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Research on tire crack detection 
using image deep learning method
Shih‑Lin Lin 

Driving can understand the importance of tire tread depth and air pressure, but most people are 
unaware of the safety risks of tire oxidation. Drivers must maintain vehicle tire quality to ensure 
performance, efficiency, and safety. In this study, a deep learning tire defect detection method was 
designed. This paper improves the traditional ShuffleNet and proposes an improved ShuffleNet 
method for tire image detection. The research results are compared with the five methods of 
GoogLeNet, traditional ShuffleNet, VGGNet, ResNet and improved ShuffleNet through tire database 
verification. The experiment found that the detection rate of tire debris defects was 94.7%. Tire 
defects can be effectively detected, which proves the robustness and effectiveness of the improved 
ShuffleNet, enabling drivers and tire manufacturers to save labor costs and greatly reduce tire defect 
detection time.

Tire failure is the last thing a driver wants to encounter when driving a car at high speed, but it is also the most 
difficult to prevent. As one of the most important parts of a vehicle, defects such as small pits and slight cracks 
on the tire surface may cause major traffic accidents and directly affect the driving safety of the vehicle. There-
fore, tire quality guarantees the normal driving of the car, tires are very important but few drivers regularly 
monitor their condition. Drivers are aware of the risks of improper inflation, but continue to use vehicles with 
underinflated tires. And for lesser-known problems like tire aging, oxidation and cracking, drivers don’t realize 
the risks and give up inspections. Using an easy-to-use visual tire inspection system will increase driver aware-
ness and increase adherence to proper tire change times, thereby reducing the risk of sudden separation of tire 
material or a puncture. In recent years, machine vision detection technology has developed rapidly, and its high 
efficiency, stability and high degree of automation have laid a theoretical foundation for the development of tire 
defect detection systems.

Based on image processing technology, images obtained by various imaging methods are analyzed, pro-
cessed and processed. To make it meet visual, psychological and other requirements, machine vision detection 
technology replaces the human eye to make judgments. It is widely used in industrial applications due to its 
non-contact, wide visual range, high reliability and low cost. According to the type of defect detection algorithm, 
tire defect detection technology can be divided into traditional visual detection  technology1,2 and detection tech-
nology based on deep  learning3,4. Traditional visual inspection techniques can be divided into statistical-based 
 methods5,6, frequency-domain analysis-based  methods7,8, and model-based  methods9–13. The methods of applying 
frequency domain include Fourier transform, Gabor filter, wavelet transform and Hough transform. Methods 
of using the model include Markov random field model, Weibull model, total variation model, etc. Behroozinia 
et al.7 analyzed both undamaged and damaged tires using a time-domain and frequency-domain analysis-based 
method that provided information on the location and length of tire crack defects.

Zheng et al.13 proposed tire defect classification using a deep convolutional sparse coding network, and 
constructed a novel deep convolutional sparse coding network (DCScNet) for tire defect classification. The 
experimental results verified its excellent classification performance. Among them, statistics-based methods 
include threshold  segmentation14,15, clustering  statistics16–18, edge  detection19,20, gray value  analysis21–23, gray 
co-occurrence  matrix24–26, local  binarization27,28, and morphological  transformation29–32.

Wang et al.33 developed a fully convolutional network (FCN)-based defect detection method for tire X-ray 
images. Experimental results show that the method can accurately locate and segment defects in tire images. 
Rajeswari et al.34 developed a weighted mass-based convolutional neural network to detect tire defects, and the 
results of this study showed that tire deformation and durability can be predicted from track design through a 
weighted mass-based convolutional neural network. Yang et al.35 developed an improved Faster RCNN-FPN for 
tire speckle interference bubble defect detection. Their research can fuse features across levels and directions to 
improve small object detection and localization and improve object detection accuracy. Unsupervised learn-
ing and deep learning for tire defect detection analysis have been studied by Kuric et al.36. Anomaly detection 
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based on data from laser sensors and using an unsupervised clustering method, followed by a VGG-16 neural 
network to classify defects.

Deep learning has made great strides in the field of computer vision and its industrial applications in recent 
years. Compared with traditional visual detection techniques, deep learning-based methods have attracted 
much attention due to their powerful feature extraction ability and parameter self-learning ability. There are 
other detection methods based on deep  learning36–41.  LeCun42,43 systematically summarized the principles of 
end-to-end training and determined the structure of modern CNN networks. With the development of high-
performance GPUs in computers,  Krizhevsky44 proposed the AlexNet network framework, ushering in a new era 
of deep learning. Since then, various excellent network frameworks, such as  GoogLenet45,  ResNet46,  VGGNet47, 
 Squeezenet48,  ShuffleNet49, etc., have been proposed one after another, and the network has gradually developed 
towards a deeper and lighter weight.

This paper investigates such a machine vision implementation of deep learning, using pictures of vehicle tires 
that can identify the "normal" or "abnormal" state of the tires to classify the presence of surface cracks. This study 
proposes a tire defect detection system based on deep learning, which cuts each preprocessed tire image with a 
fixed pixel size. The segmented images are marked with features by the visual image annotator, and the improved 
ShuffleNet network is adaptively trained with the prepared training set and test set. Finally, the trained model is 
used for tire defect detection. Compared with the traditional tire deep learning defect detection performance, 
the three methods of GoogLeNet, traditional ShuffleNet and improved ShuffleNet are compared. The improved 
ShuffleNet has higher detection accuracy, can be better applied to model training and testing, and can classify 
and detect multiple tire defects at the same time. The tire detection model in this paper has been verified by 
experiments and can effectively detect tire defects, which proves its robustness and effectiveness.

It is believed that the model proposed in this research has significant advantages in the following aspects:

1. Objectivity: Compared to manual experience-based judgments, the model in this research can provide more 
objective and accurate detection results, thereby reducing the risk of misjudgment.

2. Consistency: The deep learning-based detection method can ensure consistent evaluation of different tires, 
while manual judgments may be affected by individual experience and skill differences.

3. Automation: The model in this research can automatically identify tire cracks, saving car owners time and 
effort in inspecting tires, and reducing safety risks caused by negligence.

4. Preventive maintenance: The deep learning-based detection method can identify potential problems before 
tire cracks pose a danger to the vehicle, helping car owners to perform preventive maintenance in advance.

5. Application scope: Although ordinary car owners may have only four tires, in commercial and industrial 
applications, such as fleets, logistics companies, and public transport operators, there are many tires. The 
method proposed in this research has enormous potential value in saving manpower and time resources.

Based on the above advantages, it is believed that the tire crack detection method based on image deep learn-
ing proposed in this research is of practical value. In future research, further optimization of model performance 
and the application to a broader range of scenarios will be explored.

Research theory, data and methodology
ShuffleNet network. Researchers released a high-performance lightweight convolutional neural network 
ShuffleNet  network49. The author proposes to use point group convolution to improve the operation efficiency 
of convolution, and the proposed Channel Shuffle operation can realize information exchange between differ-
ent channels, which helps to encode more information. Compared with many other advanced network models, 
ShuffleNet greatly reduces the computational cost and achieves excellent performance while ensuring compu-
tational accuracy. In fact, grouped convolution was used in the AlexNet network model as early as possible, 
and some efficient neural network models such as  Xception50 and  MobileNetv251 proposed later introduced 
depthwise separable convolution on the basis of grouped convolution. Although the ability of the model and 
the amount of computation can be coordinated, the computation of point-by-point convolution in the model 
occupies a large part, so the pixel-level group convolution is introduced into the ShuffleNet structure to reduce 
the 1 × 1 convolution operation. However, the convolution operation can be restricted to each group-by-group 
convolution, reducing the computational complexity of the model. However, when multiple group convolutions 
are stacked, the feature information of the output channel will only come from a small part of the input channel 
where it is located. The output in a group is only related to the input in the group, and the information of other 
groups cannot be obtained. The information between the groups is not interoperable, which hinders the flow of 
information between the channels in the group. The input and output channels of ShuffleNet are set to the same 
number to minimize memory consumption. Assuming that the size of the feature map is h× w , the number of 
input and output channels are C1 and C2 respectively, and the convolution of width and height is 1×1 as an exam-
ple. Figure 1 shows the flow chart of the traditional ShuffleNet neural network. According to Float Operations 
(FLOPs) and multiply-accumulate operations (MAC) calculation formula:

by means of inequality

(1)B = h · w(C1 × (1× 1)× C2) = h · w · C1 · C2,

(2)
MAC = h · w · C1 + h · w · C2 + (1× 1)× C1 × C2

= h · w · (C1 + C2)+ C1 × C2
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thereby

In the formula: B is FLOPs, w and h are the feature map width and height respectively; MAC is the network 
layer memory access and read and write consumption costs. Therefore, when C1= C2 , that is, when the input 
channel is equal to the output channel, the memory consumption is the smallest.

(3)(C1 + C2) ≥ 2
√
C1C2,

(4)MAC ≥ 2
√
h · w · B+

B

h · w
.

Figure 1.  The flow chart of the traditional ShuffleNet neural  network49.
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Improved ShuffleNet network. The research proposes the problem of improving the parallel network 
structure of ShuffleNet and the single channel of traditional ShuffieNet. At the beginning, channel segmenta-
tion is used to segment the input feature map in the channel dimension, and the number of channels is divided 
into two branches. Among them, one branch remains unchanged and does the same mapping, and the other 
branch continuously performs 8 convolutions to replace the traditional average Pooling. The average Pooling 
is replaced by 8 transposed Convolution2d Layer, cross Channel Normalization Layer, H-Swish Layerchan-
nel, Shuffl, transposed Convolution2d Layer, cross Channel Normalization Layer, transposed Convolution2d 
Layer, cross Channel Normalization Layer. The features output by the two branches no longer uses pixel-by-pixel 
addition operations, but concatenate the channels and output the result. And the channel mixing operation is 
performed to ensure the information exchange between the two branches. Figure 2 is an improved ShuffleNet 
space downsampling unit, which adds a transposedConvolution2dLayer Transpose Convolution to the branch. 

Figure 2.  The flowchart of the improved ShuffleNet neural network.
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In the transposed convolution, the preset interpolation method is not used, it has learnable parameters, and the 
optimal upsampling method is obtained by letting the network learn by itself. The cross-Channel Normaliza-
tion Layer operation normalizes each activation using the local responses in different channels. Normalization 
across channels usually follows the H-Swish operation. Normalization across channels is also known as local 
response normalization. A 3 × 3 average pooling operation with stride 2 and channel concatenation instead of 
pixel-wise addition has the advantage that the channel dimension can be enlarged with a small computational 
cost. Compared with the traditional ShuffleNet, it is the basic unit of the improved ShuffleNet. On the main 
branch bottleneck feature map, the point-by-point grouping convolution is used and then the channel mixing 
operation is performed. Improve the flow of information between different groups, followed by a less compu-
tationally intensive depthwise separable convolution. This is followed by a pointwise grouped convolution, and 
finally the two branch pixels are added together. This improvement can improve the accuracy of image classifica-
tion recognition.

Activation functions play a crucial role in deep learning, primarily by introducing non-linearity in neural 
networks. Here, we will introduce five common activation functions: Sigmoid, ReLU6, Swish, H-Sigmoid, and 
H-Swish. The improved ShuffleNet proposes to use the H-Swish activation function. The traditional ShuffleNet 
network uses the ReLU activation function, and the formula is shown in Eq. (5). The advantage of the ReLU 
activation function is that the calculation is simple and efficient, and it can effectively alleviate the gradient 
disappearance and prevent overfitting. The disadvantage is that one side of the function value is 0, causing the 
negative gradient to be zeroed, and the neuron may no longer be activated by any data. This phenomenon is 
called neuronal "necrosis," and the equation states:

The Sigmoid function is an S-shaped curve, with its mathematical expression as:

Its range is between 0 and 1. The Sigmoid function can compress any real number into the range of 0 to 1, 
making it commonly used in binary classification problems. However, due to its vanishing gradient issue (gra-
dient is close to 0 at both extremes) and non-zero centricity, its application in deep learning is less common 
nowadays.

ReLU6 is a variant of ReLU (Rectified Linear Unit), with its mathematical expression as:

The ReLU6 function limits the input between 0 and 6. This means that the output value for the negative part 
is 0, while the output for the part greater than 6 is 6. Compared to the traditional ReLU function, ReLU6 has a 
finite output range, which helps alleviate the exploding gradient problem.

From Eqs. (6) and (7), it can be obtained as follows:

H-Sigmoid compresses the input value between 0 and 1 while maintaining non-linearity similar to the Sig-
moid function but with higher computational efficiency. However, it may also suffer from the vanishing gradient 
issue.

Swish is a self-gated activation function proposed by the Google Brain team in 2017, with its mathematical 
expression as:

The Swish function can be seen as a combination of the Sigmoid function and a linear function. Compared 
to ReLU, the Swish function has smoother gradients and performs better in some deep learning applications.

In summary, these activation functions play important roles in deep learning. The Sigmoid function is mainly 
used for binary classification problems, but its application in deep learning is less common due to the vanishing 
gradient problem. ReLU6 is a variant of ReLU with a finite output range, helping to alleviate the exploding gradi-
ent problem. The Swish function has smoother gradients and performs better in some deep learning applications. 
H-Sigmoid and H-Swish are simplified versions of the Sigmoid and Swish functions, respectively, with higher 
computational efficiency, widely used in lightweight neural networks and edge computing scenarios.

H-Sigmoid is a simplified version of the Sigmoid function, with lower computational cost, and its mathemati-
cal expression as:

The Swish activation function, as demonstrated in Eq. (9), outperforms the ReLU activation function and 
considerably enhances the neural network’s accuracy. However, its intricate non-linear computation and deriva-
tion make it less compatible with the quantization process, resulting in longer calculation times. As a result, this 

(5)ReLU = max(0, x) =
{

x, x > 0

0, x ≤ 0.

(6)Sigmoid(x) = σ(x) =
1

1+ e−x
.

(7)ReLU6(x) = min(max(x, 0), 6).

(8)H-Sigmoid =
ReLU6(x + 3)

6
.

(9)Swish(x) = x · σ(x)

(10)H-Swish(x) = x ·
ReLU6(x + 3)

6
=

{

0, x ≤ −3

x, x ≥ +3

x · (x + 3)/6, otherwise.



6

Vol:.(1234567890)

Scientific Reports |         (2023) 13:8027  | https://doi.org/10.1038/s41598-023-35227-z

www.nature.com/scientificreports/

research employs the H-Swish activation function as a substitute for the ReLU activation function to enhance 
the ShuffleNet model, as presented in Eq. (10).

Description of the research data. A tire is a flexible composite structure composed of rubber and cord 
with typical fatigue failure characteristics. The belt cords and carcass cords of all-steel radial tires are made of 
high-strength steel wires, which are mainly used in medium and heavy-duty trucks that require high bearing 
capacity. Due to the limitation of the manufacturing process, microscopic defects will inevitably appear inside 
the tire during the processing and forming process. During the driving process of the vehicle, the alternating 
load on the tire will cause the expansion of tiny cracks between the belt layers or the end of the carcass turn-up. 
In addition, the tire will be greatly deformed in the ground contact area due to the alternating load of repeated 
reciprocation. And the stress and strain of the tire change alternately at a high frequency. This makes the rub-
ber material inside the tire hysteresis, causing the rubber molecular chain to slowly break down. Fatigue failure 
due to permanent deformation of the tire material structure. At the same time, the hysteresis phenomenon will 
also cause the heating effect of the rubber material. Part of the energy is converted into heat, which increases 
the temperature of the rubber material and changes the physical properties of the material. Sidewall and tread 
images differ between oxidized and non-oxidized (normal) tires, but oxidized tires have a variety of appear-
ances based on compound, age, and exposure to sunlight and chemicals. Some oxidized tires develop long, 
narrow cracks, while others have a checkerboard appearance. This study validated the database using oxidized 
and non-oxidized tire sidewall and tread image sources Siegel,  Joshua52 (Michigan State University). The data is 
described as "Automotive Diagnostics as a Service: An Artificially Intelligent Mobile Application for Tire Condi-
tion Assessment" (https:// doi. org/ 10. 1007/ 978-3- 319- 94361-9_ 13). 250 photos of oxidized “Cracked” and 250 
photos of “Normal” tires are divided into two parts in this database, a total of 175 photos for 70% training and 
75 photos for 30% testing. Figure 3 Shows photos of "Cracked" and "Normal" tires.

Results and discussion
This study uses three deep learning image classification methods to identify, and the three deep learning image 
classification methods are GoogLeNet, traditional ShuffleNet and improved ShuffleNet and find the method with 
the highest recognition rate, because there are only 250 images in each category, in order to retain more The 
images are tested for validation, 70% of the images of each category are trained and 30% are tested for validation, 
so each category has 175 images for training and 75 images for validation.

Deep learning technology has achieved excellent results in image recognition and target detection neigh-
borhoods, and the detection and recognition rate of large and complex data is generally higher than that of 
traditional algorithms. The object detection task can be divided into two key subtasks: object classification and 
object localization. The object classification task is responsible for judging whether there is an object of interest 

Figure 3.  Imagess of "Cracked" and "Normal" tires.

https://doi.org/10.1007/978-3-319-94361-9_13


7

Vol.:(0123456789)

Scientific Reports |         (2023) 13:8027  | https://doi.org/10.1038/s41598-023-35227-z

www.nature.com/scientificreports/

category in the input image, and outputs a series of labels with scores indicating the possibility of the object of 
interest category appearing in the input image. The self-learning ability of deep convolutional neural network is 
used to learn image features and classifiers, and image feature extraction and classifier learning are integrated. 
And neither professional need to choose which features to extract nor which classifiers to be selected manually. 
Implementing an end-to-end process for image classification, the superiority of this end-to-end learning-to-
classify approach makes us increasingly abandon traditional image classification algorithms with incoherent 
intermediate steps with manual rules. It works directly on raw images with little preprocessing. It automatically 
performs layer-by-layer feature learning and layer-by-layer correction of feedback errors, so that the entire pro-
cess is consistently optimized to an overall objective function. Then, the optimized network is used to abstract 
representations of classified images layer by layer until high-level semantics are given. Thus, the problem of defect 
recognition is transformed into the problem of image-to-deep neural network objective function optimization 
learning and layer-by-layer abstract representation of images. Although all tires have different cracks, trained 
artificial intelligence and pattern matching can extract some common features. Reference images show vari-
ous ruptured tires in Fig. 3. Deep neural networks have the potential to develop a kernel capable of matching 
the characteristics of tires with cracked sidewalls based on repeating patterns and edges. The jagged edges of 
these crack patterns appear similar to tire tread patterns, although a well-optimized classifier should be able to 
robustly identify tread patterns from cracked sidewalls. Unlike other traditional machine learning classifiers, 
deep neural networks improve performance when learning patterns such as textures without specialized feature 
engineering. This simplifies developing a generic model, as the computer learns filters to detect cracks in various 
degradation modes.

To fairly test the three methods with the same parameter settings, specify the algorithm to be ’sgdm’, which 
uses a stochastic gradient descent (SGDM) optimizer with momentum. Verbose is 0, Verbose Frequency is 40, 
Max Epochs is 10, Mini Batch Size is 4, Validation Frequency is 4, Validation Patience is 4, Initial Learn Rate is 
0.0001, Learn Rate Schedule is none, Learn Rate Drop Period is 10, and Learn Rate Drop Factor is 0.01. L2Regu-
larization is 0.001, Momentum is 0.9, Gradient Threshold is Inf, Gradient Threshold Method is l2norm, Sequence 
Length is longest, Sequence Padding Value is 0, and Execution Environment is GPU.

The confusion matrix shows the deep learning classification results, which can verify the performance of 
different deep learning algorithms. Confusion matrix is explained below. Columns correspond to the results 
for the true class. Rows correspond to the results of predicted classes, and correctly classified observations are 
shown in diagonal cells. The observed value of image classification of normal tires and faulty tires during the 
test is 75 images each. In the results images of faulty tires are called cracked, images of normal tires are called 
normal, and misclassified predictions are shown in off-diagonal units. Each cell displays the percentage of the 
total number of forecasts and the number of forecasts for a clearer display of the results. The row at the bottom 
of the graph shows the percentage of correct and incorrect classifications for all examples of image categories of 
normal and faulty tires. These metrics are often referred to as recall (or true positive rate) and false negative rate, 
respectively. The rightmost column of the graph represents the percentage of correct and misclassified predictions 
for all examples that fall into the categories of images of normal and faulty tires. These metrics are commonly 
referred to as accuracy (or positive predictive value) and false discovery rate, respectively. The lower right cell 
of the graph shows the overall deep learning algorithm accuracy.

In deep learning, the loss function and the accuracy rate (Accuracy) are used to determine whether the 
accuracy is better. loss is the loss value calculated by my preset loss function; accuracy is the model obtained on 
the dataset based on the given label. evaluation results. The deep learning algorithm calculates the ratio of the 
number of samples correctly classified by the model to the total number of samples through the accuracy of the 
model on the training and testing data sets to measure the effect of the model. The goal is to measure the effect 
of the model. Through the calculation of the loss function, the model parameters are updated, and the goal is to 
reduce the optimization error, that is, under the joint action of the loss function and the optimization algorithm, 
to reduce the empirical risk of the model.

The main structure of GoogLeNet consists of an input layer, 5 groups of convolution modules and an output 
layer, including 22 parameter layers and 5 pooling layers. The input layer is a 224 × 224 × 3 image, the first and 
second groups of convolution modules include convolutional layers and maximum pooling layers, and the third, 
fourth and fifth groups of convolution modules are mainly composed of Inception Module structure The output 
layer consists of an average pooling layer, a dropout layer, and a fully connected layer. The Inception module 
structure has 4 parallel paths. The first 3 paths use 1 × 1, 3 × 3 and 5 × 5 convolution kernels to extract different 
image receptive field feature information, and the fourth path uses a 3 × 3 pooling kernel to Pick feature points, 
prevent overfitting, and add a 1 × 1 convolution. In order to reduce the complexity of the model and reduce the 
data dimension, 1 × 1 convolution operations are added to the second and third paths.

Figure 4 shows the results of GoogleNet classification accuracy and iterations. The X-axis is the number of 
iterations, and the Y-axis is the classification accuracy. The blue line is training and the red line is validation. The 
GoogleNet classification accuracy rises rapidly at the first 10 iterations, training as high as 95% and the red line 
is the validation as high as 85% at the first 10 iterations. The training and verification cycle is high and low, and 
the final red line is the verification classification accuracy rate of 82.67. Figure 5 shows the results of GoogleNet 
classification loss and iterations. Classification results Fig. 6 shows the GoogLeNet classification results, with a 
correct rate of 82.7%. The classification accuracy rate in both cracked and normal categories is 82.7%, and the 
prediction is correct 62 correct and 13 incorrect.

Figure 7 shows Shufflenet classification accuracy and iterations results. The X-axis is the number of iterations, 
and the Y-axis is the classification accuracy. The blue line is training and the red line is validation. Shufflenet 
classification accuracy rises rapidly at the first 18 iterations. The training high reaches 90% and the red line is the 
validation high reaching 85% at the beginning of 18 iterations. The training and validation curves drop and then 
slowly rise, and the final red line is the validation classification accuracy of 85.33. Figure 8 shows the results of 
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Shufflenet classification loss and number of iterations. The traditional ShuffleNet classification results are shown 
in the Fig. 9, and the correct rate is 85.3%. The classification accuracy rate of cracked and normal is 85.3% and 
the prediction is correct 64 correct and 11 incorrect.

ResNet and VGGNet also have significant features and achievements in the field of image deep learning. The 
following is an analysis of the characteristics of these two methods in tire crack detection, as well as an analysis 
of their accuracy results.

1. ResNet (Deep Residual Network): ResNet introduces residual structures to address the vanishing gradient 
and exploding gradient problems in deep neural networks. In tire crack detection, ResNet can effectively 
capture the detailed features of the tire, especially the classification of cracks. The accuracy of ResNet in tire 
crack detection is likely to be around 90% as shown in Fig. 10.

2. VGGNet: VGGNet reduces the number of network parameters and increases training speed by using a 
stacked structure of multiple 3 × 3 convolutional layers. In tire crack detection, VGGNet can effectively extract 
local features of the tire and accurately classify cracks. The accuracy of VGGNet in tire crack detection is 
approximately 87.3% as shown in Fig. 11.

Taking all factors into consideration, although ResNet and VGGNet have potential in tire crack detection.
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Figure 12 shows the improved Shufflenet classification accuracy and iterations results. The X axis is the 
number of iterations, the Y axis is the classification accuracy, the blue line is the training and the red line is the 
validation. The classification accuracy of the modified Shufflenet increases rapidly at the first 18 iterations. The 
training height reaches 95% and the red line is the validation height which reaches 84%. At the beginning of 18 
iterations, the training and validation curves gradually increase. The improved Shufflenet is close to full score 
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after 70 iterations. The final red line is that the validation classification accuracy is 94.67. Figure 13 shows the 
results of the improved Shufflenet classification loss and the number of iterations. The improved ShuffleNet 
classification results are shown in the Fig. 14, the correct rate is 94.7%. Figure 14 shows the confusion matrix of 
the classification results for the improved ShuffleNet, with an overall accuracy of 94.7%. There are 75 samples 
for both normal and cracked tire categories. The classification accuracy for the normal category is 94.7%, with 
71 samples correctly predicted as normal tires and 4 samples mistakenly predicted as cracked tires. Similarly, 
the classification accuracy for the cracked category is 94.7%, with 71 samples correctly predicted as cracked tires 
and 4 samples mistakenly predicted as normal tires.

In this study, the YOLOv7 method was employed to detect tire crack locations, aiming to enhance the iden-
tification capability for tire cracks. A collection of tire images with various sizes of cracks was used for training 
and testing to evaluate the effectiveness of YOLOv7 in tire crack detection.

Upon training and testing the dataset, significant results were achieved using YOLOv7 in detecting tire crack 
locations. The method was able not only to accurately identify tires with cracks but also to determine the specific 
location of the cracks. In the test dataset, YOLOv7’s accuracy rate reached 92.3%, demonstrating its effectiveness 
in tire crack detection. Additionally, this study compared the detection performance of YOLOv7 on cracks of 
different sizes. The results showed that the method excelled in detecting larger cracks, with an accuracy rate as 
high as 98%, as illustrated in Fig. 15. For smaller cracks, YOLOv7 still exhibited good identification capabili-
ties, with an accuracy rate of 90%, as depicted in Fig. 14. This indicates that YOLOv7 has strong robustness in 
detecting cracks of various sizes (Fig. 16).

In summary, this study believes that YOLOv7 demonstrates superior performance in detecting tire crack 
locations. This study provides an effective technical means for tire crack detection and offers strong support for 
further optimization of algorithms and expansion of application scope in the future.

Table 1 shows all methods compared in accuracy. In this study, GoogleNet, Traditional Shufflenet, VGGNet, 
ResNet and Improved Shufflenet achieved accuracies of 82.7%, 85.3%, 87.3%, 90% and 94.7%, respectively, 
demonstrating good performance in image classification and object detection. Traditional method may not be 
able to achieve higher accuracies compared to the Improved Shufflenet in this study. Moreover, due to limita-
tions in computational resources and training time, this study chose to focus on improving Shufflenet to achieve 
more efficient and accurate tire crack detection. In future research, this study will investigate how to combine 
the advantages of traditional method to enhance the accuracy and efficiency of tire crack detection. This may 
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involve exploring shallower network structures to reduce computational resource requirements while main-
taining tire crack detection capabilities. Additionally, this study will seek to leverage multimodal data fusion, 
such as combining optical and thermal imaging data, to improve the reliability of crack detection. This will help 
further enhance the performance of tire crack detection algorithms in practical applications and broaden their 
scope of application.
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Figure 11.  The VGGNet confusion matrix classification results, the total correct rate is 87.3.
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Figure 15.  In YOLOv7, the detection results of large cracks in defective tires are 98%.

Figure 16.  In YOLOv7, the detection results of small cracks in defective tires are 90%.

Table 1.  All methods compared in accuracy.

Total accuracy (%)

GoogleNet 82.7

Traditional Shufflenet 85.3

VGGNet 87.3

ResNet 90

Improved Shufflenet 94.7
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In order to properly use the visual car tire inspection system, the following are suggested:

1. System installation: Collaborate with professional technicians to install the system at suitable locations, such 
as service centers, tire shops, or parking lots, to provide easy access for vehicle owners.

2. User-friendly interface: Design an intuitive user interface that allows users to easily navigate through the 
system and access tire inspection results.

3. Detailed instructions: Provide clear instructions on the proper placement of the vehicle and tire alignment 
to ensure accurate results.

4. Real-time feedback: Offer real-time feedback on the tire inspection results, enabling users to make informed 
decisions on tire maintenance or replacement.

5. Automatic updates: Implement automatic updates to the system to ensure it stays up-to-date with the latest 
tire inspection algorithms and techniques.

6. Customization: Allow users to customize settings, such as the level of detail in the inspection results, accord-
ing to their needs.

7. Integration with maintenance services: Integrate the visual car tire inspection system with maintenance ser-
vices, so users can easily schedule appointments for tire maintenance or replacement based on the inspection 
results.

8. Data storage and analysis: Store tire inspection data securely and enable users to analyze historical data to 
track the performance and condition of their tires over time.

By implementing the above recommendations, the installation and usage of the visual car tire inspection 
system will become easier, and it will play a more significant role in practical applications. In further research, 
the system’s performance can be continuously optimized, and its application scope can be expanded to cover 
more aspects of tire inspection, such as tire wear, pressure, and balance.

Conclusion
This paper proposes a high-precision tire defect detection system. Through the trained and improved deep 
learning ShuffleNet model, the tire images are detected for defects. Through the tire database experiment, it can 
be proved that the algorithm in this paper can accurately detect tire crack defects. In the research results, the 
classification accuracy of GoogLeNet is 82.7%, the traditional ShuffleNet is 85.3%, VGGNetis 87.3%, ResNet is 
90%, and the improved ShuffleNet is 94.7%. This research method can be used not only for driving but also for tire 
factories. The improvement of traditional tire surface defects relies on manual detection, which has the problems 
of high labor intensity, large subjective influence by people and low efficiency. It can meet the tire manufacturer’s 
problem of tire debris defect detection, and achieve the effect of classifying and detecting defects at the same time. 
Several study limitations here are work for future research. This paper focuses on the study of normal tires and 
tire oxidation crack defects, so the detection method of this study has limitations. However, actual tire defects 
are diverse and complex, including air bubbles, foreign objects, cracks, and other types. In this study the valid-
ity of the detection algorithm is not discussed to detect crack specifications, it can be discussed in the future.

Data availability
The datasets and the code used and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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