
1

Vol.:(0123456789)

Scientific Reports | (2023) 13:8142 | https://doi.org/10.1038/s41598-023-35237-x

www.nature.com/scientificreports

Optimal strategy
of the simultaneous dice
game Pig for multiplayers:
when reinforcement learning
meets game theory
Tian Zhu 1*, Merry Ma 2, Lu Chen 3 & Zhenhua Liu 1*

In this work, we focus on using reinforcement learning and game theory to solve for the optimal
strategies for the dice game Pig, in a novel simultaneous playing setting. First, we derived analytically
the optimal strategy for the 2-player simultaneous game using dynamic programming, mixed-
strategy Nash equilibrium. At the same time, we proposed a new Stackelberg value iteration
framework to approximate the near-optimal pure strategy. Next, we developed the corresponding
optimal strategy for the multiplayer independent strategy game numerically. Finally, we presented
the Nash equilibrium for simultaneous Pig game with infinite number of players. To help promote
the learning of and interest in reinforcement learning, game theory and statistics, we have further
implemented a website where users can play both the sequential and simultaneous Pig game against
the optimal strategies derived in this work.

Reinforcement learning (RL) serves as an important branch of machine learning. As a powerful approach in
decision and control theory, RL has attracted extensive focus, with wide applications in the fields of robotics1,
quantitative finance2, computer vision3, healthcare4, career planning5, gaming6 etc. The most common object of
a games is to beat the opponents, whether they are computers or other human players. To do so, a player needs
to take a sequence of actions as his/her strategy to increase the winning rate and/or decrease the cost (such as
time or the number of steps). For some complicated games like Go, despite the great empirical success of Alpha
Go based on deep reinforcement learning7, the optimal strategy remains unknown. In fact, a new program Alpha
Go Zero has outperformed the previous version of Alpha Go known as Master after 40 days of self-training by
playing millions of games against itself in quick succession and with no input from human players8, indicating
the current best policy can still be improved. For many simple games, the optimal strategy can be learned via RL
algorithms by playing against itself without direct supervision. The dice game Pig is one of them.

The original dice game Pig was publicized by American magician John Scarne in 1945 in his popular book
Scarne on Dice9. This simple one-die game was designed on the sequential basis: Two players take turns to roll
a single die until one of them (the winner) reaches a certain goal, which usually is 100 accumulated points. At
each turn, a player can keep rolling a die with the scores added to his/her turn total, if no 1 is rolled, or the player
wishes to hold so that the turn total will be added to his/her total scores. If a 1 is rolled, however, the player will
have all his/her turn total wiped out to zero and it becomes the opponent player’s turn. In summary, during a
player’s turn, the player can choose “roll” or “hold”. If the player chooses “roll” and rolls a 1, his/her turn ends
automatically with his/her total scores unchanged. If the player chooses “roll” and rolls a number other than 1,
namely 2–6, the number will be added to his/her turn total, and the player can choose “roll” or “hold” again. If
the player chooses “hold”, the turn total will be added to his/her total scores and his/her turn ends. Pig is known
as a “jeopardy dice game”, where previous turn total can be jeopardized by continuing to roll for greater gains (if
the next roll is not 1) or ruin (if 1 is rolled next) (Knizia10). The optimal strategy to this sequential one-die game

OPEN

1Department of Applied Mathematics and Statistics, State University of New York at Stony Brook, Stony Brook,
NY 11794, USA. 2Stony Brook School, Stony Brook, NY 11790, USA. 3Department of Computer Science, State
University of New York at Stony Brook, Stony Brook, NY 11794, USA. *email: tian.zhu@stonybrook.edu;
zhenhua.liu@stonybrook.edu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-35237-x&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2023) 13:8142 | https://doi.org/10.1038/s41598-023-35237-x

www.nature.com/scientificreports/

is not as simple as the game itself—it has only been solved in recent years using the Markov decision process and
dynamic programming (Neller and Presser11,12).

Originally the game is played by turns, i.e sequentially, and hence we called it the sequential Pig game. The
one-die sequential Pig game has since evolved into several variations, with the most popular one being the
two-dice Pig game where two dice are rolled instead of one. The optimal strategies for the standard two-dice
sequential Pig game as well as its variation “Double Trouble” have been derived in our previous paper (Zhu and
 Ma13). Apart from increasing the number of the dice rolled, another possible variation is to increase the number
of players. The Pig game is originally designed for two players to compete against each other. The game can be
easily extended to multiple players without a significant change of the game mechanism. The 3-player sequential
Pig game was investigated with the conclusion that the optimal strategy may not exist if the game total points
exceed some threshold (Bonnet et al.14). As this simple game can be easily played with even more players, say dur-
ing a party, we are interested in how a certain player will make decisions under such situation. Before we derive
the optimal strategy for multiplayers, we first address a potential problem of the current Pig game framework
under the multiplayer setting and provide one possible solution.

Both the one-die (Neller and Presser11) and the two-dice (Zhu and Ma13) sequential Pig games have indicated
that the player who plays first has certain advantage in term of the winning probability. The sequential setting is
unfair to those played at the end of the playing queue, especially when the number of players increases. Another
issue of the sequential game for multiplayer is that if the number of players n is large, taking turns to play can
decrease each player’s participation rate, which is defined his/her number of turns divided by the sum of the turns
that everybody has played, roughly speaking, 1n . Keeping one player doing nothing except for watching the others
to roll can negatively influence his willingness to participate. To improve the players’ experience and enhance
their interest, changing the game playing procedure from sequentially to simultaneously becomes necessary. Like
the concepts of sequential game and simultaneous game in game theory, the Pig game is said to be simultaneous
if every player begins their own turn at the same time rather than successively. As a result, there is no turn for an
individual player but a turn for all players as a whole. A turn ends if all players lose their opportunities to roll.
By saying a player loses his opportunity to roll, we mean either of the following two cases happening: (1) a player
decides to hold, or (2) a player rolls a 1. If a turn ends without a winner, i.e. nobody reaches the goal, the game
will continue and the next turn will begin, with each player’s turn total added to their entire scores respectively.
We further assume each play can only see the other players’ turn total at the end of a turn without knowing each
individual roll of any players. If multiple players m ≤ n reach the goal when a turn ends, the reward is defined
to be 1m for these m winners, and 0 for the other n−m losers. Under this setting, we ensure that the total reward
is always 1 regardless of the number of winners.

In this work, we first derive the optimal strategy for the 2-player simultaneous Pig game, including the cor-
responding optimal strategy against a certain independent strategy, and the optimal mixed-strategy found by
the Nash equilibrium, using reinforcement learning and game theory. Meanwhile, we propose a new Stackelberg
value iteration for multi-agent (SVIMA) reinforcement learning to derive a near-optimal strategy. Next, we
develop the optimal strategy for the 3-player simultaneous game under the independent strategy setting, followed
by the extension of the n-player simultaneous game optimal strategy. Subsequently, we discuss the asymptotic
behavior of the optimal strategy when n goes to infinity. Throughout this paper, the default goal is 100 with the
default game setting being simultaneous, unless otherwise stated. We have restricted to the one-die Pig game
for this work as well. Finally, to promote the learning of game theory, statistics and reinforcement learning, we
have written an online interactive app so that people can play the simultaneous Pig game against our optimal
strategies: https://luchencatherine.github.io/pig-game.

Methods
In this work, we utilize dynamic programming and value iteration by first formulating the game as a Markov
Decision Process, and then providing transition probabilities, to find the optimal strategy for the simultaneous
dice game Pig. For the fundamental reinforcement learning framework consisting of two main subsections
“Markov Decision Process Formulation” and “Dynamic Programming and Value Iteration”, we use the same
system of notations and arguments as in our previous work (Zhu and Ma13).

Reinforcement learning framework. Markov decision process formulation. The simultaneous Pig game
can be solved using reinforcement learning as we are interested in the long-term reward–winning the game. In
particular, the game can be viewed as a Markov Decision Process (MDP) as the action is not determined by the
past states given the current state. For simplicity, we first consider the 2-player game with player A and his/her
opponent player B. The state s = (i, j) contains two elements, player A’s entire score i, and the opponent player
B’s score j, with the state space denoted by S. Given such state s, player A decides the action a he/she should take
for this turn and we define A to be the action space. For any two states s, s′ ∈ S (not necessarily different) and any
action a ∈ A , there is a transition probability p(s′|s, a) that taking action a will change the state from s to s′ . The
immediate reward on each transition from s to s′ under action a is defined as r(s, a, s′) with r(s, a, s′) = 1

m if s′ is a
winning state where m is the number of winners, and r(s, a, s′) = 0 if s′ is a not winning state. The winning state
is defined as i ≥ 100 . Because the only situation obtaining the positive reward is winning the game, there is no
discount factor needed (γ = 1) to ensure the finite sum of the cumulative reward.

The dice game Pig can be solved using Dynamic Programming (DP) as the exact transition probability from
the current state to the next state is known. Given a perfect model, classical DP algorithms can suffer from their
great computational costs when the state space is large, which occurs when the number of players increases.
However, DP still plays an important role in the field of reinforcement learning as it can be used to compute the
exact (optimal) solution in a fully known MDP. Without the complete knowledge of the environment, model-free

3

Vol.:(0123456789)

Scientific Reports | (2023) 13:8142 | https://doi.org/10.1038/s41598-023-35237-x

www.nature.com/scientificreports/

methods such as Monte Carlo (MC) and Temporal Difference (TD) learning, have less limitations and can often
achieve similar effect as DP with less computational expense. These basic model-free methods can be integrated
with neural networks to create a new subcategory of the deep reinforcement learning (DRL), with a well-known
example being the Deep Q-network (Minh et al.15). Recently, many more advanced deep RL methods, such as
Double Deep Q-network16, Dueling Deep Q-network17 and Soft Actor-Critic18, have been developed.

Dynamic programming and value iteration. Almost all RL algorithms involve the value functions indicating
how good a state vπ (s) is or how good an action is given the state qπ (s, a) , with respect to a policy π . Once we
have found the optimal value functions v∗(s) , that satisfy the Bellman optimality equations:

the optimal policy can be easily obtained by

If the dynamics of the environment are perfectly known, we can evaluate a policy π by

which is precisely a system of linear equations. After a policy π is evaluated, we can possibly improve the policy
through the following greedy update for all state s:

Joining policy evaluation and improvement together, we have the policy iteration19. Once a policy π has been
evaluated by the value function vπ , we can improve the current policy further to generate a better policy π ′ using
vπ . Next, we compute vπ ′ and improve it again to yield an even better policy π ′′ . Repeat this process until the
policy cannot be improved anymore. We then have the sequence of monotonically improved policies and value
functions as follows:

where E−→ denotes a policy evaluation and I−→ denotes a policy improvement. Because a finite MDP has only a
finite number of policies, the convergence to an optimal policy and optimal value function is guaranteed in a
finite number of iterations, given the opponent player B’s strategy is independent of player A’s strategy.

For policy iteration, each evaluation vπ needs multiple sweeps through the state set to converge in terms of
limits. If we wait for exact convergence of every evaluation, the computational cost for policy iteration becomes
too high. In fact, policy iteration still converges to the final optimal policy even if the policy evaluation is stopped
after only one update of every state. This improved algorithm is termed value iteration19.

Simultaneous one-die Pig game framework. A common heuristic strategy for the dice game Pig is
the “hold at n” strategy, which is very simple to use. A player adopting this kind of strategy will continue rolling
when his/her turn total is less than n, if no 1 is rolled during the turn. If the player’s turn total reaches n, the
player immediately holds. One exception is when the player needs less than n points to reach 100, in which case
the player will “hold at 100-i” instead with i being the player’s entire score. Under the sequential game setting,
“hold at 20” in particular, was considered as the best strategy before the optimal strategy was derived by Neller
and Presser. As this “hold at n” strategy does not consider the opponent’s score, we refer to this type of strategy
by simple strategy in our paper.

Define p(i, j) to be the state-value function, namely the winning probability of the state s = (i, j) at the begin-
ning of a turn, where i is player A’s score, and j is the opponent player B’s score. Denote the policy that player
A follows by πA . At the beginning of each turn, player A decides an integer k = πA(s) = πA(i, j) he/she needs
to hold at this turn, for example, k = 25 indicates that player A will hold at 25 for this turn. If the turn total is
less than k, then player A keeps rolling. As long as player A’s turn total reaches k (i.e. greater than or equal to k),
player A immediately holds. The action is defined as the turn total k that player A needs to hold at each given
state (i, j). Obviously, we have the action space A = {1, 2, . . . , 100− i} . We define q(i, j, k) to be the action-value
function for the state (i, j) and the action k, where k ∈ A . Then we have:

For a player deciding to hold at k, the turn total he/she will get is not always k. Instead, the turn total is a random
variable Xk , with the set of possible outcomes being {0, k, k + 1, k + 2, k + 3, k + 4, k + 5} . The corresponding
probabilities are PXk

(0),PXk
(k),PXk

(k + 1),PXk
(k + 2),PXk

(k + 3),PXk
(k + 4),PXk

(k + 5) respectively, where
PXk

(k) is the probability of rolling exactly k points this turn (i.e. PXk
(Xk = k)). If the game does not end after

the turn, then the state at the end of this turn is exactly the state at the beginning of the next turn. Therefore,

(1)v∗(s) = max
a

∑

s′

p(s′|s, a)(r(s, a, s′)+ v∗(s
′)),

(2)π∗(s) = argmax
a

∑

s′

p(s′|s, a)(r(s, a, s′)+ v∗(s
′)).

(3)vπ (s) = E π

[

r(s, a, s′)+ γ vπ (s
′)
]

,

(4)π ′(s) = argmax
a

qπ (s, a)

(5)π0
E
−→ vπ0

I
−→ π1

E
−→ vπ1

I
−→ π2

E
−→ · · ·

I
−→ π∗

E
−→ v∗

(6)p(i, j) = max
k

{q(i, j, k)}.

4

Vol:.(1234567890)

Scientific Reports | (2023) 13:8142 | https://doi.org/10.1038/s41598-023-35237-x

www.nature.com/scientificreports/

where j′ is the opponent player B’s score after this turn and the expectation is taken with respect to j′ . Unlike the
original sequential Pig game, player A in the simultaneous version knows no information about the opponent
player B’s score until the turn ends. The opponent player B has his/her own policy πB with

namely the opponent player B decides to hold at k′ for given state (i, j). Then the above Eq. (6) can be further
expanded as:

Typically the value function p(i, j) is set to be 0 for the terminal states (i, j) satisfying i ≥ 100 or j ≥ 100 . If we
include the reward in the value function since the intermediate rewards are 0, the terminal values for the 2-player
game are:

Distribution calculation. One fundamental issue is how to determine the probability distribution Xk of holding at
turn total k, i.e. the exactly values of PXk

(0),PXk
(k),PXk

(k + 1),PXk
(k + 2),PXk

(k + 3),PXk
(k + 4),PXk

(k + 5)} .
We start from the simplest case X1 . If a player holds at 1, (s)he will get one of the points from the outcome
set O = {0, 2, 3, 4, 5, 6} , since when (s)he rolls a 1, according to the rule, (s)he will get 0 turn total and her/
his turn ends. The probability of each outcome is trivial, 16 . To be consistent with our previous nota-
tion, we extend the outcome set to be O = {0, 1, 2, 3, 4, 5, 6} with additional probability PX1(1) = 0 .
For X2 , obviously the outcome set is O = {0, 2, 3, 4, 5, 6} with each probability being 1

6 . Again, we
extend the outcome set to be O = {0, 2, 3, 4, 5, 6, 7} with probability PX2(7) = 0 to satisfy the general
{PXk

(0),PXk
(k),PXk

(k + 1),PXk
(k + 2),PXk

(k + 3),PXk
(k + 4),PXk

(k + 5)} notation.
In general, we can recursively compute PXk+1

 ut i l izing PXk
 . The range of Xk+1 is

{0, k + 1, k + 2, k + 3, k + 4, k + 5, k + 6} , with the first 6 numbers overlapping with the range of Xk . The
number of rolls for Xk+1 must be greater than or equal to that of Xk . If the numbers of rolls are equal, we
have Xk ∈ {0, k + 1, k + 2, k + 3, k + 4, k + 5} . If the numbers of rolls are not equal, i.e. one more roll is
needed, we know Xk = k . For the next roll, face 1,2,3,4,5,6 are equally likely, corresponding to the turn total
0, k + 2, k + 3, k + 4, k + 5, k + 6 , with each probability being 16 . Therefore, we have the following recursive
relationship (also summarized in Table 1):

An example is to see the probability distribution of X3 using the distribution of X2 . The range of X3 is
{0, 3, 4, 5, 6, 7, 8} . If the first roll is not 2, then the player immediately stops (holds or passively stops for rolling
a 1). If the first roll is 2, the player needs to roll again, and the new turn total is one of 0, 4, 5, 6, 7, 8 with each
probability being 16PX2(2) . Thus,

(7)q(i, j, k) = Ej′ [p(i, j
′)P(0)+

5
∑

r=0

p(i + k + r, j′)PXk
(k + r)],

(8)πB(j, i) = k′,

(9)

q(i, j, k) =

5
∑

r1=0

p(i + k + r1, j)PXk
(k + r1)PXk′

(0)+

5
∑

r2=0

p(i, j + k′ + r2)PXk
(0)PXk′

(k′ + r2)

+

5
∑

r1=0

5
∑

r2=0

p(i + k + r1, j + k′ + r2)PXk
(k + r1)PXk′

(k′ + r2)+ p(i, j)PXk
(0)Xk′

P(0)

(10)p(i, j) =

{

1, if i ≥ 100 and j < 100
0.5, if i ≥ 100 and j ≥ 100
0, if i < 100 and j ≥ 100

(11)PXk+1
(i) =

PXk
(i)+ 1

6PXk
(k), if i ∈ {0, k + 2, k + 3, k + 4, k + 5}

PXk
(i), if i = k + 1

1
6PXk

(i), if i = k + 6

Table 1. The relationship between the probability distribution of Xk (hold at k) and the probability
distribution of Xk+1 (hold at k+1).

Prob. 0 k k+1 k+2 k+3 k+4 k+5 k+6

Xk p1 p2 p3 p4 p5 p6 p7 0

Xk+1 p1 +
p2
6

0 p3 p4 +
p2
6

p5 +
p2
6

p6 +
p2
6

p7 +
p2
6

p2
6

5

Vol.:(0123456789)

Scientific Reports | (2023) 13:8142 | https://doi.org/10.1038/s41598-023-35237-x

www.nature.com/scientificreports/

As mentioned earlier, we set PX2(7) = 0 , rendering one more equation in this example. The numerical results of
some distributions of interest are listed in Table 2.

Results
Optimal strategy for 2-player simultaneous one dice game Pig. Optimal strategy given independ‑
ent opponent strategy. We first derive the optimal strategy for player A given the opponent player B’s strategy
is independent of A. By independent, we mean that the opponent player B’s strategy will not change if player A’s
strategy changes. The optimal strategy is learned by the agent itself without any direct supervision.

With the independence strategy assumption, the corresponding optimal strategy πA∗ for player A can be found
by Algorithm 0.1, given a certain strategy πB for the opponent player B. One example is to let the opponent B use
the simple “hold at n” strategy. One question is what n is the best choice? We compare the winning rate of the
corresponding optimal strategy found by Algorithm 0.1 against the “hold at n” strategy with different reasonable
selections of n, as Fig. 1 shows, with the detailed numbers shown in Supplementary Table S1. Figure 1 indicates
that n = 25 is the best scenario as the winning probability of the corresponding optimal strategy is the lowest
among all these choices of n, but the winning rate is still above 50%. One interesting fact is that there are several
local minimums, namely n = 16, 20, 25, 33 , which are exactly 1006 , 1005 , 1004 , 1003 . These strategies have special
meanings, i.e. to win the game in 6,5,4,3 turns respectively.

PX3(i) =

PX2(i)+
1
6PX2(2) =

7
36 , if i ∈ {0, 4, 5, 6}

PX2(i)+
1
6PX2(2) =

1
36 , if i = 7

PX2(i) =
1
6 , if i = 3

1
6PX2(i) =

1
36 , if i = 8

Table 2. Detailed probability distributions for X20,X21,X22,X23,X24,X25,X100. The range
{0, k, k + 1, k + 2, k + 3, k + 4, k + 5} is not the same for all variables. Instead, it depends on the
random variable Xk . For instance, the range of X20 is {0, 20, 21, 22, 23, 24, 25} while the range of X25 is
{0, 25, 26, 27, 28, 29, 30}.

Prob. 0 k k+1 k+2 k+3 k+4 k+5

X20 0.6245 0.0997 0.0950 0.0742 0.0542 0.0352 0.0172

X21 0.6412 0.0950 0.0908 0.0708 0.0518 0.0338 0.0166

X22 0.6570 0.0908 0.0866 0.0676 0.0496 0.0325 0.0158

X23 0.6721 0.0866 0.0828 0.0648 0.0476 0.0310 0.0151

X24 0.6866 0.0828 0.0792 0.0620 0.0454 0.0296 0.0144

X25 0.7004 0.0792 0.0758 0.0592 0.0434 0.0282 0.0138

X100 0.9898 0.0027 0.0026 0.0020 0.0015 0.0010 0.0005

Figure 2. The winning probabilities of the corresponding optimal strategy against the “hold at n” strategy. The
x-axis is the choice of n.

6

Vol:.(1234567890)

Scientific Reports | (2023) 13:8142 | https://doi.org/10.1038/s41598-023-35237-x

www.nature.com/scientificreports/

For n = 25 , i.e. against the “hold at 25” strategy, the decision from the corresponding optimal strategy is
shown in Fig. 2, from which we conclude that the corresponding optimal strategy acts increasingly more aggres-
sively as the opponent player B’s score approaches 100, especially when player A’s score is relatively low. In specific,
when the opponent player B’s score is fixed, the action (turn total k) player A will take versus his/her own score
is plotted in Fig. 3. There are some “jump points” which show the significant changes in actions when player A’s
score only perturbs a little. This phenomenon is more obvious when the opponent player B’s score is closer to 100.
This fact suggests that when the opponent is getting closer to win, instead of recklessly play aggressively, player
A should increase his/her aggressiveness step by step, after his/her score exceeds some thresholds.

The discontinuities are caused by the following two facts:

1. Given the opponent’s score is fixed, the turn total a player would hold at should gradually decrease when
his/her own score increases, to avoid the risk of losing all turn total.

2. Given the opponent’s score is fixed (especially large), the turn total a player would hold at should increase
at some points. As the player’s score pass some threshold, i.e., closer to the goal (i.e., 100), (s)he should take
the risk of rolling higher turn total to increase the winning probability. Those points are typically around
50 and 75, as they are usually the threshold to reduce the number of turns needed to win the game by 1 (on
average a player should hold at around 25).

Therefore, those “jumps” can be viewed as the trade-off between the profit (possibly reducing the number
of turns needed) and the risk (possibly losing all turn total). Those discontinuities demonstrate the power of
reinforcement learning because human strategies such as “hold at 25” or “keep pace” can never detect those
change points.

One remark is that, with the independence assumption, the opponent player B’s strategy can be a more
complex pure strategy, i.e. a spline function of player A’s entire score, instead of a simple “hold at n” strategy. An
example is player B will hold at 25 if player A’s score is less than 40, hold at 30 if player A’s score is between 40 and
60, and hold at 100-j (where j is player B’s entire score at the beginning of the turn) if player A’s score is greater
than 60. Moreover, the opponent player B can even utilize randomness so that his/her strategy will become a
mixed strategy. The algorithm still works in such case with some slight modifications. Since now

we adjust the action-state value q(i, j, k) of the state (i, j) and the action k for player A according to the following:

Optimality of value iteration for independent opponent strategy. Denote the old policy by π . For each iteration,
we find a new policy π ′ through maximizing the action-value function q, i.e. π ′(i, j) = argmaxk qπ (i, j, k) , such
that pπ ′(s) ≥ pπ (s) for the given state s = (i, j) . For another state s′ satisfying s′ �= s , we have pπ ′(s′) = pπ (s

′) by
the independence assumption. Thus, the new policy π ′ must be as good as or better than the old policy π since
pπ ′(s) ≥ pπ (s) for any state s. Suppose the value iteration converges, so the new greedy policy π ′ , is as good as,
but not better than, the old policy π . Then pπ ′ = pπ and for all state s, it follows that:

πB(i, j) = kl with probability pkl ,

(12)q(i, j, k) =
�

l

�

�j

�

p(i, j +�j)PXk
(0)+

5
�

r=0

p(i + k + r, j +�j)PXk
(k + r)

�

PXkl
(�j)

pkl

7

Vol.:(0123456789)

Scientific Reports | (2023) 13:8142 | https://doi.org/10.1038/s41598-023-35237-x

www.nature.com/scientificreports/

which is exactly the Bellman optimality equation. Therefore, pπ ′ must be p∗ , and both π and π ′ must equal to the
optimal policy π∗ , which completes the optimality of the solution found by value iteration.

Mixed‑strategy equilibrium. If both players play rationally, i.e. assuming player A and the opponent player B
adopt the same strategy, then for all state (i, j) we have

and the solution (if exists) in the above system (12) together with Eqs. (5)–(8) is the optimal policy π∗ , satisfy-
ing the Nash equilibrium. Unfortunately, the value iteration does not converge under this setting due to the
independence assumption being violated. The iteration leads to a cycle of policy changes of holding at different
numbers given the same state, with πl1 and πl2 being two cyclic policies:

(13)

pπ ′(s) = E
[

Rt+1 + γ pπ (St+1)|St = s,At = π ′(s)
]

= E

[

Rt+1 + γ pπ (St+1)|St = s,At = argmax
k

qπ (i, j, k)

]

= max
a

E
[

Rt+1 + γ pπ (St+1)|St = s,At = a
]

= max
a

E
[

Rt+1 + γ pπ ′(St+1)|St = s,At = a
]

= max
a

∑

s′ ,r

P(s′|s, a)(r + γ pπ ′(s′))

(14)πA(i, j) = πB(i, j),

π0 −→ π1 −→ π2 −→ · · · −→ πl1 −→ πl2 −→ πl1 −→ πl2 −→ · · ·

Figure 3. The contour surface of the decisions, i.e. the value k that player A should hold at for a given state,
obtained from the corresponding optimal strategy against the “hold at 25” strategy.

Figure 4. The actions for player A given different opponent’s scores, when the opponent player B uses the “hold
at 25” strategy.

8

Vol:.(1234567890)

Scientific Reports | (2023) 13:8142 | https://doi.org/10.1038/s41598-023-35237-x

www.nature.com/scientificreports/

For example, πl1(47, 69) = 16 and πl1(69, 47) = 26 . To compute πl2(47, 69) for player A, the previous informa-
tion about the state (69, 47), namely πl1(69, 47) , is required as it serves as the action for the opponent player B.
Given πl1(69, 47) = 26 , the new policy πl2 at the state (47, 69) is πl2(47, 69) = 28 . To compute πl2(69, 47) , we use
the information πl2(47, 69) = 28 , rendering πl2(69, 47) = 31 . When the next time value iteration encounters the
state (47, 69), using πl2(69, 47) = 31 , the new policy πl3 at (47, 69) is 16. Following the same logic, the update for
(69, 47) is πl3(69, 47) = 26 , which is exactly πl1(69, 47) . Except for the 141 states involving cyclic changes, the
policy values of the rest 9859 states remain the same after 60 iterations.

Since πl1 and πl2 alternate, it is hard to determine which policy is better than the other. For state (0, 0) which
is at beginning of the game, the winning probability of one against the other is very close to 0.5, with error less
than 10−6 . The mean absolute error (MAE) of these two policies πl1 and πl2 over all states is:
1

10000

99
∑

i=0

99
∑

j=0
|pπl1 (i, j)− pπl2 (i, j)| = 3.346× 10−7 , with the maximum error being pπl1 (69, 47)− pπl2 (69, 47) =

2.020× 10−4 . Another interesting fact is that if we use either πl1 or πl2 against “hold at 25” strategy, which is the
best among “hold at n” class in simultaneous one-die Pig game, the winning rate is 0.5192, while the winning
rate of the corresponding optimal strategy against “hold at 25” is 0.5231 as we mentioned in the previous
subsection.

Even the game is simultaneous, the policy update does have order. Here we update the policy πA for player
A and then force the policy πB for the opponent player B to be equal to πA . We can view this process as player
A actively adjust his/her policy while the opponent player B passively follows player A’s strategy. We define the
payoff for a player being 1 if his/her strategy is “preferable” by value iteration, and the payoff being 0 otherwise.
If both players adopt the same strategy, the winning probability for either player will be 0.5 due to symmetry.
Thus, both players’ payoff will be 0.5 if they adopt the same strategy. Here, we say a policy π ′ is preferable by
value iteration than another policy π if value iteration will update the current policy π with a new policy π ′ . The
payoff matrix then can be constructed as shown in Table 3:

The pure-strategy equilibrium does not exist in this game, because neither player A nor the opponent player
B would deviate from any profile of strategies. For example, (πl1 ,πl1) is not an equilibrium because player A can
switch the policy to πl2 to increase his/her payoff from 0.5 to 1. (πl2 ,πl1) is either not an equilibrium because
player B can deviate his/her strategy to πl2 and player B’s payoff increases from 0 to 0.5.

Due to the fact that every finite game has a Nash equilibrium (Nash20), we can find the mixed-strategy Nash
equilibrium of this game. A mixed-strategy combines each pure strategy stochastically with fixed probability. The
equilibrium has the property that the payoffs from selecting the policy πl1 and πl2 are exactly the same, for both
players. Assuming player B adopts policy πl1 with probability b, so player B has (1− b) probability selecting policy
πl2 . From player A’s point of view, the expected payoff for selecting policy πl1 is: b× 0.5+ (1− b)× 1 = 1− 0.5b ;
meanwhile, the expected payoff for selecting policy πl2 is: b× 1+ (1− b)× 0.5 = 0.5+ 0.5b . Equating these two
quantities together, we have b = 0.5 . Similarly, if we assume player A selects policy πl1 with probability a, player
A will select policy πl2 with probability (1− a) . Equating player B’s expected payoffs from selecting policy πl1 and
πl2 , we have a× 0.5+ (1− a)× 0 = a× 0+ (1− a)× 0.5 , rendering a = 0.5 . Therefore, the mixed-strategy
equilibrium is (PπA(πl1) = 0.5,PπB (πl1) = 0.5) . Notice that at the equilibrium, the policy πA for player A and
the policy πB for player B are the same, which is the optimal strategy π∗ for the simultaneous 2-player Pig game.

Stackelberg value iteration for multi‑agent reinforcement learning. For two players, the divergence is caused by
forcing to set the two players’ policies to be the same while one policy is changed slightly later than the other, like
“chasing one’s own tail”. However, this loop can be avoided under the multi-agent reinforcement learning set-
ting, from which we developed a Stackelberg Value Iteration for multi-agent reinforcement learning (SVIMA).
For multi-agent reinforcement learning, Mcmahan (2003) proposed the Double Oracle Algorithm (DOA) based
on game theory21, and later Lanctot (2007) developed DOA’s generalization form Policy-Space Response Oracle
(PSRO)22. While both our SVIMA and DOA involve the minimax operator, SVIMA can be viewed as a generali-
zation of value iteration for multi-agent learning which alternatives evaluate all possible actions and update the
value function. For DOA and PSRO, the policy set is restricted at the beginning and the newly found policy is
continuously added to the policy set until convergence. As the nature of dynamic programming, SVIMA relies
on the full information on the transitions between each state. Thus, SVIMA does not require simulations, unlike
PSRO which usually depends on fictious play where a payoff table (or the winning probabilities) is updated
through the simulated observed outcomes, as mentioned in one of its application (Muller23).

Under the multi-agent RL setting, in specific, for a Markov game, there is a collection of actions sets
A1,A2, . . . ,Ak , one for each agent in the environment. States are evolved through an action from each agent
based on the current state: S × A1 × A2 × · · · × Ak → S . Each individual agent i has one reward function
Ri : S × A1 × A2 × · · · × Ak → R . The goal of each individual agent is to maximize his/her own cumulative
discounted reward, under the assumption of no collusion (Littman24).

Table 3. Payoff for the simultaneous one-die Pig game with two players (player A, player B).

Player B

Policy πl1
Policy πl2

Player A
Policy πl1 (0.5, 0.5) (1, 0)

Policy πl2 (1, 0) (0.5, 0.5)

9

Vol.:(0123456789)

Scientific Reports | (2023) 13:8142 | https://doi.org/10.1038/s41598-023-35237-x

www.nature.com/scientificreports/

In our simultaneous dice game for two players, we let player A and the opponent player B be two individual
agent and they would compete against each other. We use the Stackelberg model to find the subgame perfect Nash
equilibrium (SPNE). The Stackelberg competition model was first developed in economics, with its application in
many fields, such as system control25. Considering the nature of a simultaneous game, instead of the Stackelberg
competition model where the leader usually has substantial advantage, the Cournot model is more appropriate.
However, the actions for some states are saddle points if applying the Cournot model, as the solution space is a
subset of integers. The results are consistent with our fore-mentioned mixed-strategy. Under the simultanoues
dice game settings, these two players are exactly identical in terms of information and winning rates. Conse-
quently, applying the Stackelberg model to our problem will produce a very close approximation to the exact
solution found by the Cournot model, according to a weak version of first-mover’s equilibrium profit (Osborne26).

For two policies π and π ′ , the winning probability for player A is EXπ ,Xπ ′
[p(i + Xπ(i,j), j + Xπ ′(j,i))] ,

using the same notation Xk defined above, which is a random variable denoting the turn total under “hold
at k”. For player A, (s)he wants to maximize the above quantity. While for player B, (s)he wants to maximize
1− EXπ ,Xπ ′

[p(i + Xπ(i,j), j + Xπ ′(j,i))] as the total winning probabilities sum up to 1. Equivalently, player B wants
to minimize EXπ ,Xπ ′

[

p(i + Xπ(i,j), j + Xπ ′(j,i))
]

 . Therefore, the Stackelberg equilibrium for each state (i, j) can be
found by solving the following system:

The idea behind SVIMA is that given the opponent’s strategy π ′ , player A can easily find an optimal policy πA
against the opponent, through maximizing one’s own winning probability.

The problem then reduces to determining how the opponent will choose his/her policy πB . Using the fact that
πA is a function of π ′ , the opponent player can choose a policy π ′ that among all π ′ s, the winning probability for
player A is minimized as the game is zero-sum,

Below is the detailed algorithm 0.2 for SVIMA for our simultaneous two-player Pig game. The policies outputted
by the algorithm is shown in Fig. 4. The winning rates for two players at the beginning of the game are 0.4999997
and 0.5000003, respectively, very close to the theoretical results, namely 0.5 and 0.5. Due to the discretization
approximation and numerical errors, the two policies πA and πB are not exactly the same, with 74 out of total
10,000 states different, so we call it the near-optimal policy. The actions, however, are all differed by 1 for different
actions. The detailed difference is listed in Supplementary Table S3. Another fact demonstrating the near-optimal
property is that the winning probability of the Stackelberg strategy against the fore-mentioned mixed-strategy
is also very close to 0.5, with error less than 10−6.

(15)

∂EXπ ,X
π ′

�

p(i+Xπ(i,j) ,j+Xπ ′(j,i))

�

∂π
= 0

∂EXπ ,X
π ′

�

p(i+Xπ(i,j) ,j+Xπ ′(j,i))

�

∂π ′ = 0

(16)πA(i, j) = argmax
π

EXπ ,Xπ ′

[

pA(i + Xπ(i,j), j + Xπ ′(j,i))
]

= f (π ′)(i, j)

(17)

πB(i, j) = argmin
π ′

EXπA ,Xπ ′

[

pA(i + XπA(i,j), j + Xπ ′(j,i))
]

= argmin
π ′

EXf (π ′) ,Xπ ′

[

pA(i + Xf (π ′)(i,j), j + Xπ ′(j,i))
]

10

Vol:.(1234567890)

Scientific Reports | (2023) 13:8142 | https://doi.org/10.1038/s41598-023-35237-x

www.nature.com/scientificreports/

Multiplayer simultaneous dice game. One advantage of the simultaneous Pig game is that it can be
easily extended to multiple players, even with large number of players, without considering the order of play or
decreasing players’ game experience. Another advantage is that the game is fair for every player, unlike in the
sequential game where the playing order implies advantages or disadvantages towards winning. In the simulta-
neous game since every player begins their turns at the same time. There is no need to decide the order of play
between the players. In this section, we shall first consider the 3-player simultaneous game and then extend
which to infinite number of players.

Three players with independent strategies. Similar to the 2-player simultaneous game, here we have an addi-
tional player, denoted by the opponent player B2, with the first opponent player being B1. The state in the
3-player game becomes a 3-element tuple (i, j1, j2) where i is player A’s entire score, j1 and j2 are the opponent
players B1 and B2’s scores, respectively. Similarly, the action is still the value k that a player will hold at given
a state (i, j1, j2) . Thus, the relationship between the state-value function p(i, j, k) and the action-value function
q(i, j1, j2, k) is:

where j′1 and j′2 are two random variables representing the entire scores of the opponent player B1 and B2 at
the end of the turn, respectively. The distribution of Xk can be found using the same approach introduced in
the “Distribution calculation” section, as it is independent of the number of players and the players’ strategies.
Since all players’ strategies are independent together per the nature of a simultaneous game, the value functions
must satisfy the following symmetry property if the two opponent players B1 and B2 adopt the same strategy:

If all players’ strategies are independent, the corresponding optimal strategy πA∗ for player A given the opponent
player B1’s strategy πB1 and the opponent player B2’s strategy πB2 can be found by Algorithm 0.3. Figure 5 shows
the surface plot of the winning probability of the corresponding optimal strategy for player A, given different
choices of the opponents’ strategy combinations. For example, if πB1 = πB2 ≡ 25 , i.e. both two opponents adopt
the “hold at 25” strategy, the winning probability of the corresponding optimal strategy for player A is 35.90%.
If πB1 ≡ 20 and πB2 ≡ 30 , the winning probability for player A adopting the corresponding optimal strategy
increases to 39.55%. As the average winning rate for the 3-player game 13 and “hold at 25” is the best simple
strategy for the 2-player game, the corresponding optimal strategies found via value iteration can improve the
winning rate decently compared to the tradition “hold at n” strategy. We exam different opponents’ strategy
combinations with n ranges from 20 to 30. Not surprisingly, the best combination is that both opponents B1 and
B2 adopt the “hold at 25” strategy given the 3-player game is independent, which is consistent to our previous
result that “hold at 25” is the best simple strategy for the 2-player simultaneous game. The detailed winning prob-
ability of the corresponding optimal strategy against different combinations is shown in Supplementary Table S4.

For the 4-player simultaneous game, we can introduce another variable j3 to record the score of the third
opponent player, with the rest of the framework remains the similar. The overall logic flow for finite number
of players adopting independent strategies is the same. As long as all players’ strategies remain independent,

(18)

p(i, j1, j2) = max
k

q(i, j1, j2, k)

q(i, j1, j2, k) = E j′1,j
′
2

[

p(i, j′1, j
′
2)PXk

(0)+

5
∑

r=0

p(i + r + k, j′1, j
′
2)PXk

(k + r)

]

(19)
p(i, j1, j2) = p(i, j2, j1)

q(i, j1, j2, k) = q(i, j2, j1, k)

Figure 5. The contour surfaces of the Stackelberg equilibrium decisions. The left plot is the turn total k that
player A should hold at for all states, and the right plot is the turn total k that player A should hold at for all
states.

11

Vol.:(0123456789)

Scientific Reports | (2023) 13:8142 | https://doi.org/10.1038/s41598-023-35237-x

www.nature.com/scientificreports/

the value iteration can always find the corresponding optimal strategy for one player given the other players’
strategies. However, the computational costs increase as the number of players increases, with the computational
complexity being O(100n) , where n is the number of players.

Infinite number of players. When we further increase the number of players n, and even push n to infinity, what
is the optimal strategy for each player? The limiting behavior of the optimal policy can be analyzed through sym-
metry. According to the simultaneous nature of the game, the Nash equilibrium or the optimal strategy is found
when every player adopts the same strategy. The problem is then reduced to what is this strategy?

If every player uses the same strategy, the winning probability is the same for all players, namely 1n , where n is
the number of players. For sufficiently large number of players, especially when n → ∞ , we know the expected
winning chance for individual player is almost 0 as limn→∞

1
n = 0 . However, based on the last row in Table 2,

a player using the strategy “hold at 100” will have 1− 0.9898 = 1.02% chance to win the game in one turn. The
overall winning chance for a single player adopting the “hold at 100” strategy is at least 1.02% given no other
players adopting “hold at 100”. Thus, if every player adopts the same strategy which is not the “hold at 100”
strategy, for a particular player A, he/she can easily switch the current strategy to the “hold at 100” strategy to
increase his/her winning probability.

In generally, if there are m players selecting the “hold at 100” strategy, their expected individual winning
probability is at least 1.02%m . The probability that none of them reaches 100 in turn 1 is (1− 1.02%)m . For the rest
n−m players not using the “hold at 100” strategy, they cannot win the game in turn 1 and thus their overall
expected individual winning probability is at most (1−1.02%)m

n−m , which is close to 0 when n is sufficiently large,
thus less than 1.02%m for any fixed m. Consequently, any player not adopting the “hold at 100” strategy will switch
his/her strategy to the “hold at 100” strategy. Therefore, the Nash equilibrium is that every player will select the
“hold at 100” strategy when there are infinite number of players.

In fact, when n is greater than or equal to 99, we have 199 ≈ 1.01% < 1.02% . As long as the number of players
exceed 98, then every player should only consider the “hold at 100” strategy.

Discussion
The dice game Pig was originally designed for 2-player sequential play. In this work, we first discussed some
potential issues of the current sequential Pig game and provided the simultaneous game as a solution. Then we
thoroughly analyzed different cases of simultaneous Pig game, from independent strategy to optimal strategy,
and from 2-player game to multiplayer game, using Markov decision process (MDP), dynamic programming
(DP) and game theory, with the first two being classical components of reinforcement learning (RL). Before the
reinforcement learning method is applied in the dice game Pig, the simple “hold at n” strategy is considered as
a type of heuristic sub-optimal strategy with best the value n chosen through winning probabilities. This type
of strategy is not dependent upon the opponent player’s score either. On the other hand, the optimal strategy
developed by value iteration maximizes the winning probability at any state and is therefore a function of the
opponent’s score, or even a function of the opponent’s strategy. This work has also demonstrated the power
of RL in the field of games. In the sequential game, even the Nash equilibrium can be obtained through value
iteration for the 2-player game (Neller and Presser11), but with some constraints for the 3-player game (Bon-
net et al.14). While in the simultaneous game, value iteration does not converge for pure-strategy equilibrium,
indicating only the mixed-strategy equilibrium which can be found by game theory exists. If sub-optimal is
allowed, Stackelberg value iteration can be applied to find the pure strategy. However, in the case of independent

Figure 6. The surface plot of the winning probability of the corresponding optimal strategy for player A,
given different opponents’ “hold at n” strategies. The x, y axes are the values n in the “hold at n” strategy for two
opponents respectively.

12

Vol:.(1234567890)

Scientific Reports | (2023) 13:8142 | https://doi.org/10.1038/s41598-023-35237-x

www.nature.com/scientificreports/

strategies, value iteration can always find the corresponding optimal strategy for one player given the other play-
ers’ strategies, regardless of the number of players. In particular, we demonstrate how to use value iteration to
find the corresponding optimal strategy for the 3-player simultaneous game. The result can be easily extended
to any finite number of players. As for the limiting behavior in terms of the number of players, the pure-strategy
Nash equilibrium is simply the “hold at 100” strategy, not surprisingly. Below we have summarized all the results
based on related work in Table 4.

RL has sparked people’s imagination because the computer can learn on its own at lightning speed without
training data from humans. The utility of RL goes well beyond providing the optimal play strategies for games.
Rather, it has already rendered significantly impact in engineering (AI/robotics), finance, science, healthcare
and so on, by greatly improving the framework for decision making in these fields. Because the pure-strategy
equilibrium does not exist, value iteration encounters divergence, and the mixed-strategy equilibrium is obtained
through game theory analysis. How to combine these two methods more tightly, i.e. to develop a RL algorithm
that can directly find the mixed-strategy, will be our future focus. Furthermore, our work is based on a fixed
player’s view, namely player A, and assumes no cooperation between the players. Using multi-agent reinforcement
learning to incorporate the cooperative game is another direction worth future investigation.

Data availability
Key data generated or analysed during this study are included in this published article and its supplementary
information files. The rest datasets used and/or analysed during the current study (Fig. 2) available from the
corresponding author on reasonable request.

Received: 1 January 2023; Accepted: 15 May 2023

References
 1. Kober, J., Bagnell, J. A. & Peters, J. Reinforcement learning in robotics: A survey. Int. J. Robot. Res. 32, 1238–1274 (2013).
 2. Zhu, T. & Zhu, W. Quantitative trading through random perturbation q-network with nonlinear transaction costs. Stats 5, 546–560

(2022).
 3. Bernstein, A. & Burnaev, E. V. Reinforcement learning in computer vision. In Tenth International Conference on Machine Vision

(ICMV 2017), vol. 10696 458–464 (SPIE, 2018).
 4. Gottesman, O. et al. Guidelines for reinforcement learning in healthcare. Nat. Med. 25, 16–18 (2019).
 5. Guo, P., Xiao, K., Ye, Z., Zhu, H. & Zhu, W. Intelligent career planning via stochastic subsampling reinforcement learning. Sci. Rep.

12, 1–16 (2022).
 6. Lanctot, M. et al. Openspiel: A framework for reinforcement learning in games. arXiv: 1908. 09453 (2019).
 7. Silver, D. et al. Mastering the game of go with deep neural networks and tree search. Nature 529, 484–489 (2016).
 8. Silver, D. et al. Mastering the game of go without human knowledge. Nature 550, 354–359 (2017).
 9. Scarne, J. Scarne on Dice (Military Service Publishing Co., 1945).
 10. Knizia, R. Dice Games Properly Explained (Elliot Right-Way Books, 1999).
 11. Neller, T. W. & Presser, C. G. Optimal play of the dice game pig. UMAP J. 25, 1 (2004).
 12. Neller, T. W. & Presser, C. G. Practical play of the dice game pig. UMAP J. 31, 1 (2010).
 13. Zhu, T. & Ma, M. H. Deriving the optimal strategy for the two dice pig game via reinforcement learning. Stats 5, 805–818 (2022).
 14. Bonnet, F., Neller, T. W. & Viennot, S. Towards optimal play of three-player piglet and pig. In Thirty‑Third AAAI Conference on

Artificial Intelligence Workshop on Reinforcement Learning in Games (AAAI, 2019).
 15. Mnih, V. et al. Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015).
 16. Van Hasselt, H., Guez, A. & Silver, D. Deep reinforcement learning with double q-learning. In Proceedings of the AAAI conference

on artificial intelligence, vol. 30 (2016).
 17. Wang, Z. et al. Dueling network architectures for deep reinforcement learning. In International Conference on Machine Learning,

1995–2003 (PMLR, 2016).
 18. Haarnoja, T. et al. Soft actor-critic algorithms and applications. arXiv: 1812. 05905 (2018).
 19. Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction (MIT press, 2018).
 20. Nash, J. F. Jr. Equilibrium points in n-person games. Proc. Natl. Acad. Sci. 36, 48–49 (1950).
 21. McMahan, H. B., Gordon, G. J. & Blum, A. Planning in the presence of cost functions controlled by an adversary. In Proceedings

of the 20th International Conference on Machine Learning (ICML‑03) 536–543 (2003).
 22. Lanctot, M. et al. A unified game-theoretic approach to multiagent reinforcement learning. Adv. Neural Inf. Process. Syst. 30, 58

(2017).
 23. Muller, P. et al. A generalized training approach for multiagent learning. arXiv: 1909. 12823 (2019).
 24. Littman, M. L. Markov games as a framework for multi-agent reinforcement learning. In Machine Learning Proceedings 1994

157–163 (Elsevier, 1994).
 25. Li, M., Qin, J. & Ding, L. Two-player stackelberg game for linear system via value iteration algorithm. In 2019 IEEE 28th Interna‑

tional Symposium on Industrial Electronics (ISIE) 2289–2293 (IEEE, 2019).
 26. Osborne, M. J. et al. An Introduction to Game Theory Vol. 3 (Oxford University Press, 2004).

Table 4. Summary of the dice game Pig. Here character “Y” indicates the case is solved and the optimal
strategy is found, while character “X” indicates that the case is unlikely. The independent strategy sequential
game case is left blank as no related work was found. We believe this scenario is also solvable using value
iteration.

Category Two players Three players Infinite players

Subcategory Independent strategy Optimal strategy Independent strategy Optimal strategy

Sequential Y Y X

Simultaneous Y Not convergent for pure strategy Y Y

http://arxiv.org/abs/1908.09453
http://arxiv.org/abs/1812.05905
http://arxiv.org/abs/1909.12823

13

Vol.:(0123456789)

Scientific Reports | (2023) 13:8142 | https://doi.org/10.1038/s41598-023-35237-x

www.nature.com/scientificreports/

Author contributions
T.Z., M.M. and Z.L. conceived the experiments, T.Z. and L.C. conducted the experiments, T.Z., M.M. and Z.L.
analysed the results. All authors contributed in writing and reviewing the manuscript. (T.Z., M.M., L.C. and Z.L.).

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/
10. 1038/ s41598- 023- 35237-x.

Correspondence and requests for materials should be addressed to T.Z. or Z.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

https://doi.org/10.1038/s41598-023-35237-x
https://doi.org/10.1038/s41598-023-35237-x
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Optimal strategy of the simultaneous dice game Pig for multiplayers: when reinforcement learning meets game theory
	Methods
	Reinforcement learning framework.
	Markov decision process formulation.
	Dynamic programming and value iteration.

	Simultaneous one-die Pig game framework.
	Distribution calculation.

	Results
	Optimal strategy for 2-player simultaneous one dice game Pig.
	Optimal strategy given independent opponent strategy.
	Optimality of value iteration for independent opponent strategy.
	Mixed-strategy equilibrium.
	Stackelberg value iteration for multi-agent reinforcement learning.

	Multiplayer simultaneous dice game.
	Three players with independent strategies.
	Infinite number of players.

	Discussion
	References

