unrealized, and active learning enabled 
discoveries from physical experiments remain largely hypothetical.

In this work, we describe and employ a novel framework for active learning within large-scale physical systems 
and apply it using actively learned BLWT experiments to discover fundamental relationships between terrain 
roughness, the resulting near-surface atmospheric turbulence, and ultimately the wind pressures needed to design 
critical infrastructure (Fig. 1). Our automated and active learning-controlled experiments are enabled by the 
combination of effective learning functions, a novel automated “Terraformer” that rapidly modulates the tun-
nel’s aerodynamic surface roughness, and a mechanized instrument traverse to measure experimental outcomes. 
We demonstrate that active learning can offer orders of magnitude reductions in the number of experimental 
configurations needed to enable foundational discoveries that would be otherwise infeasible.
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Methods
General active learning framework. Active learning for large-scale experimental investigations requires 
a tightly coordinated closed-loop system with active feedback between experimental equipment/instrumenta-
tion and data analysis/ML software. Our framework (Fig. 1) is comprised of the following essential components: 

1. Quantities of interest: Each experiment must have a carefully selected and quantifiable objective in the form 
of a quantity of interest (QOI) or set of QOIs. The QOI is the measurable result of the experiment. It is a 
physically meaningful and informative takeaway from the experiment that serves as the basis for learning 
and discovery.

2. Experimental parameterization: The experimental design space must be appropriately parameterized and 
parameter ranges/distributions identified. An experimental design space may require a single parameter or 
hundreds of parameters. For expensive and time-consuming experiments, a down-selection mechanism is 
critical to identify the most influential parameters.

3. Automated/controlled actuation: Given a set of parameters, execution of the experiment must be automated. 
This requires a mechanized and controlled experimental apparatus that can configure and initialize experi-
ments without requiring human intervention.

4. Automated measurement instrumentation: Instruments for measuring the data from which the QOI is 
extracted must be computer controlled and automated to eliminate costly and time-consuming manual 
operations, and coordinated and/or sequenced with automated experimental actuation.

5. Data processing/analysis utilities: Processing and/or analysis of the raw data from automated instrumentation 
is generally necessary. This may be simply extracting individual values (e.g., peaks) or performing complex 
regressions, optimization, or dimension reduction to extract salient features from the data. This data process-
ing must be conducted rapidly “on-the-fly” to extract the QOIs used for discovery and the associated active 
learning to select the next experiment.

6. Learning function: The learning function is the decision-making algorithm that specifies the parameter values 
for the next experiment based on previous QOIs. The learning function is typically designed from some 
underlying ML algorithm, but may also result from statistical analysis, data-driven learning methods, or 
even physics-based computations. The learning function must have low computational cost to avoid delays.

7. Human oversight (optional): Many experiments, especially those using large-scale and/or potentially danger-
ous or hazardous equipment, require that a human operator supervise certain aspects of the process. This 
generally involves human oversight of automated systems, human intervention as a failsafe, or perhaps an 
individual to manually initialize or verify a potentially risky automated sequence. Importantly, this human 
does not aid the learning process or interfere with the automated experiment.

Scope of the present study. We demonstrate how this active learning framework enables experimentally 
driven discoveries in a long-fetch open-circuit boundary layer wind tunnel (BLWT) having total dimensions 

Figure 1.  Schematic of the general active learning framework with specific application to boundary layer wind 
tunnel automation and learning.
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of 6 m W × 3 m H × 38 m L. Boundary layer flow development is investigated using controlled actuation of an 
automated roughness element grid that generates mechanical turbulence.

In a BLWT, fan-driven air is forced through a long duct with an array of roughness elements mounted to 
the floor to grow a boundary layer (BL) along the length of the tunnel. Near the floor, turbulence is created via 
mechanical mixing as air flows around the roughness elements. This influence of the surface roughness on tur-
bulent behavior decays with height, as characterized by a turbulence BL profile (Fig. 1—inlay 1.), and depends 
on the spacing, shape, orientation, and height of the roughness elements. A trial-and-error procedure is typi-
cally utilized by manually adjusting roughness element arrays to simulate properly scaled standard BL profiles 
associated with terrains such as ocean-front, open farmland, or suburban conditions. The University of Florida 
BLWT (Fig. 1—inlay 3.) replaces the manual roughness adjustment approach with the Terraformer - a unique 
computer-controlled array of 1116 individual roughness elements (62 rows of 18) with fetch length of 18.3m 
that rapidly actuate to user-specified  configurations29–31. Catarelli et al.29 describes the characteristics, operation, 
and limitations of the system.

We harness the proposed active learning framework to discover families of Terraformer roughness grid con-
figurations that produce statistically equivalent BL turbulence profiles. The goal is to reveal the critical relation-
ship between terrain, turbulence and the resultant pressures on infrastructure being designed to resist wind loads. 
Statistical equivalence is defined through height dependent turbulence intensity (second-order) profiles of the 
wind velocity immediately downstream from the Terraformer roughness grid (Turbulence intensity is far from 
a complete descriptor of the turbulence profile. However, extensive investigations of various metrics, including 
complete power spectral profiles, demonstrated that turbulence intensity expresses many of the second-order 
salient features of the flow profile, while remaining scalar valued and thus easy to work with. Additional studies 
using more detailed descriptors are certainly possible, and this framework opens the door to such investigations). 
Any two profiles are considered statistically equivalent if the norm of their difference lies below a threshold, 
elaborated further below. The focus of this work is on the rapid discovery of second-order equivalent profiles 
enabled by active learning, while the significance of these second-order equivalent profiles to the engineering 
community will be presented in relevant domain-specific periodicals.

We apply the active learning framework to identify different Terraformer configurations that produce wind 
fields that are 2nd-order equivalent to those produced by a uniform grid with element heights all set to 80 mm 
(the benchmark configuration). This benchmark case for which equivalence is being sought creates mean and 
turbulence intensity profiles that match the standard models and metrics employed to investigate pressures on 
scale models of bluff body infrastructure (e.g. buildings)29,30, and are therefore of direct value to the wind engi-
neering community. Each of the active learning components are described below with algorithmic and equipment 
design details provided in the Supplementary Materials (SM).

Quantities of interest. This investigation seeks to discover 2nd-order equivalence between wind velocity fields 
generated from different terrains that achieve a surface-roughness Reynolds number Re∗ = u∗z0/ν ≥ 2.5—
defined by  Schlichting32 to be aerodynamically fully-rough—where u∗ is shear velocity, z0 is aerodynamic rough-
ness length, and ν is the kinematic viscosity of air . Our QOI measures the difference in the second-order statisti-
cal profiles of the wind velocity, defined through the turbulence intensity profile given by:

where σ(z) and µ(z) are the standard deviation and mean velocity of the wind in the along-wind (x) direction 
at height (z) above the floor. Specifically, our QOI is defined as the L2 distance between two turbulence intensity 
profiles

where lθx (z) is the experimental profile having parameters θ , and lbx(z) is the benchmark profile averaged over 25 
repeated benchmark experiments with all element heights at 80 mm. The criterion d < ǫ defines second-order 
equivalence where ǫ is determined as the 99th percentile from a chi distribution obtained from statistical analysis 
of the 25 repeated benchmark experiments. See SM for a detailed derivation.

Experimental parameterization. The Terraformer can be characterized by as many as 2232 degrees of freedom 
(i.e. the height and rotation angle for each element). We parameterized these degrees of freedom by choosing 
functional forms describing shapes that traverse the 62 rows of elements in the along-wind direction (the x-axis 
in Fig. 1—inlay 2 and 3.). We investigate five versions of this concept in three phases. Phase 1 controls the ampli-
tude and wavenumber of a single sine wave (the phase and mean value are fixed). Phase 2 controls the mean 
element height and amplitude of three different wave shapes—sine wave, triangular wave, and square wave. 
Phase 3 controls the parameters of a discretized random field (Fig. 1—inlay 2.). Details of these phases and the 
corresponding Terraformer parameterizations are provided in Table 1 with additional information in the SM.

Automated measurement instrumentation. A mechanized instrument traverse in the BLWT is outfitted with 
three probes that measure the three fluctuating components of wind velocity (x, y, z) and static pressure in real-
time (Fig. 1—inlay 4.). The probes collect data for 30 s and then move vertically in 20 mm increments to collect 
data at the next position. In total, data are collected over a height range from 180 to 500 mm in a plane perpen-
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dicular to the wind direction (Fig. 1—inlay 3.). The traverse and probe system automatically collect and transmit 
the necessary data to a computer to produce the QOI in the automated experimental sequence.

Data processing/analysis utilities. Data collected from the traverse-mounted probes are collected through a 
Labview DAQ system and stored to .th files that are read into a Matlab processing script that evaluates the turbu-
lence intensity profile (1st QOI). Turbulence intensity profiles are then passed into a Python script that evaluates 
the distance from the benchmark profile (2nd QOI) and runs the learning function (described next) to identify 
the Terraformer parameter values for the next experiment. The script then generates the new Terraformer con-
figuration file and notifies the equipment operator. In total, data processing and learning takes approximately 90 
s per experiment.

Learning function. The automated BLWT active learning framework is driven by a learning function whose 
objective is to identify the most informative experiment to run given the results of all prior experiments. We 
explored three learning functions summarized in Table 2.

All learning functions are constructed from a Gaussian Process (GP) regression  model33 used to predict the 
distance between the turbulence intensity profile of an as-yet untested parameterized Terraformer configuration 
and the benchmark turbulence intensity profile, along with a measure of the uncertainty in this prediction. More 
specifically, we define a performance function

Table 1.  Description of the three phases of experiments conducted in this study, including experimental 
parameterization. Notes: (i) Learning function names refer to Table 2. (ii) Details of the Phase 3 expansion 
H(x) are found in the “Results” section below.

Phase Terrain description Functional form and parameters Learning function

1. Sine wave

H(x) = µH + A sin(ω(29, 500− x)+ π)

Noisy U
Noisy EIGF

Mean element height
µH

Amplitude
A

Wave number
ω

80 mm U(0, 80) mm U(− 2π
3000 ,

2π
3000 )

rad/mm

2.
(a) Sine wave
(b) Triangular wave
(c) Square wave

Ha(x) = µH + A sin(−ω(29, 500− x))

Hb(x) = µH + 2A
π

arcsin(sin(−ω(29, 500− x)))
Hc(x) = µH + A sgn(sin(−ω(29, 500− x)))

Noisy UMean element height
µH

Amplitude
A

Wavenumber
ω

U(50, 110)
mm

U(10, 30)
mm − π

3000 rad/mm

3. Random field

H(x) = µH +
∑n

i=1 θi
√
�i fi(29, 500− x)

MUSIC
Noisy U

Mean element height
µH

Random field amplitudes
θi , i = 1, . . . , n

80 mm N(0, 1)

Table 2.  Description of the learning functions employed in this study. Note: Definition of the terms in each 
equation can be found in the text body.

Learning function Expression Objective

Noisy U-function Un(θ) =
µg (θ)

√

σ 2
g (θ)−σ 2

ǫ (θ)

Goal: Conduct experiments along the parameter surface sepa-
rating the 2 nd order equivalent and non-equivalent regions.

How: Conduct experiments that have the highest probability of 
incorrectly predicting the sign of the performance function.

Noisy EIGF (Expected 
Improvement for Global Fit) E[In(θ)] =

(

µg (θ)− g(θ∗)

)2

+ σ 2
g (θ)− σ 2

ǫ (θ)

Goal: Conduct experiments that globally best approximate the 
performance function.

How: Conduct experiments that have both high prediction 
uncertainty and large difference from nearby experiments.

MUSIC

Goal: Conduct experiments that allow efficient computation of 
sensitivity indices.

How: Conduct experiments that have both high prediction 
uncertainty and large differences from nearby experiments in 
conditional GP
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such that g(θ) ≤ 0 corresponds to second-order equivalence and g(θ) > 0 corresponds to second-order different 
profiles, where θ are the Terraformer configuration parameters, ǫ is the threshold distance value for second-order 
equivalence. The GP regression model gives both a mean prediction µg (θ) and the associated standard deviation 
σg (θ) as a measure of uncertainty in the prediction. The Noisy U-function and Noisy EIGF, modified  from34 
 and35 respectively to include noise in the GP, utilize these terms directly. Meanwhile, the MUSIC (Minimizing 
Uncertainty in Sensitivity Index Convergence) uses a main effect GP defined by the conditional expectation 
A(θ(i)) = Eθ(−i)

[

g |θ(i)
]

 where θ(i) represents the ith component of θ and θ(−i) denotes all components of θ except 
component i, which has mean µA(i) (θ (i)) and standard deviation σA(i)

(

θ(i)
)

36.

Human oversight. The wind tunnel operator initializes the fans to the corresponding RPMs and, once the fans 
have reached the steady state the operator is in charge of running the LabVIEW interface to start collecting the 
data. Once the data collection is finished per experiment, the operator executes the Python script mentioned in 
the “Data processing/analysis utilities” section to generate the next Terraformer configuration. The input file of 
the new Terraformer configuration is then loaded into the BLWT computer, and the process starts again. The 
safety-driven human operator actions account for less than 2 min of the 20 min needed per experiment, and the 
operator never interferes with the learning process.

Results
We studied the efficacy of the active learning approach in three phases of experiments (Table 1). The first phase 
served as a proof of concept, the second was a validation exercise, and the third was a more comprehensive 
study of higher complexity intended to push the limits of active learning enabled discovery. Prior to any of the 
three heterogeneous element array phases described in Table 1, we completed 25 identical uniform element 
array experiments (every element set to 80 mm) to provide the benchmark frame of reference for 2nd order 
equivalence exploration. The turbulence intensity profile averaged through these 25 experiments at each height 
provided the target second order profile, while the 25 individual turbulence intensity profiles provided the means 
to quantify the uncertainty among identical benchmark experiments at each height (See SM). Second order 
equivalence thus refers to whether the turbulence intensity profile from any individual heterogeneous element 
array experiment (from any of the 3 phases) is statistically ‘within the experimental noise’ of the benchmark 
turbulence intensity profile.

Phase 1: Sine wave configuration & proof of concept. In phase 1, we considered a simple one-dimen-
sional sine wave Terraformer element configuration in the along-wind direction with two variable parameters, 
the sine wave amplitude and the wave number (Table 1), with the mean and phase fixed. The study served as a 
proof of concept, allowing us to “learn the learning” by applying two different learning functions to explore their 
capacity to achieve our objective of identifying second-order equivalence within the defined parameter space.

We began by conducting 25 experiments with different sine wave Terraformer configurations to train the 
GP surrogate and initialize the learning. We then performed 120 active learning experiments using the noisy 
U-function in which the amplitude was constrained by the maximum/minimum allowable element heights (160 
mm and 0 mm, respectively), five manual experiments for validation (no learning), followed by 78 additional 
experiments over a reduced parameter space that focused on the region of second order equivalence with ampli-
tude A ∈ [0, 30] mm using the noisy EIGF. In total, 253 total experiments were conducted over 96 non-sequential 
hours. Despite using a variety of learning methods, and some manual intervention, this initial exploration of 
the learning gave us sufficient confidence that we could efficiently identify regions in the parameter space that 
resulted in second-order equivalence using the proposed learning function to select subsequent experiments.

Phase 2: Wave shape study. In phase 2, we investigated the influence of three simple wave shapes (sinu-
soidal, triangular, and square) as a means of demonstrating the learning and its ability to identify the region of 
2nd-order equivalence for related low-dimensional parameterized surface roughness. The three wave shapes 
were parameterized identically, varying the mean element height and wave amplitude over a range of interest 
identified from Phase 1 (Table 1). In particular, the minimum amplitude of 10 mm ensured that all experiments 
would be sufficiently different from the benchmark (having zero amplitude) while extending to sufficiently large 
mean heights and amplitudes to capture the limits of equivalence. We were interested in studying these differ-
ences in shape to better understand the influence of different terrain features on turbulence profiles and learning. 
We initialized the learning by running 16 initial experiments with the same parameters, selected using stratified 
sampling to cover the space, for each shape to train the GP surrogate. We then ran active learning with the noisy 
U-function for a total of 43, 56 and 37 experiments for sine, triangular and square waves, respectively, over 78 
h to adequately resolve the regions of 2nd-order equivalence. These regions are shown in Fig. 2, where the solid 
lines showing the boundaries of the predicted equivalence regions are identified as the surface corresponding 
to g(θ) = 0 from Eq. (3) using the actively learned GP surrogate. Observe that the sine and square wave pro-
files have very similar equivalence regions although the square wave region extends over a slightly narrower 
range of wave numbers and slightly lower amplitudes. This is perhaps intuitive because the square profiles have 
sharper transitions that will cause added turbulence. The second-order region for triangular waves, on the other 
hand, extends over similar wave numbers but extends to much higher amplitudes (up to ∼ 1 cm higher). This 
is because fewer elements project higher into the flow and the transitions are gradual, causing less turbulence. 
Importantly, these regions are identified by the learning very rapidly, requiring very few experiments to resolve. 
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The paucity of required training points outside of the immediate regions of second-order equivalence illustrates 
the ability of this active learning framework to converge to a solution very efficiently. Videos showing the evolu-
tion of the boundary with each experiment can be found in the SM.

Phase 3: Random field terraformer configuration. In the final phase, we exercised the active learning 
for a more complex Terraformer element configuration modeled as a one-dimensional Gaussian random field in 
the alongwind direction. The random field possesses the following covariance function

where x1, x2 are two points along the length of the Terraformer, σ 2 = 100 mm is the variance of the field, ω 
is the wave number, and a and ω are selected such that the length scale of the covariance function is given by 
L = a/(a2 + ω2) = 3000 mm, or approximately 1/6 of the Terraformer length. Shorter length scales may not 
adequately resolve the random field due to the discrete element construction of the Terraformer, while longer 
length scales would appear undesirably flat over the fetch length. We then expand the Gaussian random field 
using the Karhunen-Loeve  Expansion37 shown in Table 1 where �i and fi(x) are the eigenvalues and eigenvectors 
of the covariance function respectively and θi , i = 1, . . . , n are standard normal random variables. We began by 
setting n = 10 and ran active learning for 300 total experiments, 27 initial training experiments and 273 using 
active learning with the newly developed MUSIC learning function (Table 2) to compute sensitivity indices 
and reduce the dimension. Sensitivity estimates shown in Fig. 3a indicated that second-order equivalence is, by 
far, most sensitive to dimension θ2 , corresponding to the second eigenvector, and has some modest sensitivity 
to dimension θ1 . All other main effect sensitivities are very small and considered negligible. These sensitivities 
do not add to one, as the remaining influences are from interactions. The GP-based sensitivity method used 
in the MUSIC learning function can also be used to compute interaction sensitivities. In this case, nearly all 
interactions sensitivities are attributed to interactions with θ2 such that its total effect sensitivity (main effects 
plus interactions) is close to 0.9.

Using a reduced dimension expansion with only n = 3 , justified by the active learning sensitivity analysis, we 
performed active learning with the noisy U-function starting with 27 initial experiments drawn using stratified 
sampling and a total of 197 experiments over 79 h. The 3D surface in Fig. 3b shows the boundary of the predicted 
region of 2nd-order equivalence in this reduced 3D space with the parameters shown by their probabilities �(θi) , 
where �(·) is the standard normal cumulative distribution function. This equivalence region is consistent with 
the results of the sensitivity analysis, showing that indeed the θ2 dimension is the most sensitive. The region 
is relatively narrow in this dimension, extending only over the center of the distribution. Values in the tails of 
the distribution result in wind turbulence profiles that are not equivalent to the uniform 80mm element height 
benchmark. θ1 also appears to have some sensitivity, although the surface is wider in this dimension indicating 
a more gradual change in the second-order difference performance function. In θ1 the region extends almost 
completely into the lower tail (corresponding to large negative values), but does not extend into the upper tail. 
Finally, the θ3 dimension has very little sensitivity, with only very small variations in the region in this dimen-
sion. The region remains entirely open in both the upper and lower tails, meaning that even extreme values of 
this parameter in the tails of the distribution do not change whether the turbulence profile field is equivalent.

The equivalence region in Fig. 3b was accurately resolved with less than 200 machine learning selected experi-
ments. We did not use the experiments from sensitivity analysis in the analysis of second-order equivalence to 

(4)C(x1, x2) = σ 2 exp (−a|x2 − x1|) cos (ω|x2 − x1|)

Figure 2.  Phase 2 shape study—regions of 2nd order equivalance for sine wave (blue), triangular wave (green), 
and square wave (red) terrains bounded by the limits of the experimental amplitude [10, 30] mm and mean 
height [50, 110] mm.
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make these two distinct studies. If we had done so, the total number of experiments would have been even fewer. 
A video showing the evolution of these boundary with each experiment can be found in the SM.

Discussion
The direct impacts of this study on the field of wind engineering are the following:

• Active machine learning can be used to efficiently produce wind fields with desired properties.
• Vastly different terrains can produce wind fields with similar second-order statistical features. However, the 

higher-order characteristics of these fields, which govern e.g. extreme wind loads, may not be the same.
• Wide-ranging experimental investigations that have been historically intractable are now possible, which 

opens a new frontier of exploration for wind researchers that may translate to improved design and analysis 
practices for critical infrastructure.

These will be elaborated in domain appropriate publications, but the profound larger impact of these results 
shows the remarkable ability for active learning to enhance the rate of discovery from large-scale experiments. 
We first explored the potential for active learning and demonstrated rapid convergence toward the learning 
objective in a two dimensional parameter space. Phase 1 was notably inefficient since we explored the use of 
two learning functions, yet we achieved our objective with only 253 experiments and approximately 2 work 
weeks of automated experimental effort. By contrast, in order to achieve similar resolution of the second-order 
equivalence boundary using a naïve Monte Carlo or tensor product space-filling experimental design approach 
would require an order of magnitude increase in resources, estimated at approximately 2500 experiments and 
500 h (3 months) of full-time experimental effort, with many of these experiments wasted in regions of little 
influence. The improvement was even more remarkable in phase 2, where the learning was conducted in less than 
100 total experiments for each case, a 25-fold reduction in effort compared with an expected 2500 experiments 
using a standard space-filling design.

The full benefits of pairing active learning with this experimental facility were truly realized in phase 3, 
where a full exploration of the 10-dimensional random field Terraformer configuration would require billions 
of experiments. A space-filling design with an average density of 10 samples in each dimension (e.g. a tensor 
product design) requires exploration of 1010 total Terraformer configurations, which would require several 
thousand human lifetimes to complete. Even if variance reduction or information maximization approaches for 
experimental design were applied, tens of thousands of experiments would be required and resulting in thou-
sands of hours of experiments, which is still prohibitively large. Instead, the active learning sensitivity analysis 
required only 300 experiments to reduce the dimension to a modest 3 dimensions and only approximately 200 
additional experiments to learn the equivalence region. In previous wind tunnel experimental frameworks, these 
studies would have been inconceivable. Of course, this owes to both the active learning and the state-of-the-art 
automation capabilities at the University of Florida BLWT facility. This highlights what is possible, through active 
learning, when such capabilities are available in experimental facilities (beyond just the BLWT) and serves as 
a strong motivator to construct new automated experimental facilities and modernize existing facilities with 
these capabilites.

Figure 3.  Phase 3 random field terrain study—(a) Main effect Sobol indices for each parameters of the KL 
expansion. (b) Second-order equivalence region in the first 3 dimensions identified from active learning. Note 
that axes are transformed to [0,1] by the standard normal cumulative distribution function �(·) . Points are 
colored according to coordinate θ3.



8

Vol:.(1234567890)

Scientific Reports |         (2023) 13:8402  | https://doi.org/10.1038/s41598-023-35257-7

www.nature.com/scientificreports/

The impact of these findings extends far beyond the wind tunnel applications. With the active learning 
framework presented and demonstrated in this paper, active learning can have profound impacts on discovery 
across the scientific landscape. We have shown that active learning can have the same profound impact on 
physical experimentation and exploration as it has had on computational discoveries over the past 20 years. As a 
result, coupling active learning for sensitivity analysis to reduce dimension and other objectives for fundamental 
discovery in physical testing can transform the scientific endeavor in many areas from health to physics. That 
is not to say that dimension reduction of the order we achieved will always be possible, especially for problems 
that involve hundreds, or thousands, of parameters. But, in areas where this dimension reduction and learning 
are possible, the rate of scientific discovery is sure to increase substantially.

Data availability
The datasets generated and/or analysed during the current study are available through the DesignSafe  repository38.
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