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Optimal strategy 
of the simultaneous dice 
game Pig for multiplayers: 
when reinforcement learning 
meets game theory
Tian Zhu 1*, Merry Ma 2, Lu Chen 3 & Zhenhua Liu 1*

In this work, we focus on using reinforcement learning and game theory to solve for the optimal 
strategies for the dice game Pig, in a novel simultaneous playing setting. First, we derived analytically 
the optimal strategy for the 2-player simultaneous game using dynamic programming, mixed-
strategy Nash equilibrium. At the same time, we proposed a new Stackelberg value iteration 
framework to approximate the near-optimal pure strategy. Next, we developed the corresponding 
optimal strategy for the multiplayer independent strategy game numerically. Finally, we presented 
the Nash equilibrium for simultaneous Pig game with infinite number of players. To help promote 
the learning of and interest in reinforcement learning, game theory and statistics, we have further 
implemented a website where users can play both the sequential and simultaneous Pig game against 
the optimal strategies derived in this work.

Reinforcement learning (RL) serves as an important branch of machine learning. As a powerful approach in 
decision and control theory, RL has attracted extensive focus, with wide applications in the fields of  robotics1, 
quantitative  finance2, computer  vision3,  healthcare4, career  planning5,  gaming6 etc. The most common object of 
a games is to beat the opponents, whether they are computers or other human players. To do so, a player needs 
to take a sequence of actions as his/her strategy to increase the winning rate and/or decrease the cost (such as 
time or the number of steps). For some complicated games like Go, despite the great empirical success of Alpha 
Go based on deep reinforcement  learning7, the optimal strategy remains unknown. In fact, a new program Alpha 
Go Zero has outperformed the previous version of Alpha Go known as Master after 40 days of self-training by 
playing millions of games against itself in quick succession and with no input from human  players8, indicating 
the current best policy can still be improved. For many simple games, the optimal strategy can be learned via RL 
algorithms by playing against itself without direct supervision. The dice game Pig is one of them.

The original dice game Pig was publicized by American magician John Scarne in 1945 in his popular book 
Scarne on Dice9. This simple one-die game was designed on the sequential basis: Two players take turns to roll 
a single die until one of them (the winner) reaches a certain goal, which usually is 100 accumulated points. At 
each turn, a player can keep rolling a die with the scores added to his/her turn total, if no 1 is rolled, or the player 
wishes to hold so that the turn total will be added to his/her total scores. If a 1 is rolled, however, the player will 
have all his/her turn total wiped out to zero and it becomes the opponent player’s turn. In summary, during a 
player’s turn, the player can choose “roll” or “hold”. If the player chooses “roll” and rolls a 1, his/her turn ends 
automatically with his/her total scores unchanged. If the player chooses “roll” and rolls a number other than 1, 
namely 2–6, the number will be added to his/her turn total, and the player can choose “roll” or “hold” again. If 
the player chooses “hold”, the turn total will be added to his/her total scores and his/her turn ends. Pig is known 
as a “jeopardy dice game”, where previous turn total can be jeopardized by continuing to roll for greater gains (if 
the next roll is not 1) or ruin (if 1 is rolled next)  (Knizia10). The optimal strategy to this sequential one-die game 
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is not as simple as the game itself—it has only been solved in recent years using the Markov decision process and 
dynamic programming (Neller and  Presser11,12).

Originally the game is played by turns, i.e sequentially, and hence we called it the sequential Pig game. The 
one-die sequential Pig game has since evolved into several variations, with the most popular one being the 
two-dice Pig game where two dice are rolled instead of one. The optimal strategies for the standard two-dice 
sequential Pig game as well as its variation “Double Trouble” have been derived in our previous paper (Zhu and 
 Ma13). Apart from increasing the number of the dice rolled, another possible variation is to increase the number 
of players. The Pig game is originally designed for two players to compete against each other. The game can be 
easily extended to multiple players without a significant change of the game mechanism. The 3-player sequential 
Pig game was investigated with the conclusion that the optimal strategy may not exist if the game total points 
exceed some threshold (Bonnet et al.14). As this simple game can be easily played with even more players, say dur-
ing a party, we are interested in how a certain player will make decisions under such situation. Before we derive 
the optimal strategy for multiplayers, we first address a potential problem of the current Pig game framework 
under the multiplayer setting and provide one possible solution.

Both the one-die (Neller and  Presser11) and the two-dice (Zhu and  Ma13) sequential Pig games have indicated 
that the player who plays first has certain advantage in term of the winning probability. The sequential setting is 
unfair to those played at the end of the playing queue, especially when the number of players increases. Another 
issue of the sequential game for multiplayer is that if the number of players n is large, taking turns to play can 
decrease each player’s participation rate, which is defined his/her number of turns divided by the sum of the turns 
that everybody has played, roughly speaking, 1n . Keeping one player doing nothing except for watching the others 
to roll can negatively influence his willingness to participate. To improve the players’ experience and enhance 
their interest, changing the game playing procedure from sequentially to simultaneously becomes necessary. Like 
the concepts of sequential game and simultaneous game in game theory, the Pig game is said to be simultaneous 
if every player begins their own turn at the same time rather than successively. As a result, there is no turn for an 
individual player but a turn for all players as a whole. A turn ends if all players lose their opportunities to roll. 
By saying a player loses his opportunity to roll, we mean either of the following two cases happening: (1) a player 
decides to hold, or (2) a player rolls a 1. If a turn ends without a winner, i.e. nobody reaches the goal, the game 
will continue and the next turn will begin, with each player’s turn total added to their entire scores respectively. 
We further assume each play can only see the other players’ turn total at the end of a turn without knowing each 
individual roll of any players. If multiple players m ≤ n reach the goal when a turn ends, the reward is defined 
to be 1m for these m winners, and 0 for the other n−m losers. Under this setting, we ensure that the total reward 
is always 1 regardless of the number of winners.

In this work, we first derive the optimal strategy for the 2-player simultaneous Pig game, including the cor-
responding optimal strategy against a certain independent strategy, and the optimal mixed-strategy found by 
the Nash equilibrium, using reinforcement learning and game theory. Meanwhile, we propose a new Stackelberg 
value iteration for multi-agent (SVIMA) reinforcement learning to derive a near-optimal strategy. Next, we 
develop the optimal strategy for the 3-player simultaneous game under the independent strategy setting, followed 
by the extension of the n-player simultaneous game optimal strategy. Subsequently, we discuss the asymptotic 
behavior of the optimal strategy when n goes to infinity. Throughout this paper, the default goal is 100 with the 
default game setting being simultaneous, unless otherwise stated. We have restricted to the one-die Pig game 
for this work as well. Finally, to promote the learning of game theory, statistics and reinforcement learning, we 
have written an online interactive app so that people can play the simultaneous Pig game against our optimal 
strategies: https://luchencatherine.github.io/pig-game.

Methods
In this work, we utilize dynamic programming and value iteration by first formulating the game as a Markov 
Decision Process, and then providing transition probabilities, to find the optimal strategy for the simultaneous 
dice game Pig. For the fundamental reinforcement learning framework consisting of two main subsections 
“Markov Decision Process Formulation” and “Dynamic Programming and Value Iteration”, we use the same 
system of notations and arguments as in our previous work (Zhu and  Ma13).

Reinforcement learning framework. Markov decision process formulation. The simultaneous Pig game 
can be solved using reinforcement learning as we are interested in the long-term reward–winning the game. In 
particular, the game can be viewed as a Markov Decision Process (MDP) as the action is not determined by the 
past states given the current state. For simplicity, we first consider the 2-player game with player A and his/her 
opponent player B. The state s = (i, j) contains two elements, player A’s entire score i, and the opponent player 
B’s score j, with the state space denoted by S. Given such state s, player A decides the action a he/she should take 
for this turn and we define A to be the action space. For any two states s, s′ ∈ S (not necessarily different) and any 
action a ∈ A , there is a transition probability p(s′|s, a) that taking action a will change the state from s to s′ . The 
immediate reward on each transition from s to s′ under action a is defined as r(s, a, s′) with r(s, a, s′) = 1

m if s′ is a 
winning state where m is the number of winners, and r(s, a, s′) = 0 if s′ is a not winning state. The winning state 
is defined as i ≥ 100 . Because the only situation obtaining the positive reward is winning the game, there is no 
discount factor needed ( γ = 1 ) to ensure the finite sum of the cumulative reward.

The dice game Pig can be solved using Dynamic Programming (DP) as the exact transition probability from 
the current state to the next state is known. Given a perfect model, classical DP algorithms can suffer from their 
great computational costs when the state space is large, which occurs when the number of players increases. 
However, DP still plays an important role in the field of reinforcement learning as it can be used to compute the 
exact (optimal) solution in a fully known MDP. Without the complete knowledge of the environment, model-free 
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methods such as Monte Carlo (MC) and Temporal Difference (TD) learning, have less limitations and can often 
achieve similar effect as DP with less computational expense. These basic model-free methods can be integrated 
with neural networks to create a new subcategory of the deep reinforcement learning (DRL), with a well-known 
example being the Deep Q-network (Minh et al.15). Recently, many more advanced deep RL methods, such as 
Double Deep Q-network16, Dueling Deep Q-network17 and Soft Actor-Critic18, have been developed.

Dynamic programming and value iteration. Almost all RL algorithms involve the value functions indicating 
how good a state vπ (s) is or how good an action is given the state qπ (s, a) , with respect to a policy π . Once we 
have found the optimal value functions v∗(s) , that satisfy the Bellman optimality equations:

the optimal policy can be easily obtained by

If the dynamics of the environment are perfectly known, we can evaluate a policy π by

which is precisely a system of linear equations. After a policy π is evaluated, we can possibly improve the policy 
through the following greedy update for all state s:

Joining policy evaluation and improvement together, we have the policy  iteration19. Once a policy π has been 
evaluated by the value function vπ , we can improve the current policy further to generate a better policy π ′ using 
vπ . Next, we compute vπ ′ and improve it again to yield an even better policy π ′′ . Repeat this process until the 
policy cannot be improved anymore. We then have the sequence of monotonically improved policies and value 
functions as follows:

where E−→ denotes a policy evaluation and I−→ denotes a policy improvement. Because a finite MDP has only a 
finite number of policies, the convergence to an optimal policy and optimal value function is guaranteed in a 
finite number of iterations, given the opponent player B’s strategy is independent of player A’s strategy.

For policy iteration, each evaluation vπ needs multiple sweeps through the state set to converge in terms of 
limits. If we wait for exact convergence of every evaluation, the computational cost for policy iteration becomes 
too high. In fact, policy iteration still converges to the final optimal policy even if the policy evaluation is stopped 
after only one update of every state. This improved algorithm is termed value  iteration19.

Simultaneous one-die Pig game framework. A common heuristic strategy for the dice game Pig is 
the “hold at n” strategy, which is very simple to use. A player adopting this kind of strategy will continue rolling 
when his/her turn total is less than n, if no 1 is rolled during the turn. If the player’s turn total reaches n, the 
player immediately holds. One exception is when the player needs less than n points to reach 100, in which case 
the player will “hold at 100-i” instead with i being the player’s entire score. Under the sequential game setting, 
“hold at 20” in particular, was considered as the best strategy before the optimal strategy was derived by Neller 
and Presser. As this “hold at n” strategy does not consider the opponent’s score, we refer to this type of strategy 
by simple strategy in our paper.

Define p(i, j) to be the state-value function, namely the winning probability of the state s = (i, j) at the begin-
ning of a turn, where i is player A’s score, and j is the opponent player B’s score. Denote the policy that player 
A follows by πA . At the beginning of each turn, player A decides an integer k = πA(s) = πA(i, j) he/she needs 
to hold at this turn, for example, k = 25 indicates that player A will hold at 25 for this turn. If the turn total is 
less than k, then player A keeps rolling. As long as player A’s turn total reaches k (i.e. greater than or equal to k), 
player A immediately holds. The action is defined as the turn total k that player A needs to hold at each given 
state (i, j). Obviously, we have the action space A = {1, 2, . . . , 100− i} . We define q(i, j, k) to be the action-value 
function for the state (i, j) and the action k, where k ∈ A . Then we have:

For a player deciding to hold at k, the turn total he/she will get is not always k. Instead, the turn total is a random 
variable Xk , with the set of possible outcomes being {0, k, k + 1, k + 2, k + 3, k + 4, k + 5} . The corresponding 
probabilities are PXk

(0),PXk
(k),PXk

(k + 1),PXk
(k + 2),PXk

(k + 3),PXk
(k + 4),PXk

(k + 5) respectively, where 
PXk

(k) is the probability of rolling exactly k points this turn (i.e. PXk
(Xk = k) ). If the game does not end after 

the turn, then the state at the end of this turn is exactly the state at the beginning of the next turn. Therefore,

(1)v∗(s) = max
a

∑

s′

p(s′|s, a)(r(s, a, s′)+ v∗(s
′)),

(2)π∗(s) = argmax
a

∑

s′

p(s′|s, a)(r(s, a, s′)+ v∗(s
′)).

(3)vπ (s) = E π

[

r(s, a, s′)+ γ vπ (s
′)
]

,

(4)π ′(s) = argmax
a

qπ (s, a)

(5)π0
E
−→ vπ0

I
−→ π1

E
−→ vπ1

I
−→ π2

E
−→ · · ·

I
−→ π∗

E
−→ v∗

(6)p(i, j) = max
k

{q(i, j, k)}.
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where j′ is the opponent player B’s score after this turn and the expectation is taken with respect to j′ . Unlike the 
original sequential Pig game, player A in the simultaneous version knows no information about the opponent 
player B’s score until the turn ends. The opponent player B has his/her own policy πB with

namely the opponent player B decides to hold at k′ for given state (i, j). Then the above Eq. (6) can be further 
expanded as:

Typically the value function p(i, j) is set to be 0 for the terminal states (i, j) satisfying i ≥ 100 or j ≥ 100 . If we 
include the reward in the value function since the intermediate rewards are 0, the terminal values for the 2-player 
game are:

Distribution calculation. One fundamental issue is how to determine the probability distribution Xk of holding at 
turn total k, i.e. the exactly values of PXk

(0),PXk
(k),PXk

(k + 1),PXk
(k + 2),PXk

(k + 3),PXk
(k + 4),PXk

(k + 5)} . 
We start from the simplest case X1 . If a player holds at 1, (s)he will get one of the points from the outcome 
set O = {0, 2, 3, 4, 5, 6} , since when (s)he rolls a 1, according to the rule, (s)he will get 0 turn total and her/
his turn ends. The probability of each outcome is trivial, 16 . To be consistent with our previous nota-
tion, we extend the outcome set to be O = {0, 1, 2, 3, 4, 5, 6} with additional probability PX1(1) = 0 . 
For X2 , obviously the outcome set is O = {0, 2, 3, 4, 5, 6} with each probability being 1

6 . Again, we 
extend the outcome set to be O = {0, 2, 3, 4, 5, 6, 7} with probability PX2(7) = 0 to satisfy the general 
{PXk

(0),PXk
(k),PXk

(k + 1),PXk
(k + 2),PXk

(k + 3),PXk
(k + 4),PXk

(k + 5)} notation.
In general,  we can recursively compute PXk+1

 ut i l izing PXk
 .  The range of Xk+1 is 

{0, k + 1, k + 2, k + 3, k + 4, k + 5, k + 6} , with the first 6 numbers overlapping with the range of Xk . The 
number of rolls for Xk+1 must be greater than or equal to that of Xk . If the numbers of rolls are equal, we 
have Xk ∈ {0, k + 1, k + 2, k + 3, k + 4, k + 5} . If the numbers of rolls are not equal, i.e. one more roll is 
needed, we know Xk = k . For the next roll, face 1,2,3,4,5,6 are equally likely, corresponding to the turn total 
0, k + 2, k + 3, k + 4, k + 5, k + 6 , with each probability being 16 . Therefore, we have the following recursive 
relationship (also summarized in Table 1):

An example is to see the probability distribution of X3 using the distribution of X2 . The range of X3 is 
{0, 3, 4, 5, 6, 7, 8} . If the first roll is not 2, then the player immediately stops (holds or passively stops for rolling 
a 1). If the first roll is 2, the player needs to roll again, and the new turn total is one of 0, 4, 5, 6, 7, 8 with each 
probability being 16PX2(2) . Thus,

(7)q(i, j, k) = Ej′ [p(i, j
′)P(0)+

5
∑

r=0

p(i + k + r, j′)PXk
(k + r)],

(8)πB(j, i) = k′,

(9)

q(i, j, k) =

5
∑

r1=0

p(i + k + r1, j)PXk
(k + r1)PXk′

(0)+

5
∑

r2=0

p(i, j + k′ + r2)PXk
(0)PXk′

(k′ + r2)

+

5
∑

r1=0

5
∑

r2=0

p(i + k + r1, j + k′ + r2)PXk
(k + r1)PXk′

(k′ + r2)+ p(i, j)PXk
(0)Xk′

P(0)

(10)p(i, j) =

{

1, if i ≥ 100 and j < 100
0.5, if i ≥ 100 and j ≥ 100
0, if i < 100 and j ≥ 100

(11)PXk+1
(i) =







PXk
(i)+ 1

6PXk
(k), if i ∈ {0, k + 2, k + 3, k + 4, k + 5}

PXk
(i), if i = k + 1

1
6PXk

(i), if i = k + 6

Table 1.  The relationship between the probability distribution of Xk (hold at k) and the probability 
distribution of Xk+1 (hold at k+1).

Prob. 0 k k+1 k+2 k+3 k+4 k+5 k+6

Xk p1 p2 p3 p4 p5 p6 p7 0

Xk+1 p1 +
p2
6

0 p3 p4 +
p2
6

p5 +
p2
6

p6 +
p2
6

p7 +
p2
6

p2
6
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As mentioned earlier, we set PX2(7) = 0 , rendering one more equation in this example. The numerical results of 
some distributions of interest are listed in Table 2.

Results
Optimal strategy for 2-player simultaneous one dice game Pig. Optimal strategy given independ‑
ent opponent strategy. We first derive the optimal strategy for player A given the opponent player B’s strategy 
is independent of A. By independent, we mean that the opponent player B’s strategy will not change if player A’s 
strategy changes. The optimal strategy is learned by the agent itself without any direct supervision.

With the independence strategy assumption, the corresponding optimal strategy πA∗ for player A can be found 
by Algorithm 0.1, given a certain strategy πB for the opponent player B. One example is to let the opponent B use 
the simple “hold at n” strategy. One question is what n is the best choice? We compare the winning rate of the 
corresponding optimal strategy found by Algorithm 0.1 against the “hold at n” strategy with different reasonable 
selections of n, as Fig. 1 shows, with the detailed numbers shown in Supplementary Table S1. Figure 1 indicates 
that n = 25 is the best scenario as the winning probability of the corresponding optimal strategy is the lowest 
among all these choices of n, but the winning rate is still above 50%. One interesting fact is that there are several 
local minimums, namely n = 16, 20, 25, 33 , which are exactly 1006 , 1005 , 1004 , 1003  . These strategies have special 
meanings, i.e. to win the game in 6,5,4,3 turns respectively.

PX3(i) =















PX2(i)+
1
6PX2(2) =

7
36 , if i ∈ {0, 4, 5, 6}

PX2(i)+
1
6PX2(2) =

1
36 , if i = 7

PX2(i) =
1
6 , if i = 3

1
6PX2(i) =

1
36 , if i = 8

Table 2.  Detailed probability distributions for X20,X21,X22,X23,X24,X25,X100. The range 
{0, k, k + 1, k + 2, k + 3, k + 4, k + 5} is not the same for all variables. Instead, it depends on the 
random variable Xk . For instance, the range of X20 is {0, 20, 21, 22, 23, 24, 25} while the range of X25 is 
{0, 25, 26, 27, 28, 29, 30}.

Prob. 0 k k+1 k+2 k+3 k+4 k+5

X20 0.6245 0.0997 0.0950 0.0742 0.0542 0.0352 0.0172

X21 0.6412 0.0950 0.0908 0.0708 0.0518 0.0338 0.0166

X22 0.6570 0.0908 0.0866 0.0676 0.0496 0.0325 0.0158

X23 0.6721 0.0866 0.0828 0.0648 0.0476 0.0310 0.0151

X24 0.6866 0.0828 0.0792 0.0620 0.0454 0.0296 0.0144

X25 0.7004 0.0792 0.0758 0.0592 0.0434 0.0282 0.0138

X100 0.9898 0.0027 0.0026 0.0020 0.0015 0.0010 0.0005

Figure 2.  The winning probabilities of the corresponding optimal strategy against the “hold at n” strategy. The 
x-axis is the choice of n.
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For n = 25 , i.e. against the “hold at 25” strategy, the decision from the corresponding optimal strategy is 
shown in Fig. 2, from which we conclude that the corresponding optimal strategy acts increasingly more aggres-
sively as the opponent player B’s score approaches 100, especially when player A’s score is relatively low. In specific, 
when the opponent player B’s score is fixed, the action (turn total k) player A will take versus his/her own score 
is plotted in Fig. 3. There are some “jump points” which show the significant changes in actions when player A’s 
score only perturbs a little. This phenomenon is more obvious when the opponent player B’s score is closer to 100. 
This fact suggests that when the opponent is getting closer to win, instead of recklessly play aggressively, player 
A should increase his/her aggressiveness step by step, after his/her score exceeds some thresholds.

The discontinuities are caused by the following two facts:

1. Given the opponent’s score is fixed, the turn total a player would hold at should gradually decrease when 
his/her own score increases, to avoid the risk of losing all turn total.

2. Given the opponent’s score is fixed (especially large), the turn total a player would hold at should increase 
at some points. As the player’s score pass some threshold, i.e., closer to the goal (i.e., 100), (s)he should take 
the risk of rolling higher turn total to increase the winning probability. Those points are typically around 
50 and 75, as they are usually the threshold to reduce the number of turns needed to win the game by 1 (on 
average a player should hold at around 25).

Therefore, those “jumps” can be viewed as the trade-off between the profit (possibly reducing the number 
of turns needed) and the risk (possibly losing all turn total). Those discontinuities demonstrate the power of 
reinforcement learning because human strategies such as “hold at 25” or “keep pace” can never detect those 
change points.

One remark is that, with the independence assumption, the opponent player B’s strategy can be a more 
complex pure strategy, i.e. a spline function of player A’s entire score, instead of a simple “hold at n” strategy. An 
example is player B will hold at 25 if player A’s score is less than 40, hold at 30 if player A’s score is between 40 and 
60, and hold at 100-j (where j is player B’s entire score at the beginning of the turn) if player A’s score is greater 
than 60. Moreover, the opponent player B can even utilize randomness so that his/her strategy will become a 
mixed strategy. The algorithm still works in such case with some slight modifications. Since now

we adjust the action-state value q(i, j, k) of the state (i, j) and the action k for player A according to the following:

Optimality of value iteration for independent opponent strategy. Denote the old policy by π . For each iteration, 
we find a new policy π ′ through maximizing the action-value function q, i.e. π ′(i, j) = argmaxk qπ (i, j, k) , such 
that pπ ′(s) ≥ pπ (s) for the given state s = (i, j) . For another state s′ satisfying s′ �= s , we have pπ ′(s′) = pπ (s

′) by 
the independence assumption. Thus, the new policy π ′ must be as good as or better than the old policy π since 
pπ ′(s) ≥ pπ (s) for any state s. Suppose the value iteration converges, so the new greedy policy π ′ , is as good as, 
but not better than, the old policy π . Then pπ ′ = pπ and for all state s, it follows that:

πB(i, j) = kl with probability pkl ,

(12)q(i, j, k) =
�

l







�

�j

�

p(i, j +�j)PXk
(0)+

5
�

r=0

p(i + k + r, j +�j)PXk
(k + r)

�

PXkl
(�j)







pkl
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which is exactly the Bellman optimality equation. Therefore, pπ ′ must be p∗ , and both π and π ′ must equal to the 
optimal policy π∗ , which completes the optimality of the solution found by value iteration.

Mixed‑strategy equilibrium. If both players play rationally, i.e. assuming player A and the opponent player B 
adopt the same strategy, then for all state (i, j) we have

and the solution (if exists) in the above system (12) together with Eqs. (5)–(8) is the optimal policy π∗ , satisfy-
ing the Nash equilibrium. Unfortunately, the value iteration does not converge under this setting due to the 
independence assumption being violated. The iteration leads to a cycle of policy changes of holding at different 
numbers given the same state, with πl1 and πl2 being two cyclic policies:

(13)

pπ ′(s) = E
[

Rt+1 + γ pπ (St+1)|St = s,At = π ′(s)
]

= E

[

Rt+1 + γ pπ (St+1)|St = s,At = argmax
k

qπ (i, j, k)

]

= max
a

E
[

Rt+1 + γ pπ (St+1)|St = s,At = a
]

= max
a

E
[

Rt+1 + γ pπ ′(St+1)|St = s,At = a
]

= max
a

∑

s′ ,r

P(s′|s, a)(r + γ pπ ′(s′))

(14)πA(i, j) = πB(i, j),

π0 −→ π1 −→ π2 −→ · · · −→ πl1 −→ πl2 −→ πl1 −→ πl2 −→ · · ·

Figure 3.  The contour surface of the decisions, i.e. the value k that player A should hold at for a given state, 
obtained from the corresponding optimal strategy against the “hold at 25” strategy.

Figure 4.  The actions for player A given different opponent’s scores, when the opponent player B uses the “hold 
at 25” strategy.
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For example, πl1(47, 69) = 16 and πl1(69, 47) = 26 . To compute πl2(47, 69) for player A, the previous informa-
tion about the state (69, 47), namely πl1(69, 47) , is required as it serves as the action for the opponent player B. 
Given πl1(69, 47) = 26 , the new policy πl2 at the state (47, 69) is πl2(47, 69) = 28 . To compute πl2(69, 47) , we use 
the information πl2(47, 69) = 28 , rendering πl2(69, 47) = 31 . When the next time value iteration encounters the 
state (47, 69), using πl2(69, 47) = 31 , the new policy πl3 at (47, 69) is 16. Following the same logic, the update for 
(69, 47) is πl3(69, 47) = 26 , which is exactly πl1(69, 47) . Except for the 141 states involving cyclic changes, the 
policy values of the rest 9859 states remain the same after 60 iterations.

Since πl1 and πl2 alternate, it is hard to determine which policy is better than the other. For state (0, 0) which 
is at beginning of the game, the winning probability of one against the other is very close to 0.5, with error less 
than 10−6 . The mean absolute error (MAE) of these two policies πl1 and πl2 over all states is: 
1

10000

99
∑

i=0

99
∑

j=0
|pπl1 (i, j)− pπl2 (i, j)| = 3.346× 10−7 , with the maximum error being pπl1 (69, 47)− pπl2 (69, 47) =

2.020× 10−4 . Another interesting fact is that if we use either πl1 or πl2 against “hold at 25” strategy, which is the 
best among “hold at n” class in simultaneous one-die Pig game, the winning rate is 0.5192, while the winning 
rate of the corresponding optimal strategy against “hold at 25” is 0.5231 as we mentioned in the previous 
subsection.

Even the game is simultaneous, the policy update does have order. Here we update the policy πA for player 
A and then force the policy πB for the opponent player B to be equal to πA . We can view this process as player 
A actively adjust his/her policy while the opponent player B passively follows player A’s strategy. We define the 
payoff for a player being 1 if his/her strategy is “preferable” by value iteration, and the payoff being 0 otherwise. 
If both players adopt the same strategy, the winning probability for either player will be 0.5 due to symmetry. 
Thus, both players’ payoff will be 0.5 if they adopt the same strategy. Here, we say a policy π ′ is preferable by 
value iteration than another policy π if value iteration will update the current policy π with a new policy π ′ . The 
payoff matrix then can be constructed as shown in Table 3:

The pure-strategy equilibrium does not exist in this game, because neither player A nor the opponent player 
B would deviate from any profile of strategies. For example, (πl1 ,πl1) is not an equilibrium because player A can 
switch the policy to πl2 to increase his/her payoff from 0.5 to 1. (πl2 ,πl1) is either not an equilibrium because 
player B can deviate his/her strategy to πl2 and player B’s payoff increases from 0 to 0.5.

Due to the fact that every finite game has a Nash equilibrium  (Nash20), we can find the mixed-strategy Nash 
equilibrium of this game. A mixed-strategy combines each pure strategy stochastically with fixed probability. The 
equilibrium has the property that the payoffs from selecting the policy πl1 and πl2 are exactly the same, for both 
players. Assuming player B adopts policy πl1 with probability b, so player B has (1− b) probability selecting policy 
πl2 . From player A’s point of view, the expected payoff for selecting policy πl1 is: b× 0.5+ (1− b)× 1 = 1− 0.5b ; 
meanwhile, the expected payoff for selecting policy πl2 is: b× 1+ (1− b)× 0.5 = 0.5+ 0.5b . Equating these two 
quantities together, we have b = 0.5 . Similarly, if we assume player A selects policy πl1 with probability a, player 
A will select policy πl2 with probability (1− a) . Equating player B’s expected payoffs from selecting policy πl1 and 
πl2 , we have a× 0.5+ (1− a)× 0 = a× 0+ (1− a)× 0.5 , rendering a = 0.5 . Therefore, the mixed-strategy 
equilibrium is (PπA(πl1) = 0.5,PπB (πl1) = 0.5) . Notice that at the equilibrium, the policy πA for player A and 
the policy πB for player B are the same, which is the optimal strategy π∗ for the simultaneous 2-player Pig game.

Stackelberg value iteration for multi‑agent reinforcement learning. For two players, the divergence is caused by 
forcing to set the two players’ policies to be the same while one policy is changed slightly later than the other, like 
“chasing one’s own tail”. However, this loop can be avoided under the multi-agent reinforcement learning set-
ting, from which we developed a Stackelberg Value Iteration for multi-agent reinforcement learning (SVIMA). 
For multi-agent reinforcement learning, Mcmahan (2003) proposed the Double Oracle Algorithm (DOA) based 
on game  theory21, and later Lanctot (2007) developed DOA’s generalization form Policy-Space Response Oracle 
(PSRO)22. While both our SVIMA and DOA involve the minimax operator, SVIMA can be viewed as a generali-
zation of value iteration for multi-agent learning which alternatives evaluate all possible actions and update the 
value function. For DOA and PSRO, the policy set is restricted at the beginning and the newly found policy is 
continuously added to the policy set until convergence. As the nature of dynamic programming, SVIMA relies 
on the full information on the transitions between each state. Thus, SVIMA does not require simulations, unlike 
PSRO which usually depends on fictious play where a payoff table (or the winning probabilities) is updated 
through the simulated observed outcomes, as mentioned in one of its application  (Muller23).

Under the multi-agent RL setting, in specific, for a Markov game, there is a collection of actions sets 
A1,A2, . . . ,Ak , one for each agent in the environment. States are evolved through an action from each agent 
based on the current state: S × A1 × A2 × · · · × Ak → S . Each individual agent i has one reward function 
Ri : S × A1 × A2 × · · · × Ak → R . The goal of each individual agent is to maximize his/her own cumulative 
discounted reward, under the assumption of no collusion  (Littman24).

Table 3.  Payoff for the simultaneous one-die Pig game with two players (player A, player B).

Player B

Policy πl1
Policy πl2

Player A
Policy πl1 (0.5, 0.5) (1, 0)

Policy πl2 (1, 0) (0.5, 0.5)
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In our simultaneous dice game for two players, we let player A and the opponent player B be two individual 
agent and they would compete against each other. We use the Stackelberg model to find the subgame perfect Nash 
equilibrium (SPNE). The Stackelberg competition model was first developed in economics, with its application in 
many fields, such as system  control25. Considering the nature of a simultaneous game, instead of the Stackelberg 
competition model where the leader usually has substantial advantage, the Cournot model is more appropriate. 
However, the actions for some states are saddle points if applying the Cournot model, as the solution space is a 
subset of integers. The results are consistent with our fore-mentioned mixed-strategy. Under the simultanoues 
dice game settings, these two players are exactly identical in terms of information and winning rates. Conse-
quently, applying the Stackelberg model to our problem will produce a very close approximation to the exact 
solution found by the Cournot model, according to a weak version of first-mover’s equilibrium profit  (Osborne26).

For two policies π and π ′ , the winning probability for player A is EXπ ,Xπ ′
[p(i + Xπ(i,j), j + Xπ ′(j,i))] , 

using the same notation Xk defined above, which is a random variable denoting the turn total under “hold 
at k”. For player A, (s)he wants to maximize the above quantity. While for player B, (s)he wants to maximize 
1− EXπ ,Xπ ′

[p(i + Xπ(i,j), j + Xπ ′(j,i))] as the total winning probabilities sum up to 1. Equivalently, player B wants 
to minimize EXπ ,Xπ ′

[

p(i + Xπ(i,j), j + Xπ ′(j,i))
]

 . Therefore, the Stackelberg equilibrium for each state (i, j) can be 
found by solving the following system:

The idea behind SVIMA is that given the opponent’s strategy π ′ , player A can easily find an optimal policy πA 
against the opponent, through maximizing one’s own winning probability.

The problem then reduces to determining how the opponent will choose his/her policy πB . Using the fact that 
πA is a function of π ′ , the opponent player can choose a policy π ′ that among all π ′ s, the winning probability for 
player A is minimized as the game is zero-sum,

Below is the detailed algorithm 0.2 for SVIMA for our simultaneous two-player Pig game. The policies outputted 
by the algorithm is shown in Fig. 4. The winning rates for two players at the beginning of the game are 0.4999997 
and 0.5000003, respectively, very close to the theoretical results, namely 0.5 and 0.5. Due to the discretization 
approximation and numerical errors, the two policies πA and πB are not exactly the same, with 74 out of total 
10,000 states different, so we call it the near-optimal policy. The actions, however, are all differed by 1 for different 
actions. The detailed difference is listed in Supplementary Table S3. Another fact demonstrating the near-optimal 
property is that the winning probability of the Stackelberg strategy against the fore-mentioned mixed-strategy 
is also very close to 0.5, with error less than 10−6.

(15)











∂EXπ ,X
π ′

�

p(i+Xπ(i,j) ,j+Xπ ′(j,i))

�

∂π
= 0

∂EXπ ,X
π ′

�

p(i+Xπ(i,j) ,j+Xπ ′(j,i))

�

∂π ′ = 0

(16)πA(i, j) = argmax
π

EXπ ,Xπ ′

[

pA(i + Xπ(i,j), j + Xπ ′(j,i))
]

= f (π ′)(i, j)

(17)

πB(i, j) = argmin
π ′

EXπA ,Xπ ′

[

pA(i + XπA(i,j), j + Xπ ′(j,i))
]

= argmin
π ′

EXf (π ′) ,Xπ ′

[

pA(i + Xf (π ′)(i,j), j + Xπ ′(j,i))
]
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Multiplayer simultaneous dice game. One advantage of the simultaneous Pig game is that it can be 
easily extended to multiple players, even with large number of players, without considering the order of play or 
decreasing players’ game experience. Another advantage is that the game is fair for every player, unlike in the 
sequential game where the playing order implies advantages or disadvantages towards winning. In the simulta-
neous game since every player begins their turns at the same time. There is no need to decide the order of play 
between the players. In this section, we shall first consider the 3-player simultaneous game and then extend 
which to infinite number of players.

Three players with independent strategies. Similar to the 2-player simultaneous game, here we have an addi-
tional player, denoted by the opponent player B2, with the first opponent player being B1. The state in the 
3-player game becomes a 3-element tuple (i, j1, j2) where i is player A’s entire score, j1 and j2 are the opponent 
players B1 and B2’s scores, respectively. Similarly, the action is still the value k that a player will hold at given 
a state (i, j1, j2) . Thus, the relationship between the state-value function p(i, j, k) and the action-value function 
q(i, j1, j2, k) is:

where j′1 and j′2 are two random variables representing the entire scores of the opponent player B1 and B2 at 
the end of the turn, respectively. The distribution of Xk can be found using the same approach introduced in 
the “Distribution calculation” section, as it is independent of the number of players and the players’ strategies. 
Since all players’ strategies are independent together per the nature of a simultaneous game, the value functions 
must satisfy the following symmetry property if the two opponent players B1 and B2 adopt the same strategy:

If all players’ strategies are independent, the corresponding optimal strategy πA∗ for player A given the opponent 
player B1’s strategy πB1 and the opponent player B2’s strategy πB2 can be found by Algorithm 0.3. Figure 5 shows 
the surface plot of the winning probability of the corresponding optimal strategy for player A, given different 
choices of the opponents’ strategy combinations. For example, if πB1 = πB2 ≡ 25 , i.e. both two opponents adopt 
the “hold at 25” strategy, the winning probability of the corresponding optimal strategy for player A is 35.90%. 
If πB1 ≡ 20 and πB2 ≡ 30 , the winning probability for player A adopting the corresponding optimal strategy 
increases to 39.55%. As the average winning rate for the 3-player game 13 and “hold at 25” is the best simple 
strategy for the 2-player game, the corresponding optimal strategies found via value iteration can improve the 
winning rate decently compared to the tradition “hold at n” strategy. We exam different opponents’ strategy 
combinations with n ranges from 20 to 30. Not surprisingly, the best combination is that both opponents B1 and 
B2 adopt the “hold at 25” strategy given the 3-player game is independent, which is consistent to our previous 
result that “hold at 25” is the best simple strategy for the 2-player simultaneous game. The detailed winning prob-
ability of the corresponding optimal strategy against different combinations is shown in Supplementary Table S4.

For the 4-player simultaneous game, we can introduce another variable j3 to record the score of the third 
opponent player, with the rest of the framework remains the similar. The overall logic flow for finite number 
of players adopting independent strategies is the same. As long as all players’ strategies remain independent, 

(18)

p(i, j1, j2) = max
k

q(i, j1, j2, k)

q(i, j1, j2, k) = E j′1,j
′
2

[

p(i, j′1, j
′
2)PXk

(0)+

5
∑

r=0

p(i + r + k, j′1, j
′
2)PXk

(k + r)

]

(19)
p(i, j1, j2) = p(i, j2, j1)

q(i, j1, j2, k) = q(i, j2, j1, k)

Figure 5.  The contour surfaces of the Stackelberg equilibrium decisions. The left plot is the turn total k that 
player A should hold at for all states, and the right plot is the turn total k that player A should hold at for all 
states.
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the value iteration can always find the corresponding optimal strategy for one player given the other players’ 
strategies. However, the computational costs increase as the number of players increases, with the computational 
complexity being O(100n) , where n is the number of players.

Infinite number of players. When we further increase the number of players n, and even push n to infinity, what 
is the optimal strategy for each player? The limiting behavior of the optimal policy can be analyzed through sym-
metry. According to the simultaneous nature of the game, the Nash equilibrium or the optimal strategy is found 
when every player adopts the same strategy. The problem is then reduced to what is this strategy?

If every player uses the same strategy, the winning probability is the same for all players, namely 1n , where n is 
the number of players. For sufficiently large number of players, especially when n → ∞ , we know the expected 
winning chance for individual player is almost 0 as limn→∞

1
n = 0 . However, based on the last row in Table 2, 

a player using the strategy “hold at 100” will have 1− 0.9898 = 1.02% chance to win the game in one turn. The 
overall winning chance for a single player adopting the “hold at 100” strategy is at least 1.02% given no other 
players adopting “hold at 100”. Thus, if every player adopts the same strategy which is not the “hold at 100” 
strategy, for a particular player A, he/she can easily switch the current strategy to the “hold at 100” strategy to 
increase his/her winning probability.

In generally, if there are m players selecting the “hold at 100” strategy, their expected individual winning 
probability is at least 1.02%m  . The probability that none of them reaches 100 in turn 1 is (1− 1.02%)m . For the rest 
n−m players not using the “hold at 100” strategy, they cannot win the game in turn 1 and thus their overall 
expected individual winning probability is at most (1−1.02%)m

n−m  , which is close to 0 when n is sufficiently large, 
thus less than 1.02%m  for any fixed m. Consequently, any player not adopting the “hold at 100” strategy will switch 
his/her strategy to the “hold at 100” strategy. Therefore, the Nash equilibrium is that every player will select the 
“hold at 100” strategy when there are infinite number of players.

In fact, when n is greater than or equal to 99, we have 199 ≈ 1.01% < 1.02% . As long as the number of players 
exceed 98, then every player should only consider the “hold at 100” strategy.

Discussion
The dice game Pig was originally designed for 2-player sequential play. In this work, we first discussed some 
potential issues of the current sequential Pig game and provided the simultaneous game as a solution. Then we 
thoroughly analyzed different cases of simultaneous Pig game, from independent strategy to optimal strategy, 
and from 2-player game to multiplayer game, using Markov decision process (MDP), dynamic programming 
(DP) and game theory, with the first two being classical components of reinforcement learning (RL). Before the 
reinforcement learning method is applied in the dice game Pig, the simple “hold at n” strategy is considered as 
a type of heuristic sub-optimal strategy with best the value n chosen through winning probabilities. This type 
of strategy is not dependent upon the opponent player’s score either. On the other hand, the optimal strategy 
developed by value iteration maximizes the winning probability at any state and is therefore a function of the 
opponent’s score, or even a function of the opponent’s strategy. This work has also demonstrated the power 
of RL in the field of games. In the sequential game, even the Nash equilibrium can be obtained through value 
iteration for the 2-player game (Neller and  Presser11), but with some constraints for the 3-player game (Bon-
net et al.14). While in the simultaneous game, value iteration does not converge for pure-strategy equilibrium, 
indicating only the mixed-strategy equilibrium which can be found by game theory exists. If sub-optimal is 
allowed, Stackelberg value iteration can be applied to find the pure strategy. However, in the case of independent 

Figure 6.  The surface plot of the winning probability of the corresponding optimal strategy for player A, 
given different opponents’ “hold at n” strategies. The x, y axes are the values n in the “hold at n” strategy for two 
opponents respectively.
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strategies, value iteration can always find the corresponding optimal strategy for one player given the other play-
ers’ strategies, regardless of the number of players. In particular, we demonstrate how to use value iteration to 
find the corresponding optimal strategy for the 3-player simultaneous game. The result can be easily extended 
to any finite number of players. As for the limiting behavior in terms of the number of players, the pure-strategy 
Nash equilibrium is simply the “hold at 100” strategy, not surprisingly. Below we have summarized all the results 
based on related work in Table 4.

RL has sparked people’s imagination because the computer can learn on its own at lightning speed without 
training data from humans. The utility of RL goes well beyond providing the optimal play strategies for games. 
Rather, it has already rendered significantly impact in engineering (AI/robotics), finance, science, healthcare 
and so on, by greatly improving the framework for decision making in these fields. Because the pure-strategy 
equilibrium does not exist, value iteration encounters divergence, and the mixed-strategy equilibrium is obtained 
through game theory analysis. How to combine these two methods more tightly, i.e. to develop a RL algorithm 
that can directly find the mixed-strategy, will be our future focus. Furthermore, our work is based on a fixed 
player’s view, namely player A, and assumes no cooperation between the players. Using multi-agent reinforcement 
learning to incorporate the cooperative game is another direction worth future investigation.

Data availability
Key data generated or analysed during this study are included in this published article and its supplementary 
information files. The rest datasets used and/or analysed during the current study (Fig. 2) available from the 
corresponding author on reasonable request.
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