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Improving video surveillance 
systems in banks using deep 
learning techniques
Mohammad Zahrawi * & Khaled Shaalan *

In the contemporary world, security and safety are significant concerns for any country that wants 
to succeed in tourism, attracting investors, and economics. Manually, guards monitoring 24/7 for 
robberies or crimes becomes an exhaustive task, and real-time response is essential and helpful for 
preventing armed robberies at banks, casinos, houses, and ATMs. This paper presents a study based 
on real-time object detection systems for weapons auto-detection in video surveillance systems. 
We propose an early weapon detection framework using state-of-the-art, real-time object detection 
systems such as YOLO and SSD (Single Shot Multi-Box Detector). In addition, we considered closely 
reducing the number of false alarms in order to employ the model in real-life applications. The model 
is suitable for indoor surveillance cameras in banks, supermarkets, malls, gas stations, and so forth. 
The model can be employed as a precautionary system to prevent robberies by implying the model in 
outdoor surveillance cameras.

Automated surveillance has grown over the past few years due to technological advancements and the develop-
ment of intelligent video processing techniques. However, the widespread use of handguns has led to an increase 
in crime rates throughout the world. According to the Small Arms Survey 2017, approximately one billion 
firearms are in global circulation, and 857 million are in civilian  hands1. A safe environment is one of the nine 
pillars of  prosperity2. Therefore, it is crucial to keep all institutions safe for more prosperity.

Advancements in camera, sensor, and robotic technology have led to the creation of better security tools 
and, as a result, a rise in their use to safeguard private residences, commercial buildings, and public areas. The 
use of sensors with ultra-high-resolution cameras in many AI projects allows them to be activated by seeing a 
specific item rather than just motion. For example, security systems can identify the faces of people who live or 
work in a home or office space. If a security camera detects the face of an intruder, it could set off an alert system.

Aside from image capture, specific video surveillance systems have many other features. For example, some 
systems can read and analyze data, including license plates, and compare it to a database. They can also map the 
movements of individuals and cars and inform the police or a security patrol. In addition, an increasing number 
of robots now come with incorporated AI software that is set up to scan or "patrol" routes, check their surround-
ings, detect hazards of unauthorized entrance from people or vehicles, and send alerts.

Deep learning plays a crucial role in enhancing security control  systems3. Deep learning utilizes layers of 
non-linear processing elements for feature extraction and  conversion4. For example, a pixel in an image can be 
thought of as a vector of density values; pixels form a feature, where a feature is a cluster of custom shapes such 
as corners, edges, and  roundness5. The simple design of the deep learning model is the convolutional neural 
network (CNN), which includes convolution filters, pooling, activation function, dropout, fully connected, and 
classification  layers6. In addition, there are various methods for object detection using deep learning, including 
Faster R-CNN, You Only Look Once (YOLO), and Single Shot Detection (SSD).

Nowadays, most robbers use handguns to commit  crimes7. Several studies have shown that handgun weapons 
are the most popular criminal tools used for  crimes8, such as robbery, illegal hunting, and terrorism. The pro-
posed solution to stop such illegal activities is to install video surveillance systems incorporated with artificial 
intelligence  techniques9,10. So, the security guards can take prompt action in the early  stages7.

Related work
In the realm of computer vision, many object detection techniques were put forth to enhance surveillance sys-
tems. Many fields, including anomaly detection, self-driving cars, person detection, and traffic monitoring, have 
employed object detection  models11. In a brief discussion, R. Chellapa et al. examined the deployment of object 

OPEN

Faculty of Engineering & IT, British University in Dubai, Dubai, UAE. *email: eng.moh.zahrawi@gmail.com; Khaled.
shaalan@buid.ac.ae

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-35190-9&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2023) 13:7911  | https://doi.org/10.1038/s41598-023-35190-9

www.nature.com/scientificreports/

detection models in video surveillance  cameras12. In 2007, L. Ward et al. presented for the first time the notion 
of identifying firearms using real-time object detection  techniques13.

Furthermore, it should also be highlighted that there are other promising methods for identifying people 
with dangerous weapons. According to research by Yong et al., microwave swept-frequency radar can be used 
to detect metal objects, such as weapons and  knives14. Also, authors used a YOLOv3 model combined with a 
human pose to detect  handguns15. An approach that combines color-based segmentation and an interest point 
detector has been utilized to automatically identify weapons. The purpose is to detect objects and analyze their 
features in order to compare them to descriptions of  guns16.

Moreover, Olmos et al. has suggested techniques to reduce the number of false positives and false negatives, 
such as employing a symmetric dual camera system to enhance the selection of potential features, thereby boost-
ing the model’s  accuracy17. The  study18 presents different transfer learning models, namely AlexNet, VGG16, and 
VGG19, used to train.gun and knife detection models.

A study on the detection of firearms and knives presented models that inform security guards when handguns 
or knives are identified in video surveillance  systems17. Another study demonstrates a hybrid weapon detection 
model designed to identify guns and knives; it uses fuzzy logic and other parameters to enhance the result and 
decrease false  alarms18.

Methodology
It is essential to introduce a conceptual framework. This entails understanding the problem, the trade-off between 
time response and model performance, and pointing out deficiencies in the proposed model including data 
quality. Figure 1 presents conceptual framework approach for the proposed project, showing the location of 
each neural network models.

In this research, we are looking to train two models using neural networks, the first model to allow people 
with faces uncovered to pass the front gate, and the second model to detect any dangerous items that indicate 
criminals or robberies inside the bank. The process of detecting balaclava and weapons can be broken down into 
two main parts, locating the bounding box of the target object (e.g. weapon) and classifying it. Our approach 
for weapon detection is applying transfer learning using STATE-OF-THE-ART object detection models such 
as YOLO and SSD. Figure 2 shows a flowchart of training and developing proposed neural network models.

However, we build five weapon detection models by using transfer learning and fine-tuning from pre-trained 
models. The models are SSD Inception V2, SSD MobileNet V2, SSD ResNet50 V1, YOLOv4, and YOLOv5. All 
models were trained on a Colab notebook using TensorFlow and GPU accelerated. Starting with SSD Incep-
tion V2 models, it uses VGG-16 as a feature extractor, the batch size is 32, and the input layer receives images 
of resolution 300 × 300. One of the solutions to decrease time response that trains a model on grayscale data, 
therefore, it yields a lightweight model that is appropriate for CCTV cameras.

Results
In surveillance applications, it is expected that the input images are of relatively high  quality19. Processing time 
and high precision are essential factors for evaluating real-time weapon detectors. Accurate, relevant, and high-
quality images are crucial in building and developing any computer vision model. Research has been conducted 
on armed robbery and states that the most frequent weapon used was  firearms20.

Datasets. Our study only focuses on four classes: pistol, knife, rifle, and robber mask. We include revolvers 
and handguns in pistol class. Also, we include shotguns in rifle class. However, many objects are most likely to be 

Figure 1.  Conceptual framework for the proposed project.



3

Vol.:(0123456789)

Scientific Reports |         (2023) 13:7911  | https://doi.org/10.1038/s41598-023-35190-9

www.nature.com/scientificreports/

confused with a pistol, such as wallets, cell phones, selfie sticks, money, and so forth. So, it would be a great idea 
to label them as a non-weapon class, hence reducing the number of false positives and false negatives, therefore 
increasing the overall accuracy. We have made two datasets, which are explained below.

Dataset 1 consists of four classes: pistol, knife, rifle, and robber mask. We have 1160 images in total. The 
majority of images belong to the pistol class because nearly 95% of weapons used in robberies are either pistols 
or revolvers. Datasets were separated into train and test with split size shown in Table 1. Dataset 2 is used to build 
a weapon detection binary classifier, so two classes were made, knife and pistol. There are 5000 images, with 
4250 images in the train set and 750 in the test set. Figure 3 shows the distribution of the four classes in dataset 
1, which is a severely imbalanced dataset due to the high number of pistol images. Meanwhile, a distribution of 
two classes in dataset 2 is shown in Fig. 4.

Training results. In this research, we trained weapon detection models by using transfer learning and fine-
tuning from pre-trained models. The models are SSD Inception V2, SSD MobileNet V2, SSD ResNet50 V1, 
YOLOv4, and YOLOv5. All models were trained on a Colab notebook using TensorFlow and GPU accelerated. 
Starting with SSD Inception V2 models, it uses VGG-16 as a feature extractor, the batch size is 32, and the input 

Figure 2.  Flowchart of training and developing weapon detection model.

Table 1.  Data distribution.

No Category Total data Training data Test data Split size

1 Dataset 1 1160 920 240 79%

2 Dataset 2 5000 4250 750 85%

Figure 3.  Class distribution in dataset 1.
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layer receives images of resolution 300 × 300. The num_step parameter is 10,000 and defines how many training 
steps it will run. The model uses RMSprop as an optimizer designed for deep neural networks.

The training was performed with different training steps for each model; the SSD Inception, SSD MobilNet, 
and SSD ResNet models were trained for 10,000 training steps, with batch sizes ranging from 8 to 32, depending 
on the dimensions of the input images. Meanwhile, YOLOv4 has trained for 6000–8000 training steps only to pre-
vent the overfitting problem. YOLOv5 was trained on dataset 1 for only 270 epochs and dataset 2 for 832 epochs 
since no improvement was observed in the last 100 epochs. Training results are shown below in Figs. 5 and 6.

The behavior of total loss drops in models for dataset 1 and dataset 2 is quite similar. As the loss starts to 
decrease through training, the model’s accuracy increases until it stagnates. After 10,000 training steps, the value 
of the total loss of the SSD MobileNet model on dataset 1 is around 0.16, and the learning rate has vanished to 
zero. However, the model with the highest total loss is SSD Inception in datasets 1 and 2.

The total loss is the sum of classification loss, localization loss, and regularization loss in SSD models. How-
ever, the loss function for YOLO models composes of classification loss, localization loss, and confidence loss 
(objectness loss). Figures 7 and 8 show the loss function and mAP chart for the YOLOv4 model throughout the 
training phase on datasets 1 and 2, respectively.

The blue curve represents the training loss, which decreases as the number of iterations increases. The red 
line is the mean average precision when the intersection-over-union threshold is 0.5. The most critical hyper-
parameter while configuring a neural network is the learning rate, which determines how much to change the 
model based on the estimated error every time the model weights are updated.

Figure 4.  Class distribution in dataset 2.

Figure 5.  Training results: total loss of the weapon detectors on dataset 1.



5

Vol.:(0123456789)

Scientific Reports |         (2023) 13:7911  | https://doi.org/10.1038/s41598-023-35190-9

www.nature.com/scientificreports/

Figure 6.  Training results: total loss of the weapon detectors on dataset 2.

Figure 7.  Chart of loss and mAP from YOLOv4 model training on dataset 1.
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Figure 9 shows the learning rate behavior for the SSD MobileNet model on dataset 1 and the SSD ResNet50 
model on dataset 2.

The images used in building weapon detectors should be cleaned, preprocessed, and appropriately annotated 
to achieve high precision. Unfortunately, the process of collecting images and labeling them is delicate and tough.

Evaluation results. Test data was created to assess the accuracy of the newly weapon detection models, 
where images represent various weapons in different scenarios. This section presents the evaluation results for 
all experiments in tables and graphical representations.

All object detection models were evaluated on mAP@0.5 (Pascal VOC), mAP@0.5:0.95 (COCO), and 
mAP@0.75 (strict metric). Tables 2 and 3 show evaluation results for dataset 1 and dataset 2, respectively. Our 

Figure 8.  Chart of loss and mAP from YOLOv4 model training on dataset 2.

Figure 9.  (a) Behavior of learning rate for SSD MobileNet model. (b) Behavior of learning rate for SSD 
ResNet50 model.
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primary metric used to compare the models is AP@IoU = 0.5:0.95, which is the average precision for IoU thresh-
olds from 0.5 to 0.95 with a step size of 0.05.

A few more evaluation metrics have been used in this paper, like AP for evaluating detection for different 
weapon sizes inside the image and determining whether the model is suitable for only large weapons, small 
weapons, or both. SSD models are evaluated on three different sizes, small, medium, and large, where small 
objects have area an (h*w) less than  322 pixel scale, medium objects have an area more than  322 and less than  962 
pixels, and large objects have an area more than  962 pixels. However, the average precision for IoU threshold of 
0.5 (AP@IoU = 0.5) is used to evaluate weapon detection models based on YOLO algorithms. The average recall 
metric is also used in the evaluation, given a fixed number of detections per image.

According to Tables 2 and 3, the average precision (AP) of the SSD MobileNet model surpasses the other 
two SSD models in detecting small weapons for datasets 1 and 2. For the average recall (AR) metric, the SSD 
ResNet50 model performs better than the SSD MobileNet and SSD Inception models in detecting small weapons 
on dataset 1. In contrast, the SSD MobileNet model performs better on dataset 2. However, for detecting medium 
and large objects, SSD MobileNet achieves better performance than other SSD models in both datasets 1 and 2. 
The primary metric used in comparing weapon detection models is AP@IoU = 0.5; by comparing the models, 
it is obvious that YOLOv4 surpasses other models with AP 0.795 on dataset 1, while the least efficient model is 
SSD Inception with AP around 0.375. In contrast with dataset 2, YOLOv5s is the best model for weapon detec-
tion with an average precision of 0.82, and the lowest-performing model is SSD Inception with an AP of 0.279. 
Figures 10 and 11 show detection model comparisons on datasets 1 and 2, respectively.

As mentioned previously, there are different model sizes for YOLOv5. In this paper, we trained both data-
sets on YOLOv5s, where “s” stands for a small-size model. Meanwhile, the x-large YOLOv5 model (YOLOv5x) 
achieves higher performance than YOLOv5s, with a mAP around 0.762 on dataset 1.

Confusion matrix. Dataset 1 contains 240 test images with four classes: knife, mask burglar, pistol, and rifle. 
Moreover, dataset 2 contains 750 test images with two classes, pistol and knife. The confusion matrix in Fig. 12 
shows that the mask burglar class had the highest rate of successful weapon detection (0.84), while the knife class 
had the lowest rate (0.4). Similarly, the most successful weapon detection rates as shown in confusion matrix 
in Fig. 13 were obtained for the pistol class at 0.84, and the least successful rates were for the knife class at 0.47.

Table 2.  Evaluation results on dataset 1. Significant values are in bold.

Metric/model area Max detection SSD Inception V2 SSD MobileNet SSD ResNet 50 YOLOv4 YOLOv5

AP@IoU = 0.5:0.95 All 100 0.215 0.469 0.364 – –

AP@IoU = 0.5 All 100 0.375 0.717 0.577 0.795 0.724

AP@IoU = 0.75 All 100 0.206 0.529 0.392 – –

AP@IoU = 0.5:0.95 Small 100 0.001 0.247 0.201 – –

AP@IoU = 0.5:0.95 Medium 100 0.087 0.311 0.243 – –

AP@IoU = 0.5:0.95 Large 100 0.254 0.511 0.397 – –

AR@IoU = 0.5:0.95 All 1 0.261 0.488 0.399 – –

AR@IoU = 0.5:0.95 All 10 0.329 0.574 0.523 – –

AR@IoU = 0.5:0.95 All 100 0.361 0.581 0.548 – –

AR@IoU = 0.5:0.95 Small 100 0.033 0.256 0.344 – –

AR@IoU = 0.5:0.95 Medium 100 0.255 0.367 0.414 – –

AR@IoU = 0.5:0.95 Large 100 0.400 0.636 0.584 – –

Table 3.  Evaluation results on dataset 2. Significant values are in bold.

Metric/model area Max Detection SSD Inception V2 SSD MobileNet SSD ResNet 50 YOLOv4 YOLOv5

AP@IoU = 0.5:0.95 All 100 0.177 0.411 0.247 – –

AP@IoU = 0.5 All 100 0.279 0.674 0.406 0.771 0.82

AP@IoU = 0.75 All 100 0.193 0.384 0.251 – –

AP@IoU = 0.5:0.95 Small 100 0 0.015 0.001 – –

AP@IoU = 0.5:0.95 Medium 100 0.013 0.148 0.060 – –

AP@IoU = 0.5:0.95 Large 100 0.213 0.479 0.292 – –

AR@IoU = 0.5:0.95 All 1 0.195 0.436 0.285 – –

AR@IoU = 0.5:0.95 All 10 0.237 0.499 0.389 – –

AR@IoU = 0.5:0.95 All 100 0.268 0.534 0.428 – –

AR@IoU = 0.5:0.95 Small 100 0.000 0.114 0.050 – –

AR@IoU = 0.5:0.95 Medium 100 0.055 0.351 0.233 – –

AR@IoU = 0.5:0.95 Large 100 0.32 0.584 0.479 – –
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It can be seen that around half of the knife weapons in both datasets are confused with the background. Also, 
around a fifth of the pistol images in both datasets was misclassified as background. In addition, 0.12 of rifle 
images were misclassified as pistol class in dataset 1. In comparison, 0.08 of rifle images were misclassified as 
knife images, and 0.04 of knife images were misclassified as pistol images.

In the confusion matrix, background FP indicates the model may think detection is a weapon when it is 
not, and background FN indicates the model misses detecting real weapons. By looking at previous confusion 
matrices, background FP refers to the model incorrectly predicting the weapons, and background FN refers to 
the model incorrectly predicting the negative class. Therefore, we can summarize our weapon detection model 
in the bank using a 2 × 2 confusion matrix in Fig. 14 that depicts all four possible outcomes.

Recall × precision. The precision-recall curve depicts the trade-off between precision and recall for differ-
ent classes. A broad area under the curve indicates high recall and precision. A high recall is linked to a low false 
negative rate, but high accuracy is linked to a low false positive rate. The precision-recall graph for the YOLOv5s 
model on datasets 1 and 2 is shown in Figs. 15 and 16, respectively.

According to Fig. 15, it can be seen that the model is returning accurate results for detecting burglar mask 
items, with a mAP of 0.914. The model also performs quite well-detecting pistols and rifles, with a mAP of around 
0.82. Meanwhile, the model poorly detects knife items with mAP 0.341 in real-time. Moving on to Fig. 16, it 
is evident that the performance model of detecting pistol items is higher than detecting knife class due to the 
quality of knife images in the dataset.

F1 × confidence. The confidence score shows how probable it is that the bounding box contains the target 
object and how confident the weapon detection model is about it. The confidence score will be zero when no 
weapon items are detected in the bounding box. As a reminder, the IoU value can be obtained by dividing the 
shared area between the predicted bounding box and the ground-truth bounding box by the area of their union. 

Figure 10.  Weapon detection models comparison on dataset 1 using mAP@0.5 metric.

Figure 11.  Weapon detection models comparison on dataset 2 using mAP@0.5 metric.



9

Vol.:(0123456789)

Scientific Reports |         (2023) 13:7911  | https://doi.org/10.1038/s41598-023-35190-9

www.nature.com/scientificreports/

The match is perfect when the ground truth and predicted bounding boxes have the same area and location. The 
precision-confidence curves for the YOLOv5 model on datasets 1 and 2, respectively, are shown in Figs. 17 and 
18.

Recall-confidence curves for the YOLOv5 model on datasets 1 and 2 are displayed in Figs. 19 and 20, 
respectively.

A bounding box, class, and confidence score represent the outcome of an object detector. Figures 17 and 
18 show that precision increases when the confidence score increases while recall decreases. The detection is 
considered valid (positive) when its confidence is higher than a confidence threshold. Otherwise, it is a nega-
tive detection. The number of TPs and FPs decreases when the confidence threshold increases. Conversely, the 
recall measure decreased as the confidence threshold increased due to an increase in false negatives. For exam-
ple, according to the F1-confidence curve shown in Fig. 21, the confidence value that optimizes the precision 
and recall is 0.345 for the YOLOv5 model on dataset 1, and the best F1 score for all classes is 0.74. Similarly, to 
Fig. 22, the best confidence value that optimizes precision and recall is 0.045 for the same model on dataset 2, 
and the best F1 score is 0.77.

Discussion
Weapon detection models were trained using several configurations based on model architecture. Many factors 
have an impact on model performance and results, such as different image resolutions, batch sizes, training steps, 
rescaling, and data augmentation options. The ideal parameters for each model should be investigated using a 
hyperparameter optimization pipeline in order to balance out or improve the results of weapon detectors.

The evaluation part is next; weapon detectors are evaluated based on the model’s primary purpose. For exam-
ple, if we want to use the proposed model as a weapon recognizer without considering box overlap, In that case, 
we can merely minimize the IoU threshold to close to zero while keeping the number of false negatives low and 
false positives high. In other words, the recall score will be high and the precision low. However, in the case of 
building a weapon detector instead of a weapon recognizer, we consider the location of a predicted box. Therefore, 
it would be recommended to evaluate the model using the COCO evaluation metric (AP@IoU = 0.5:0.95). This 
metric describes how the model works in the area of overlapping that we are most interested in.

Different models and classes all need a certain confidence threshold to boost their performance and thus 
maximize it. Figures 17, 18, 19 and 20 offer a tradeoff between confidence, precision, and recall to find the best 
confidence threshold for each class and model. It is hard to select a model based on a single metric. Thus, many 
metrics were used in the evaluation process. The proposed models fail to detect weapon items in images, as shown 
in Fig. 23. Figure 24 shows weapon detection results of footages from monitoring cameras in real life scenarios.

Figure 12.  Confusion matrix of weapon detection for YOLOv5 on dataset 1.



10

Vol:.(1234567890)

Scientific Reports |         (2023) 13:7911  | https://doi.org/10.1038/s41598-023-35190-9

www.nature.com/scientificreports/

Generally, low-quality images are one of the core problems of deep learning models. For example, almost all 
the CCTV footage in our dataset is grainy, blurry, monochromatic, and of poor quality. The main reason CCTV 
footage is of low quality is that the amount of data required to record at higher quality would be enormous; 
hence, more data storage is needed. In addition, outdated cameras, a weak internet connection, and poor lens 
conditions are factors responsible for low-quality images.

Besides poor-quality images, many challenges appear regarding the quality of the dataset. One of these 
challenges is background clutter, where the target object may blend into the environment, making it difficult 
to identify. Also, occlusion issue when a small portion of the target object is visible. Furthermore, viewpoint 
variation challenge where a target object can be rotated in any direction with respect to the observer or camera. 
Lastly, scale variation occurs when an object appears in images of different sizes.

Conclusion
To wrap up the results and come to a conclusion, the most suitable weapon detector for the task would be 
YOLOv4 for dataset 1 and YOLOv5s for dataset 2. This is because YOLO models perform better than SSD 
models in terms of detection speed and average precision. In addition, YOLO models are better options when 
the weapon size is small. This work studied several weapon detection models (SSD and YOLO) applied to the 

Figure 13.  Confusion matrix of weapon detection for YOLOv5 on dataset 2.

Figure 14.  Understanding Confusion Matrix.
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video surveillance system. The two main objectives of the study were to compare the performance of five dif-
ferent models (SSD Inception, SSD MobileNet, SSD ResNet50, YOLOv4, and YOLOv5) and to examine the 
improvement of the detection quality by training on two datasets with different classes and number of images 
(Supplementary files 1, 2).

The evaluation of the results in the five experiments was carried out on 240 test images in dataset 1 and 
750 test images in dataset 2. According to the results in Chapter 4, we find that those weapon detectors using 
YOLOv4 outperform YOLOv5 and SSD models on dataset 1 with a mean average precision of 0.795. Meanwhile, 
YOLOv5 is the best option for dataset 2, with a mean average precision of around 0.82. Finally, unlike pistols in 
both datasets, the model’s performance is poor in detecting knife items.

Figure 15.  Precision recall graph for YOLOv5s on dataset 1.

Figure 16.  Precision recall graph for YOLOv5s on dataset 2.
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Figure 17.  Trade-off between precision and confidence for YOLOv5 model on dataset 1.

Figure 18.  Trade-off between precision and confidence for YOLOv5 model on dataset 2.

Figure 19.  Trade-off between recall and confidence for YOLOv5 model on dataset 1.
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Figure 20.  Trade-off between recall and confidence for YOLOv5 model on dataset 2.

Figure 21.  F1-Confidence curve presents best F1 score of 0.74 with a confidence threshold of 0.345 on dataset 1.

Figure 22.  F1-Confidence curve presents best F1 score of 0.77 with a confidence threshold of 0.045 on dataset 2.



14

Vol:.(1234567890)

Scientific Reports |         (2023) 13:7911  | https://doi.org/10.1038/s41598-023-35190-9

www.nature.com/scientificreports/

Figure 23.  (a) Object detection model could not find the pistol because of low resolution of image. (b) Object 
detection model could not find the pistol because of small size of pistol. (c). object detection model could not 
find the pistol because of low resolution of image.
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Data availability
All datasets can be downloaded from the following GitHub repositor. https:// github. com/ Moham mad-H- Zahra 
wi/ Proje cts/ tree/ main/ Weapon% 20Det ection.
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