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Scale‑adaptive model for detection 
and grading of age‑related macular 
degeneration from color retinal 
fundus images
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Age‑related Macular Degeneration (AMD), a retinal disease that affects the macula, can be caused 
by aging abnormalities in number of different cells and tissues in the retina, retinal pigment 
epithelium, and choroid, leading to vision loss. An advanced form of AMD, called exudative or 
wet AMD, is characterized by the ingrowth of abnormal blood vessels beneath or into the macula 
itself. The diagnosis is confirmed by either fundus auto‑fluorescence imaging or optical coherence 
tomography (OCT) supplemented by fluorescein angiography or OCT angiography without dye. 
Fluorescein angiography, the gold standard diagnostic procedure for AMD, involves invasive injections 
of fluorescent dye to highlight retinal vasculature. Meanwhile, patients can be exposed to life‑
threatening allergic reactions and other risks. This study proposes a scale‑adaptive auto‑encoder‑
based model integrated with a deep learning model that can detect AMD early by automatically 
analyzing the texture patterns in color fundus imaging and correlating them to the vasculature 
activity in the retina. Moreover, the proposed model can automatically distinguish between AMD 
grades assisting in early diagnosis and thus allowing for earlier treatment of the patient’s condition, 
slowing the disease and minimizing its severity. Our model features two main blocks, the first is an 
auto‑encoder‑based network for scale adaption, and the second is a convolutional neural network 
(CNN) classification network. Based on a conducted set of experiments, the proposed model achieves 
higher diagnostic accuracy compared to other models with accuracy, sensitivity, and specificity that 
reach 96.2%, 96.2%, and 99%, respectively.

Age-related macular degeneration (AMD) is a retina disease that affects the retina’s macular region, a part of 
the retina that controls sharp straight-ahead  vision1, causing progressive loss of central  vision2, and may lead 
to complete visual  disability3. AMD happens when aging causes damage to the macula. Dry AMD and Wet 
AMD are the two primary forms of AMD; each has different grading. Dry AMD also called Atrophic AMD or 
non-neovascular AMD, has three grades: early, intermediate, and late, also called geographic atrophy (GA) or 
advanced non-neovascular AMD. Wet AMD, also called  exudative4 or neovascular AMD, is always late stage 
and has two grades: inactive and  active5. Moreover, wet AMD can be further classified into classic, occult or 
 mixed6. Neovascular and late dry are considered advanced  AMD7. The hallmark of AMD is the drusen forma-
tion that is an accumulation of retinal deposits, pigmentary changes at the macula that serves as a predictor of 
more advanced AMD  development4,8 and mild to moderate vision  loss7. Change in size and number of drusen 
indicates AMD progression  risk8 and grading  characteristics9. Dry AMD is the most common form, although 
wet AMD is less frequent but is responsible for 90% of blindness due to  AMD7.

AMD is the cause of 87% of blindness cases  worldwide10,11, where Europeans recorded the highest prevalence 
over Asians in early and late AMD over Africans in any AMD. Statistically, in  201410 anticipated that new cases 
of AMD would reach 196 million in 2020 and by 2040 this number will reach 288 million globally,  while12 pre-
dicted that in 2050, the number of early AMD cases would be 39.05 million and late AMD will be 6.41 million. 

OPEN

1Department of Computer and System Engineering, Faculty of Engineering, Ain Shams University, Cairo, 
Egypt. 2Department of Bioengineering, University of Louisville, Louisville, KY, USA. 3Electrical, Computer and 
Biomedical Engineering Department, College of Engineering, Abu Dhabi University, Abu Dhabi, United Arab 
Emirates. 4Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah 
Bint Abdulrahman University, Riyadh, Saudi Arabia. *email: aselba01@louisville.edu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-35197-2&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2023) 13:9590  | https://doi.org/10.1038/s41598-023-35197-2

www.nature.com/scientificreports/

AMD is a chronic disease and neither of its forms can be  cured13. However, treatment for wet AMD can help 
maintain and even improve vision, or halt the disease’s  development14. Early detection can help prevent disease 
progression; however, any dry AMD stages can turn into wet AMD. Traditionally the clinical diagnosis of the 
disease requires examination and assessment of either fundus autofluorescence imaging or optical coherence 
tomography (OCT) supplemented by fluorescein angiography or OCT angiography without  dye3,6 or Spectral 
Domain Optical Coherence Tomography (SD-OCT).

During the past few years, much deep learning (DL) approaches have been applied in computer vision (CV) 
tasks including medical imaging classification, due to its robust architecture and better performance. DL models 
record good results in retinal image analysis for detecting and diagnosing retinal diseases like AMD, glaucoma, 
choroidal neovascularization (CNV), and diabetic macular edema (DME) based on different imaging modalities 
such as retinal fundus images, OCT, SD-OCT. In the literature, several studies have tried to classify and discrimi-
nate between AMD’s different grades and normal retinas. Rivu Chakraborty and Ankita Pramanik proposed a 
novel deep convolutional neural network (DCNN) architecture with 13-layers to classify non-AMD and AMD 
based on fundus  images15. The model is composed of five convolutional layers (CL), five max-pooling layers 
(MPL), and three fully connected layers (FCL) training on the iChallenge-AMD dataset. The model recorded 
89.75% accuracy without data augmentation, while applying 4-time and 16-time data augmentation versions, the 
model recorded 91.69%, and 99.45% accuracy respectively. They also trained their model on the ARIA dataset 
and recorded accuracy of 90%, 93.03%, and 99.55% for original, 4-time data augmentation, and 16-time data 
augmentation respectively. In Ref.16 the authors proposed a multiscale CNN with 7 CL for binary classification 
of AMD and standard images using OCT images. The generated model is trained on the Mendeley dataset and 
achieved high accuracy between 99.73 and 96.66% when tested on different datasets like Mendeley OCTID, 
SD-OCT Noor dataset, and Duke. Several  authors17–19 reported high accuracy and good performance on AMD 
classification based on OCT images.  References20–23 are some of the state-of-the-art deep learning architectures 
for AMD classification where Refs.20,21 used transfer learning to apply different classification problems for AMD 
grades while Tan et al.22 used 14-layer DCNN with data augmentation to increase the size of the iChallenge-AMD 
training dataset to perform binary classification between AMD and normal retina recording accuracy of 89.69%.

Based on OCT imaging  datasets24–29 applied transfer learning using different pre-trained models to detect and 
classify AMD. Xu et al.24 used the  ResNet5030 model recording an accuracy 83.2%. Hwang et al.25 used different 
pre-trained models such as  VGG1631,  InceptionV332, and ResNet50 models to identify AMD types into normal, 
dry AMD, active wet, and inactive wet, it recorded accuracies of 91.40%, 92.67%, and 90.73%, respectively. Yoo 
et al.26 used the VGG-19 pre-trained model and random forest classifier recording an accuracy of 82.6% train-
ing the DL model recorded an accuracy of 83.5% when trained on the fundus imaging dataset and 90.5% when 
combining the usage of the fundus with OCT imaging datasets. Chen et al.27 used transfer learning to classify 
OCT images of AMD and DME and recorded VGG19, Resnet101, and Resnet50 among seven pre-trained models 
recording average accuracies of 99.42%, 99.19%, and 99.09%, respectively. Wang et al.28 applied transfer learning 
using a VGG19 pre-trained model to classify AMD grades and differentiate between AMD, GA, drusen, and 
normal images, where the model accuracy of 93.14% using OCT images collected from Northwestern Memo-
rial Hospital of total 498 OCT images. Serener et al.29 compared ResNet18 with AlexNet to distinguish between 
dry and wet AMD OCT images where ResNet18 recorded better performance with an accuracy of 99.5% while 
AlexNet recorded an accuracy of 81%.

Auto-encoders33 are an artificial neural network that attempts to convert inputs into outputs with the least 
amount of acceptable distortions by compressing input data into a lower-dimensional representation before 
reconstructing the original data from this compressed representation. It extracts informative features and useful 
characteristics from data while filtering out noise and irrelevant  information34. Auto-encoders may be used for 
data  compression35 in which the compressed representation is used to keep the information in a more compact 
format, as well as denoising, in which the model is trained to reconstruct clean data from noisy input. It can 
also be used for image-to-image  translation36 by randomly sampling from the compressed representation and 
decoding it to generate a new image as well as dimensionality  reduction37–40 by training an auto-encoder, the 
network can learn a compressed representation of the data that captures the most important features and capable 
of generating new images such as variational auto-encoder (VAE)41. In the auto-encoder-based model, the latent 
space layer is responsible for performing dimensionality reduction. the encoder performs a dimension reduc-
tion operation by translating the input into lower-dimensional representation in accordance with the decoder. 
In general, auto-encoders are then trained to reconstruct original, noise-free data from the given input data.

We aim to build an automated model that can easily discriminate between normal retinas (no-AMD), inter-
mediate dry AMD, GA, and wet (neovascular) AMD grades with high accuracy based on fundus images while 
overcoming the challenge of having different fundus image dimensions stimulates building customized image 
resizing generator based on CNN model that automatically generates resized image to 224× 224 px that could 
also be integrated with any pre-trained model and correctly discriminate between the previously mentioned four 
grades. Consequently, our customized model will take care of any needed data preprocessing before training 
starts. We would like to highlight two major contributions in the proposed CAD system. The first contribution 
is the development of a new scale-adaptive auto-encoder-based model that can integrate with any pre-trained 
network while retaining critical information from the original data. It is worth noting that this contribution is 
not limited to the proposed application but can be utilized for scaling down any input data to match the input 
of a pre-trained network, enabling transfer learning. The second significant contribution is the creation of a 
comprehensive CAD that can effectively differentiate between AMD and normal cases, and grade AMD patients 
into three categories: Intermediate, GA, and Wet. To the best of our knowledge, we are the first research group 
to provide such a comprehensive assessment of AMD from fundus images. To highlight this contribution, we 
conducted numerous experiments based on transfer learning using our dataset.
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The rest of the paper is organized as follows: “Material and methods” section introduces the proposed model 
methodology related to the research, explaining the auto-encoder-based scale adapting network and the clas-
sification network. The “Experiments and results” section shows the results recorded for the conducted set of 
experiments. The “Discussion” section explains the obtained results. Finally, the “Conclusion and future work” 
section presents the conclusion and outlook for future work.

Material and methods
This study aims to provide a solution for the classification problem distinguishing between AMD grades by 
classifying colored fundus images of patients that are either normal or have intermediate AMD, GA or wet 
AMD grades. The method is applied to a local dataset. Our proposed model is an integrated model between 
two stages. First stage is a custom auto-encoder-based model that takes the fundus images as its input from the 
available dataset and feeds its output to the second stage which is a ResNet50 pre-trained model. Figure 1 shows 
the proposed integrated model diagram.

Data collection. A cohort of 864 human subjects was recruited for this study by The Comparisons of Age-
Related Macular Degeneration Treatments Trials (CATT), sponsored by the University of  Pennsylvania42. This 
study was available for those aged 50 and older. During the two years of the clinical trial, 43 clinical centers in 
the United States enrolled participants who received intravitreal injections of ranibizumab or bevacizumab and 
one of three dosing regimens. All imaging and clinical data for this study were de-identified by the CATT Study 
Group before being sent to the University of Louisville. Because the data had been collected in the past by a third 
party and had been appropriately de-identified, it was deemed to be exempt from the local institutional review 
board (IRB) process by the IRB of the University of Louisville. All data collection methods were carried out in 
accordance with relevant guidelines and regulations. Informed consent was obtained from all subjects and/or 
their legal guardian(s). The CATT program provided study treatments on every participant’s first visit. Treat-
ment was delivered to those in the fixed monthly dosing groups every visit or as needed based on the presence 
of exudation. Treatment evaluations were conducted every visit for those assigned to variable dosing groups. 
Participants who had lesion activity received study treatment. From these data, we collect 216 normal, 216 inter-
mediate AMD, 216 GA AMD, and 216 Wet AMD.

Auto‑encoder based scale adapting network. Regarding the in-equal fundus images sizes, we built 
our customized resizing model that accepts any fundus image size (as large as 2224× 1888 px to 547× 491 px) 
and resizes it to 224× 224 px to be used in applying transfer learning on any pre-trained model. The scale adapt-
ing (SA) network is an auto-encoder-based neural network model, accordingly it filters out noise and irrelevant 
information. The auto-encoder-based model aims to resize the input images to 224× 224× 3 dimensions and 
take care of any needed data preprocessing before classification training starts. It is constructed of two CL and 
a MPL after which a split of two branches takes place where a branch is made of a CL, transpose convolutional 
layer (TCL), and finally, a reshape layer that reshapes its output to 224× 224× 12 . In the end, the two paths 
are combined using the concatenation layer to produce a work containing high and low-resolution images of 
224× 224× 15 dimensions. The required output dimension is obtained from the low resolution that is gener-
ated from the first branch while the high resolution is needed to ensure that the output is the same as the original 

Figure 1.  (a) Schematic diagram of the Auto-Encoder inspired architecture proposed for the scale adapting 
network. (b) The schematic diagram for the proposed classification network for the detection and grading of 
AMD. The output layer is Softmax with one-hot encoding nodes corresponding to normal, wet, intermediate, 
and GA AMD grades.
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input image. During training, the model learns to minimize the reconstruction error between the input and the 
generated output image by applying the custom loss function comparing low and high-resolution output images 
with the input image. The high-resolution image is the reconstructed image that is supposed to be as similar to 
the actual input image, while the low-resolution image is the required resized output.

We used Adam optimizer with a fixed 0.001 learning rate and tanh as the activation function. The training 
was then performed over 100 epochs with a batch size equal to 1. Our custom scale-adaptive (SA) auto-encoder-
based model recorded a perfect match regenerated image of 1 structural similarity index measure (SSIM) using 
a combination of two loss functions Pseudo Huber loss function and Log Cosh loss function for high resolution 
and low resolution respectively, proofing good quality recording Root Mean Square Error (RMSE) 0.081. By 
trying different combinations between Mean Square Error (MSE) loss function and Mean Square Logarithmic 
Error (MSLE) loss function, our model showed efficiency and recorded 1 SSIM while RMSE enhanced to 0.075. 
This comparison was fairly evaluated with the same hyper-parameters, using an Adam optimizer with a 0.0001 
learning rate, setting the factor of the high-resolution loss function to 0.25. In contrast, the low-resolution 
loss function factor was set to 0.075. Figure 2 shows the experimental results for our SA model, where Fig. 2a 
shows the loss function curve over training epochs for using the combination of MSE and MSLE losses for high 
resolution and low resolution respectively, while Fig. 2b shows the loss function curve over training epochs for 
using the combination of Pseudo Huber loss function and Log Cosh loss function for high resolution and low 
resolution respectively. Figure 2c shows the output results for our SA model using the combination of MSE and 
MSLE losses for high resolutions and low resolutions respectively.

Classification network. The proposed classification network architecture is shown in Fig. 1b. It is con-
structed of a ResNet50 convolution backbone, a global average pooling layer, flatten layer, three repeated blocks, 
and a final softmax dense layer. Each block is architected: a dense layer, a batch normalization layer to stabilize 
and speed up the training process, and a dropout layer to avoid overfitting. All of the dense layers use the Recti-
fied Linear Unit (ReLU) as its activation function setting all values less than zero to 0, and retaining all the values 
greater than zero, except for the last dense layer uses softmax as the output layer with four nodes to represent 
normal (no AMD), intermediate, GA and wet AMD grades. We used categorical cross-entropy as the loss func-
tion, stochastic gradient descent (SGD) optimizer starting with a 0.001 learning rate that was reduced automati-
cally during the training phase to improve results whenever the loss metric has stopped improving, a total of 
24,750,212 out of 24,811,338 parameters were used for training the proposed classification network architecture.

Due to dataset size limitation, we applied transfer learning, where we used the ResNet50 pre-trained model 
based on the weights of the ImageNet dataset. The training was performed over 300 epochs with a batch size of 64. 
The dataset samples were split into 70% for the training set and the remaining 30% for validation and testing sets.

While carrying out training on a limited number of samples, we applied data augmentation on the training 
dataset to increase its size and avoid overfitting by implementing the following data augmentation process: image 
rotation by rotating the image at 50◦ angle, and image mirroring by flipping the image horizontal and vertical 

(a) MSE loss with MSLE loss

(b) Pseudo Huber loss with Log Cosh loss (c) Resized output image

Figure 2.  (a) and (b) shows the loss curve over training epochs for two different loss function and (c) shows the 
output results for high and low resolution and the effects of resized generator custom model.
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data augmentation is only applied during the training phase and no augmentation used during the testing phase, 
this leads to train the model among samples and test against the remaining samples.

Experiments and results
The proposed model was trained on Colab-Pro GPU. We developed, trained, validated, tested our model, and 
calculated its performance metrics in python using  TensorFlow43,  Keras44, and scikit-learn45, the later along 
with  matplotlib46 and  seaborn47 were used for plotting all of the shown figures and graphs such as performance 
metrics, confusion matrix, feature extraction, and activation map. We applied k-fold cross-validation technique 
to validate the best model performance and propose our model that is composed of our SA model integrated 
with ResNet50 model. The hyperparameters have been set for each model separately where the scale adaptive 
auto-encoder-based model hyperparameters were set as follows: batch size is 1, Adam optimizer with a fixed 
0.001 learning rate, and tanh as the activation function while the ResNet50 pre-trained model hyperparameters 
were set as: batch size 64, SGD optimizer with automatic adaptive learning rate starting with 0.001 and reduced 
whenever the accuracy evaluation metric stops improving.

Accurate detection and grading compared to other models. Distinguishing between the normal 
healthy retina and AMD different grades recorded the best performance when using our proposed integrated 
model compared to the other models. This is shown in Table 5 and Figs. 3, 6, 7, 8 and 9 plots the loss and accu-
racy recorded for the experimental models being integrated with SA and standalone respectively. Figures 6a,c,e 
and 7a,c,e shows the loss and accuracy for ResNet50, InceptionV3, VGG16, ResNet101, VGG19, and ResNet18 
integrated with SA model using SGD optimizer respectively, while Figs. 6b,d,f, 7b and 9d,f shows the loss and 
accuracy for ResNet50, InceptionV3, VGG16, ResNet101, VGG19, and ResNet18 integrated with SA model 
using Adam optimizer respectively. Figures 8a,c,e and 9a,c,e shows the loss and accuracy for ResNet50, Incep-
tionV3, VGG16, ResNet101, VGG19, and ResNet18 standalone pre-trained models using SGD optimizer respec-
tively, while Figs. 8b,d,f and 9b,d,f shows the loss and accuracy for ResNet50, InceptionV3, VGG16 ResNet101, 
VGG19, and ResNet18 standalone pre-trained model using Adam optimizer respectively (Figs. 4, 5, 6).

SGD48 and  Adam49 are significant optimization techniques used in machine learning for updating the weights 
of a neural network during training where the latter is considered as a hybrid combination of RMSProp and SGD 
with  momentum49. SGD is a straightforward optimization approach that updates the neural network weights in 
the direction of the loss function’s negative gradient with respect to the weights. It randomly chooses a subset of 
the training data for every update, reducing the optimization’s computational cost. The choice of optimization 
algorithm depends on the problem being solved as well as the computing resources available. SGD is simple and 
computationally efficient, whereas Adam is more complex, but can achieve faster convergence on larger datasets 
and more complex  studies50. According to the outcomes of applying the Bayesian optimization approach to detect 
the optimal hyperparameter tuning, the top nominated optimizers for tackling our problem were SGD and Adam 
optimizers with a batch size of 64 and 32 respectively as shown in Table 6 (Figs. 7, 8, 9).

Based on our study, SGD proved to be a better optimization technique compared with Adam optimizer, 
the results are shown in Table 5 and Fig. 3. For every experiment, we started the learning rate value by 0.001 

Figure 3.  Comparison of models’ accuracy for using SGD optimizer and Adam optimizer.
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that adapted and reduced its value automatically, while to ensure fair experimental results we fixed any other 
hyper-parameter and set it to default except for batch size set to 64 over 300 epochs. Performance metrics of 
the trained models are shown in Tables 1 and 2 for SGD and Adam optimizers respectively, were computed 
based on the overall true-positives (TP), true-negatives (TN), false-positives (FP) and false-negatives (FN). 
The overall performance metrics and parameters are shown in Table 8 for using SGD optimizer and Table 9 
for using the Adam optimizer. The confusion matrices is shown in Figs. 10 and 11 for the experimental models 
being integrated with SA, where Figs. 10a,c,e and 11a,c,e shows the confusion matrix for ResNet50, InceptionV3, 

(a) First convolution layer for SA + RestNet50 model using

optimizer

(b) Last convolution layer for SA + RestNet50 model using

optimizer

(c) First convolution layer for SA + InceptionV3 model using

optimizer

(d) Last convolution layer for SA + InceptionV3 model using

optimizer

(e) First convolution layer for SA + VGG16 model using

optimizer

(f) Last convolution layer for SA + VGG16 model using

optimizer

Figure 4.  Feature Map visualization of first and last convolution layer of ResNet50, InceptionV3, and VGG16 
pre-trained model after being integrated with SA model.
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VGG16, ResNet101, VGG19, and ResNet18 integrated with SA model using SGD optimizer respectively, while 
Figs. 10b,d,f and 13b,d,f shows the confusion matrix for ResNet50, InceptionV3, VGG16, ResNet101, VGG19, and 
ResNet18 integrated with SA model using Adam optimizer respectively. Figures 12 and 13 shows the confusion 
matrices for the standalone pre-trained models, where Figs. 12a,c,e and 13a,c,e shows the confusion matrix for 
ResNet50, InceptionV3, VGG16, ResNet101, VGG19, and ResNet18 standalone pre-trained models using SGD 
optimizer respectively, while Figs. 12b,d,f and 13b,d,f shows the confusion matrix for ResNet50, InceptionV3, 
VGG16, ResNet101, VGG19, and ResNet18 standalone pre-trained model using Adam optimizer respectively. 

(a) First convolution layer for SA + RestNet101 model using

optimizer

(b) Last convolution layer for SA + RestNet101 model using

optimizer

(c) First convolution layer for SA + VGG19 model using

optimizer

(d) Last convolution layer for SA + VGG19 model using

optimizer

(e) First convolution layer for SA + ResNet18 model using

optimizer

(f) Last convolution layer for SA + ResNet18 model using

optimizer

Figure 5.  Feature Map visualization of first and last convolution layer of ResNet101, VGG19, and ResNet18 
pre-trained model after being integrated with SA model.
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The receiver operating characteristic (ROC) curves for all of the trained models are plotted in Figs. 14, 15, 
16 and 17 for the experimental models being integrated with SA and standalone respectively. Figures 14a,c,e 
and 17a,c,e shows the ROC for ResNet50, InceptionV3, VGG16, ResNet101, VGG19, and ResNet18 integrated 
with SA model using SGD optimizer respectively, while Figs. 14b,d,f and 17b,d,f shows the ROC for ResNet50, 
InceptionV3, VGG16, ResNet101, VGG19, and ResNet18 integrated with SA model using Adam optimizer 
respectively. Figures 16a,c and 16e, 17a,c,e shows the ROC for ResNet50, InceptionV3, VGG16, ResNet101, 
VGG19, and ResNet18 standalone pre-trained models using SGD optimizer respectively, while Figs. 16b,d,f 
and 17b,d,f shows the ROC for ResNet50, InceptionV3, VGG16, ResNet101, VGG19, and ResNet18 standalone 
pre-trained model using Adam optimizer respectively. From the recorded results shown in Tables 1, 2, 8 and 9, 
it was clear that ResNet50 recorded the most promising performance metrics during training and testing phases 
by either using SGD or Adam optimizers concerning precision or positive predictive value (PPV), sensitivity or 
recall or true positive rate (TPR), and specificity or true negative rate (TNR) results. We applied 10-fold, 5-fold, 
and 3-fold cross-validation techniques for the pre-trained models integrated with SA using SGD optimizer or 
Adam optimizer to find the optimized performance as shown in Tables 3 and 4, comparing the results recorded 
for accuracy by training models in each k-fold. We also examined the proposed model with batch sizes 16, 32, 
and 128 as shown in Table 7 where it was observed that using the SGD optimizer recorded the highest accuracy 
value of 96.2% with batch size 64 although using the Adam optimizer with the same experimental environment 
recorded higher accuracy the cross-validation results promotes to using of SGD as shown in Table 3.

(a) SA + ResNet50 model using SGD optimizer (b) SA + ResNet50 model using Adam optimizer

(c) SA + InceptionV3 model using SGD optimizer (d) SA + InceptionV3 model using Adam optimizer

(e) SA + VGG16 model using SGD optimizer (f) SA + VGG16 model using Adam optimizer

Figure 6.  Plot diagrams of loss and accuracy records over 300 epochs for SA model integrated with 
InceptionV3, ResNet50, and VGG16 models using SGD and Adam optimizer.
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Explainable retina maps. We used a feature map to ensure the availability of information and visualize 
feature propagation among convolution layers till the last layer. Figure 4 shows feature maps visualization of the 
first and last convolution layer of the proposed model and SA integrated with other pre-trained models, where 
Fig. 4a shows the output of its 64 filters first convolution layer of ResNet50 pre-trained model integrated with SA 
while its last convolution layer shown in Fig. 4b displays the output of 64 filters. Similarly, for SA integrated with 
InceptionV3 pre-trained model, we displayed its 25 filters of first convolution layers as shown in Fig. 4c while its 
output is shown in Fig. 4d where we display the output of 64 kernels out of 192 filters. For the VGG16 pre-trained 
model being integrated with SA, Fig. 4e,f show the output of the top 64 filters for the first and last convolution 
layers, respectively. Figure 5a,c,e show the output of the top 64 filters for the first convolution layer of ResNet101, 
VGG19, and ResNet18 pre-trained models being integrated with SA respectively, while Fig.  5b,d,f show the 
output of top 64 filters for the last convolution layer of ResNet101, VGG19, and ResNet18 pre-trained models 
being integrated with SA respectively. The predicted output using the proposed model is shown in Fig. 18, where 
it successfully discriminates between AMD different grading.

(a) SA + ResNet101 model using SGD optimizer (b) SA + ResNet101 model using Adam optimizer

(c) SA + VGG19 model using SGD optimizer (d) SA + VGG19 model using Adam optimizer

(e) SA + ResNet18 model using SGD optimizer (f) SA + ResNet18 model using Adam optimizer

Figure 7.  Plot diagrams of loss and accuracy records over 300 epochs for SA model integrated with ResNet101, 
VGG19, and ResNet18 models using SGD and Adam optimizer.
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Discussion
In this study, we propose an integrated deep learning model capable of recognizing and differentiating between 
the normal retina and various clinical grades of AMD (intermediate, GA, or Wet AMD) successfully with high 
accuracy using retinal fundus images. We faced limitations to optimize the performance and build high accuracy 
model because of a limited number and variety of fundus dataset image samples; we applied transfer learning 
approach and compared the results between training standalone ResNet50, VGG16, InceptionV3, ResNet101, 
VGG19, ResNet18 pre-trained models and integrating each of these models with SA model, where SA is the 
model trained for accepting fundus images of different sizes and dimensions and producing scaled output image 
of 224× 224 px size. Many public datasets contain medical fundus images covering various retinal diseases such 
as AMD, diabetic retinopathy, glaucoma, and cataracts. Most of the datasets for AMD such as iChallenge-AMD51, 
ODIR-201952, Automated Retinal Image Analysis  ARIA53, and  STARE54 classify images into AMD and normal 
retina. Hence, it was hard to use any of these datasets in either training, testing, or evaluating the proposed 
model (Tables 5, 6, 7).

Despite these limitations, our model classified the AMD grades successfully and recorded an accuracy of 
96.2% for integrating the SA model with the ResNet50 model using SGD optimizer although using Adam opti-
mizer recorded an accuracy of 97.7%. The best model was determined based on the results from Tables 1, 2, 8 
and 9 and applying several deep learning methodologies such as k-fold cross validation recorded in Table 3 to 
ensure high model performance and by evaluating the model using 3-folds, 5-folds and 10-folds to determine 

(a) ResNet50 model using SGD optimizer (b) ResNet50 model using Adam optimizer

(c) InceptionV3 model using SGD optimizer (d) InceptionV3 model using Adam optimizer

(e) VGG16 model using SGD optimizer (f) VGG16 model using Adam optimizer

Figure 8.  Plot diagrams of loss and accuracy records over 300 epochs for InceptionV3, ResNet50, and VGG16 
standalone models using SGD and Adam optimizer.
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optimal performance and decide the best model. By applying data augmentation, the dataset was sufficient to 
demonstrate the feasibility of our proposed deep learning model to distinguish AMD grades using fundus images. 
We examined the integrated model and tried different optimization like Adam and SGD which proved to be the 
best optimization technique in our case study.

The pre-trained model represented in ResNet50 proved to be more efficient either integrated with the SA 
model or standalone whether using SGD or Adam optimizer. It recorded the best-fit model to our study accord-
ing to cross-validation technique results recorded in Table 3. During the training phase it recorded accuracy that 
is comparatively 3% accuracy higher than using VGG16 and InceptionV3 models when being integrated with 
SA model. Compared with ResNet101, VGG19, and ResNet18; the proposed model recorded higher accuracy 
by more than 6%, 10%, and 15% respectively. It recorded 91.7% accuracy when trained as a standalone model. 
Although VGG16 pre-trained model recorded performance metrics like InceptionV3 pre-trained model using 
SGD, and VGG19 pre-trained model recorded acceptable results using SGD both VGG16 and VGG19 recorded 
the lowest results using Adam optimizer either as a standalone model or integrated with the SA model. Incep-
tionV3 recorded good performance metrics during the training phase. However, it was excluded due to cross-
validation technique results similar, to ResNet101 and ResNet18.

Conclusion and future work
In this study, we have proposed an integrated model for scaling input images and distinguishing between normal 
retinas and AMD grades using color fundus images. Our approach involves two stages. The first stage is a custom 
auto-encoder-based model that aims to resize the input images to 224× 224× 3 dimensions, then considers 

(a) ResNet101 model using SGD optimizer (b) ResNet101 model using Adam optimizer

(c) VGG19 model using SGD optimizer (d) VGG19 model using Adam optimizer

(e) ResNet18 model using SGD optimizer (f) ResNet18 model using Adam optimizer

Figure 9.  Plot diagrams of loss and accuracy records over 300 epochs for ResNet101, VGG19, and ResNet18 
standalone models using SGD and Adam optimizer.
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any needed data preprocessing, and then feeds its output to the second stage that aims to classify its input into 
normal retinas, intermediate AMD, GA and wet AMD grades using ResNet50 pre-trained model. The proposed 
model is trained on the color fundus images dataset provided by the CATT Study Group. We compared our 
proposed model performance against different pre-trained models either standalone or integrated with our SA 
model. We validate our approach using a cross-validation technique that proves our proposed model is the best 
model performance.

(a) SA + ResNet50 model using SGD optimizer (b) SA + ResNet50 model using Adam optimizer

(c) SA + InceptionV3 model using SGD optimizer (d) SA + InceptionV3 model using Adam optimizer

(e) SA + VGG16 model using SGD optimizer (f) SA + VGG16 model using Adam optimizer

Figure 10.  Confusion matrices of SA model integrated with InceptionV3 model, ResNet50 model, and VGG16 
model using SGD and Adam optimizer.
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For future work, we plan to integrate the scale adapting network with other systems that diagnose other retinal 
disease, such as diabetic retinopathy, and with other networks that work on different imaging modalities. Also, 
we plan to expand the study by collecting data from additional cohorts that include subjects from a wider range 
of institutions and geographic areas globally.

(a) SA + ResNet101 model using SGD optimizer (b) SA + ResNet101 model using Adam optimizer

(c) SA + VGG19 model using SGD optimizer (d) SA + VGG19 model using Adam optimizer

(e) SA + ResNet18 model using SGD optimizer (f) SA + ResNet18 model using Adam optimizer

Figure 11.  Confusion matrices of SA model integrated with ResNet101, VGG19, and ResNet18 models using 
SGD and Adam optimizer.
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(a) ResNet50 model using SGD optimizer (b) ResNet50 model using Adam optimizer

(c) InceptionV3 model using SGD optimizer (d) InceptionV3 model using Adam optimizer

(e) VGG16 model using SGD optimizer (f) VGG16 model using Adam optimizer

Figure 12.  Confusion matrices of InceptionV3, ResNet50, and VGG16 standalone models using SGD and 
Adam optimizer.



15

Vol.:(0123456789)

Scientific Reports |         (2023) 13:9590  | https://doi.org/10.1038/s41598-023-35197-2

www.nature.com/scientificreports/

(a) ResNet101 model using SGD optimizer (b) ResNet101 model using Adam optimizer

(c) VGG19 model using SGD optimizer (d) VGG19 model using Adam optimizer

(e) ResNet18 model using SGD optimizer (f) ResNet18 model using Adam optimizer

Figure 13.  Confusion matrices of ResNet101, VGG19, and ResNet18 standalone models using SGD and Adam 
optimizer.
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(a) SA + ResNet50 model using SGD optimizer (b) SA + ResNet50 model using Adam optimizer

(c) SA + InceptionV3 model using SGD optimizer (d) SA + InceptionV3 model using Adam optimizer

(e) SA + VGG16 model using SGD optimizer (f) SA + VGG16 model using Adam optimizer

Figure 14.  ROC of SA model integrated with InceptionV3, ResNet50, and VGG16 models using SGD and 
Adam optimizer.
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(a) SA + ResNet101 model using SGD optimizer (b) SA + ResNet101 model using Adam optimizer

(c) SA + VGG19 model using SGD optimizer (d) SA + VGG19 model using Adam optimizer

(e) SA + ResNet18 model using SGD optimizer (f) SA + ResNet18 model using Adam optimizer

Figure 15.  ROC of SA model integrated with ResNet101, VGG19, and ResNet18 models using SGD and Adam 
optimizer.
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(a) ResNet50 model using SGD optimizer (b) ResNet50 model using Adam optimizer

(c) InceptionV3 model using SGD optimizer (d) InceptionV3 model using Adam optimizer

(e) VGG16 model using SGD optimizer (f) VGG16 model using Adam optimizer

Figure 16.  ROC of InceptionV3, ResNet50, and VGG16 standalone model using SGD and Adam optimizer.
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(a) ResNet101 model using SGD optimizer (b) ResNet101 model using Adam optimizer

(c) VGG19 model using SGD optimizer (d) VGG19 model using Adam optimizer

(e) ResNet18 model using SGD optimizer (f) ResNet18 model using Adam optimizer

Figure 17.  ROC of ResNet101, VGG19, and ResNet18 standalone models using SGD and Adam optimizer.
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Table 1.  Statistical analysis representation for precision, recall, and F1-score of Normal retina and different 
AMD grades for all of the training models using SGD optimizer.

Normal Intermediate GA Wet

SA + ResNet50

 Precision 0.97 0.94 1.00 0.94

 Recall 0.97 0.97 1.00 0.91

 F1-Score 0.97 0.95 1.00 0.92

ResNet50

 Precision 0.93 0.78 0.94 0.8

 Recall 0.84 0.9 0.94 0.75

 F1-Score 0.89 0.84 0.94 0.77

SA + VGG16

 Precision 0.93 0.89 0.79 0.97

 Recall 0.93 0.94 1.00 0.88

 F1-Score 0.93 0.91 0.98 0.92

VGG16

 Precision 0.96 0.88 0.89 0.88

 Recall 0.9 0.88 0.97 0.85

 F1-Score 0.93 0.88 0.93 0.86

SA + Inception

 Precision 0.91 0.89 1.00 0.97

 Recall 0.97 0.97 0.97 0.85

 F1-Score 0.97 0.93 0.98 0.9

Inception

 Precision 0.85 0.88 0.97 0.93

 Recall 0.93 0.91 0.97 0.82

 F1-Score 0.89 0.9 0.97 0.87

SA + ResNet101

 Precision 0.88 0.79 0.97 0.96

 Recall 0.93 0.91 0.97 0.76

 F1-Score 0.90 0.85 0.97 0.85

ResNet101

 Precision 0.93 0.87 0.97 0.77

 Recall 0.87 0.79 0.94 0.91

 F1-Score 0.90 0.83 0.95 0.83

SA + VGG19

 Precision 0.85 0.78 0.89 0.91

 Recall 0.93 0.85 1.00 0.64

 F1-Score 0.89 0.81 0.94 0.75

VGG19

 Precision 0.97 0.91 0.97 0.97

 Recall 0.93 0.94 1.00 0.94

 F1-Score 0.95 0.93 0.98 0.95

SA + ResNet18

 Precision 0.81 0.73 1.00 0.68

 Recall 0.87 0.73 0.91 0.70

 F1-Score 0.84 0.73 0.95 0.69

ResNet18

 Precision 0.74 0.66 0.93 0.59

 Recall 0.83 0.64 0.81 0.61

 F1-Score 0.78 0.65 0.87 0.60
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Table 2.  Statistical analysis representation for precision, recall, and F1-score of Normal retina and different 
AMD grades for all of the training models using Adam optimizer.

Normal Intermediate GA Wet

SA + ResNet50

 Precision 0.97 0.94 1.00 1.00

 Recall 1.00 1.00 1.00 0.91

 F1-Score 0.98 0.97 1.00 0.95

ResNet50

 Precision 0.97 0.97 1.00 0.89

 Recall 0.93 0.97 0.94 0.97

 F1-Score 0.95 0.97 0.97 0.93

SA + VGG16

 Precision 0.46 0.45 0.5 0.5

 Recall 0.6 0.76 0.47 0.06

 F1-Score 0.52 0.57 0.48 0.11

VGG16

 Precision 0.44 0.41 0.93 0.41

 Recall 0.77 0.27 0.44 0.48

 F1-Score 0.56 0.33 0.6 0.44

SA + Inception

 Precision 0.94 0.91 1.00 0.94

 Recall 0.97 0.94 1.00 0.88

 F1-Score 0.95 0.93 1.00 0.91

Inception

 Precision 0.94 0.94 1.00 0.97

 Recall 0.97 0.97 1.00 0.91

 F1-Score 0.95 0.96 1.00 0.94

SA + ResNet101

 Precision 0.94 0.86 1.00 0.90

 Recall 0.97 0.94 1.00 0.79

 F1-Score 0.95 0.90 1.00 0.84

ResNet101

 Precision 0.83 0.90 0.94 0.74

 Recall 0.97 0.85 0.91 0.70

 F1-Score 0.89 0.88 0.92 0.72

SA + VGG19

 Precision 0.00 0.35 0.20 0.14

 Recall 0.00 0.94 0.03 0.12

 F1-Score 0.00 0.51 0.05 0.13

VGG19

 Precision 0.40 0.53 0.77 0.47

 Recall 0.40 0.64 0.62 0.45

 F1-Score 0.40 0.58 0.69 0.46

SA + ResNet18

 Precision 0.97 0.94 1.00 0.97

 Recall 0.97 1.00 1.00 0.91

 F1-Score 0.97 0.97 1.00 0.94

ResNet18

 Precision 0.97 0.91 1.00 0.91

 Recall 0.97 0.94 1.00 0.88

 F1-Score 0.97 0.93 1.00 0.89



22

Vol:.(1234567890)

Scientific Reports |         (2023) 13:9590  | https://doi.org/10.1038/s41598-023-35197-2

www.nature.com/scientificreports/

Table 3.  Summary of K-fold cross-validation over the experimental models (ResNet50, InceptionV3, and 
VGG16) shows accuracy mean and standard deviation recorded among 10-folds, 5-folds, and 3-folds cross-
validation for every trained model using SGD and Adam optimizers.

SA + ResNet50 SA + VGG16 SA + InceptionV3

Mean STD Mean STD Mean STD

10-Folds

 Adam 99.8% +/- 0.38% 47.93% +/- 26.46% 27.24% +/- 10.59%

 SGD 96.55% +/- 1.26% 59.54% +/- 37.00% 96.44% +/- 1.20%

5-Folds

 Adam 88.97% +/- 1.17% 71.72% +/- 9.35% 28.89% +/-8.60%

 SGD 96.55% +/- 1.03% 97.01% +/- 1.56% 96.09% +/- 0.56%

3-Folds

 Adam 87.36% +/- 1.63% 73.56% +/- 5.71% 61.30% +/- 21.53%

 SGD 95.02% +/- 1.05% 73.56% +/- 7.68% 95.79% +/- 1.43%

Table 4.  Summary of K-fold cross-validation over the experimental models (ResNet101, VGG19, and 
ResNet18) shows accuracy mean and standard deviation recorded among 10-folds, 5-folds, and 3-folds cross-
validation for every trained model using SGD and Adam optimizers.

SA + ResNet101 SA + VGG19 SA + ResNet18

Mean STD Mean STD Mean STD

10-Folds

 Adam 19.94% +/- 7.59% 52.04% +/- 26.94% 27.54% +/- 9.59%

 SGD 34.96% +/- 24.08% 22.00% +/- 7.67% 88.43% +/- 6.29%

5-Folds

 Adam 24.59% +/- 5.18% 71.81% +/- 13.91% 22.67% +/- 6.06%

 SGD 24.98% +/- 7.98% 30.24% +/- 10.17% 86.62% +/- 2.42%

3-Folds

 Adam 66.02% +/- 29.23% 67.18% +/- 1.97% 77.22% +/- 27.65%

 SGD 50.32% +/- 29.67% 43.50% +/- 26.16% 81.85% +/- 5.50%

Figure 18.  Sample prediction outputs of SA + ResNet50 model using SGD optimizer successfully detected 
AMD different grads.



23

Vol.:(0123456789)

Scientific Reports |         (2023) 13:9590  | https://doi.org/10.1038/s41598-023-35197-2

www.nature.com/scientificreports/

Table 5.  Accuracy values for ResNet50, InceptionV3, VGG16, ResNet101, VGG19, ResNet18 standalone 
models, and integrated with SA model using SGD and Adam optimizers.

SGD (%) Adam (%)

SA + ResNet50 96.20 97.70

ResNet50 91.70 95.50

SA +VGG16 93.90 47

VGG16 90.90 48.5

SA + InceptionV3 93.90 94.70

InceptionV3 90.90 96.20

SA + ResNet101 89.4 92.4

ResNet101 87.9 85.6

SA +VGG19 85.6 27.3

VGG19 95.5 53

SA +ResNet18 80.3 96.7

ResNet18 72.2 94.7

Table 7.  Accuracy values of ResNet50 integrated with SA model associated with different batch sizes 16, 32, 
64, and 128 using SGD and Adam optimizers. Significant values are in [bold].

Batch size SGD (%) Adam (%)

16 95.2 82

32 94.5 92

64 96.2 97.7

128 25.5 26

Table 6.  The outcomes of the Bayesian optimization approach indicate the optimal hyperparameters tuning in 
terms of the optimizer and batch size to achieve the best performance.

Optimizer Batch size

SGD 64

SGD 32

adam 32

rmsprop 16

SGD 16

nadam 16

adadelta 32
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Data availibility
The datasets used and analysed during the current study will be available from the corresponding author on 
reasonable request.
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