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A novel approach 
to topological network analysis 
for the identification of metrics 
and signatures in non‑small cell 
lung cancer
Isabella Wu 1* & Xin Wang 2

Non‑small cell lung cancer (NSCLC), the primary histological form of lung cancer, accounts for 
about 25%—the highest—of all cancer deaths. As NSCLC is often undetected until symptoms 
appear in the late stages, it is imperative to discover more effective tumor‑associated biomarkers 
for early diagnosis. Topological data analysis is one of the most powerful methodologies applicable 
to biological networks. However, current studies fail to consider the biological significance of 
their quantitative methods and utilize popular scoring metrics without verification, leading to 
low performance. To extract meaningful insights from genomic data, it is essential to understand 
the relationship between geometric correlations and biological function mechanisms. Through 
bioinformatics and network analyses, we propose a novel composite selection index, the C‑Index, that 
best captures significant pathways and interactions in gene networks to identify biomarkers with the 
highest efficiency and accuracy. Furthermore, we establish a 4‑gene biomarker signature that serves 
as a promising therapeutic target for NSCLC and personalized medicine. The C‑Index and biomarkers 
discovered were validated with robust machine learning models. The methodology proposed for 
finding top metrics can be applied to effectively select biomarkers and early diagnose many diseases, 
revolutionizing the approach to topological network research for all cancers.

Lung cancer is the deadliest cancer worldwide and is highly fatal, with a 5-year survival rate of < 21%1. Non-
small cell lung cancer (NSCLC) accounts for about 85% of all lung cancer  cases2. More than half of lung cancer 
patients die within one year of being diagnosed because NSCLC is often not detected until the late stages with 
the onset of noticeable  symptoms3, making treatment extremely difficult. This clinical need has driven the search 
for more effective prevention and early diagnosis strategies, including the identification of effective biomarkers.

By providing insights into the molecular origins and behaviors of NSCLC, biomarkers help identify high-risk 
patients and targets for personalized medicine and the development of targeted  therapies4,5. The expansion of 
the availability and quantity of molecular biological data has created a pressing need for improved computa-
tional methods for data analysis. Studies have revealed that genes do not function in isolation, and instead work 
together. As such, network-based approaches have emerged as powerful tools for investigating gene interactions 
and understanding their complex  relationships6. In the past few years, topological data analysis (TDA) has 
revolutionized the oncology field, becoming one of the most powerful and widespread tools to extract useful 
information from high-dimensional biomedical  data7,8. We can use TDA to analyze the interactions between 
genes and identify essential biomarkers. Network nodes are ranked by scoring methods that reflect varying 
network  features9,10. The high-scoring nodes are selected as the most essential genes in the network and further 
analyzed as potential markers.

Despite recent advances in applying TDA to cancer studies, one critical issue remains largely overlooked—
whether geometric and topological connectivity implies functional connectivity in biological  networks11,12. A 
comprehensive analysis of the correlation between geometric connectivity and functional connectivity is cur-
rently lacking, leading to ineffective use of the powerful methodology. The performance of existing works is not 
high, largely due to the lack of understanding of the most key aspect of topological analysis—the network scoring 
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metrics. They rank the network nodes by different features, evaluating the network in varying aspects to select 
the high score  nodes12. Inherently, these scoring metrics are defined geometrically with no clear implications for 
functional significance. Existing studies often fail to biologically validate the scoring methods they choose to use 
in biomarker identification for disease  prediction13,14. They often utilize popular and conventional geometric-
based scoring metrics (e.g. Degree)15–17 without reasoning, and use only a single scoring metric.

Thus, the central goal of this study is to identify the top-performing topological scoring metric (or method) 
that best captures functional significance in protein networks. More specifically, we focus on designing a met-
ric, or a composition of metrics, that identifies critical biomarkers most efficiently and accurately. To do so, we 
conducted systematic and comprehensive analysis and validation in two main stages.

First, to investigate the ability of the metrics to select effective biomarkers, we performed detailed functional 
enrichment and network analyses to identify the top biomarkers for NSCLC diagnosis. To exploit the power 
of gene interactions, we further explore the concurrent use of multiple biomarkers in NSCLC prediction and 
develop a biomarker-signature consisting of a small group of top biomarkers. To determine their diagnostic 
ability, we introduce a method to calculate the area under the receiver operating characteristic curve (AUC) for 
multiple biomarkers concurrently, known as Integrated AUC. By doing so, we directly evaluate the biomarkers 
by their functional abilities to diagnose NSCLC. In the second stage, we build off the previous stage to identify 
the top-performing topological scoring metrics (or methods) by evaluating their ability to select biomarkers 
with the highest diagnostic capabilities most efficiently and accurately. We propose a novel composite selection 
index that concurrently considers complementary factors to evaluate the network and produce biologically 
significant results.

We expect the proposed methods to fundamentally advance topological network research in the cancer field. 
We unlock a better understanding of how geometric relationships in gene networks relate to functional mecha-
nisms to extract meaningful insights from genomic data. Our proposed methods are not restricted to the use in 
diagnosing NSCLC, but can be extended to the early diagnosis of other types of cancers. With the widespread 
use of topological network analysis, we expect the proposed techniques to drastically improve the search for new 
biomarkers and targets for drug therapy and redefine the usage of TDA in oncology.

Results
Stage I: Biomarker signature identification. Identifying specific and sensitive biomarkers is critical for 
early cancer  diagnosis18. As the first stage of this study, we identified the top biomarkers to serve as a base for us 
to explore in depth the critical scoring metrics for biomarker identification in the next stage. An overview of this 
study and its two main stages is presented in Supplementary Fig. S1.

DEG screening and functional enrichment. In total, we identified 267 differentially expressed genes (DEGs) 
(p-value < 0.01 and |logFC| > 1.2 ) from the three datasets GSE31210, GSE33356, and GSE50081, taken from 
the Gene Expression Omnibus (GEO)19. The three datasets are summarized in Supplementary Table S1. 93 were 
upregulated and 174 were downregulated (Fig. 1a). To investigate the roles that the DEGs play in disease mecha-
nisms, we examined the DEG-related pathways. Through enrichment analyses, we identified 10 enriched GO 
terms with FDR < 0.05 (Fig. 1c), and their z-score expression values (Fig. 1b).

Upregulated DEGs play a role in multiple pathways that promote tumorigenesis, including cell division 
(GO:0051301), cell cycle (GO:0007049), cytoskeleton (GO:0005856), and spindle pole (GO:0000922). Downregu-
lated genes were significantly involved in weakened tumor defense and disruptions in signal transduction path-
ways, such as decreased cytokine activity (GO:0005125) and clathrin-coated endocytic vesicles (GO:0045334). 
Downregulated genes were also enriched in the extracellular matrix (GO:0005576 and GO:0005578), and ECM-
receptor interaction (hsa04512, FDR = 0.0152) was identified through KEGG pathway analysis. Complications 
in the ECM-receptor interaction pathway can result in induced cancer progression and development, as ECM-
receptors play important roles in tumor shedding, adhesion, and  degradation20. Our results show that the DEGs 
are largely connected to disease-related pathways and play potent roles in cancer onset and development.

PPI network analysis. Disease susceptibility and other disease correlated factors are due to the perturbation of 
an interconnected gene  network21, not single gene mutations in isolation. To explore the interactions between 
DEGs and identify intrinsic mechanisms of disease, we constructed a protein-protein interaction (PPI) network 
(Fig. 2a) based on our 267 DEGs to understand the topology of molecular interactions and identify the most 
essential top-scoring biomarkers in the network. The network was visualized using  Cytoscape22 and further ana-
lyzed with the CytoHubba  algorithm23. The nodes in the center of the network (Fig. 2b) and the cluster modulus 
(Fig. 2c) are zoomed in, as these significant regions contain highly connected nodes that have great impact on 
the other nodes in the network. The topological scoring metrics in CytoHubba are divided into two catego-
ries, local to evaluate individual nodes and global to evaluate the network as a whole. The local metrics include 
Degree, Maximal Clique Centrality (MCC), Density of Maximum Neighborhood Component (DMNC), Maxi-
mum Neighborhood Component (MNC), and Clustering Coefficient. The global metrics include Betweenness, 
Bottleneck, Eccentricity, Closeness, Radiality, Stress, and Edge Percolated Component (EPC). Often, literature 
studies utilize only one scoring  method15–17. To ensure that no essential genes are missed and all possibilities 
are considered, we created a complete and comprehensive list of candidate biomarkers using all twelve scoring 
methods.

Each metric was utilized to select 10 top nodes each, with some having a higher cutoff because a few nodes 
share the same ranking score. Without counting overlapping genes between metrics, we obtained 82 candidate 
biomarkers (Table 1a) overall. To evaluate the ability of biomarkers in distinguishing between disease and control, 
we chose to use area under the receiver operating characteristic curve (AUC) score to select the overall top 20 
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disease-correlated genes in the network (Table 1b). This allows us to directly evaluate the biomarkers by their 
ability to predict disease.

Disease prediction with multiple biomarkers simultaneously. Cancer is caused by multiple genes in a functional 
or signaling pathway working together in a cascade of mutations to promote tumorigenesis, and can never be 
caused or predicted by a single mutation or gene. Rather than only considering the capability of individual bio-
markers as commonly done in literature studies, we further explore the concurrent use of multiple biomarkers 
in NSCLC prediction to vastly increase the diagnostic performance,

Utilizing multiple biomarkers is more comprehensive, and may better deal with disease heterogeneity and 
reduce anomalies during prediction.To the best of our knowledge, the incremental usefulness of adding multiple 
biomarkers from different disease pathways has not been fully evaluated amongst other NSCLC studies. Simply 
using too many may decrease performance. We need to find the optimal number of biomarkers to use concur-
rently for the highest performance, as well as a way to evaluate the joint performance of biomarkers.

As each biomarker’s expression value quantifies its relationship to the health condition of a subject, we propose 
the concept of Integrated AUC  to calculate the AUC of the aggregated expression of biomarkers. In this study, 
the aggregated expression is defined as the mean expression of the group of biomarkers as it is most suitable, 
but its definition may be expanded.

Figure 1.  GO and KEGG analyses of DEGs.
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After evaluating the performance of several different gene groupings, we found that the top 4 biomarkers 
AGER, CA4, RASIP1, and CAV1 together produced the highest Integrated AUC at 0.9238 (Fig. 3a). They make up 
our 4-gene biomarker signature for the prediction of NSCLC. Their Receiver Operating Characteristic (ROC) 
curves are visualized in Fig. 3c. For comparison purposes, we also calculated the AUC of the top 10 disease-
correlated genes in the network (from Table 1b) combined. As expected, the 4-gene signature outperformed 10 
genes (Fig. 3b). This may be due to the nature of interactions between genes—certain biomarkers may not interact 
optimally for high performance, or biomarkers outside of the top four may play roles of lower significance. The 
finding of the biomarker signature and the use of Integrated AUC as an evaluation metric can be expanded on 
and further explored to improve the prediction accuracy of other types of cancers.

Validation of 4‑gene signature by survival analysis and TCGA database. At the beginning of the study, we ran-
domly divided the dataset into 80% for identification of biomarkers and metrics, and 20% validation. To validate 
the effectiveness of using the 4-gene signature, we compared its performance in the validation data set to each 
of its 4 individual components, as well as that of the top 10 genes combined. The 4-gene signature outperformed 
all of its individual genes, as well as the top 10 genes together (Supplementary Table S2), demonstrating that it is 
less complex and more effective than using more genes, and more powerful than only using individual biomark-
ers alone.

To validate the effect of the 4-gene signature on NSCLC prognosis, we performed overall survival analysis 
with these genes using Kaplan-Meier survival plots (Fig. 4a) to examine their impact on patient survival, with a 
threshold of p-value < 0.01 to determine significance. The low expression of AGER, CA4, RASIP1, and CAV1 are 
all associated with poor overall survival, indicating their significant roles in NSCLC prognosis.

To confirm that our results are applicable outside our data set, TCGA data from the GEPIA interactive 
website was used to verify the identified genes to be effective amongst other NSCLC cases. Figure 4b com-
pares gene expressions from two histological types of NSCLC, lung squamous cell carcinoma (LUSC) and lung 
adenocarcinoma (LUAD), and normal lung tissues. All four genes are significantly downregulated in cancerous 
patients, indicating that the four-gene signature can be expanded and used for new patients and data. From our 
GO enrichment analysis, these genes play important roles in the ECM matrix and signalling pathways. They 
are important for cancer detection and treatment, and can act as therapeutic targets for future drug therapy and 
personalized medicine.

Stage II: Critical network topological metrics. In the past decade, topological data analysis has grown 
into a prominent role in the oncology field. The scoring metrics are crucial to topological data analysis as they 
identify the most influential network nodes. Scoring metrics, however, describe only geometric relationships 

Figure 2.  PPI network of DEGs and CytoHubba visualization.
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between nodes in the network, not their relation to disease diagnosis. Consequentially, the significance and 
implications of the scoring methods are vastly overlooked in most biological studies, and a single metric is 
often employed without  reasoning24. On the other side of the spectrum, many studies simply use all 12 metrices 
together, which is also  ineffective25. The most frequently used metric is Degree, a local metric that may not 
capture the full extent of gene network interactions. Our foremost goal in the second stage of this work is to 
thoroughly analyze the performance of these quantitative methods applied to biological networks and identify 
the top metrics that best capture functional connectivity and biological implications.

We set out to achieve this in two major phases. We first evaluate all 12 topological scoring metrics based on 
their diagnostic ability for effective biomarker selection. In the search for biomarkers, using a single metric may 
be inadequate, while using all metrics together is complex and inefficient, and possibly erroneous. Therefore, in 
the second phase, we further investigate the performance of using multiple metrics concurrently in diagnosis and 
design a powerful metric. Few previous studies have meaningfully utilized multiple network metrics concurrently 
to look for  biomarkers17,26. Our investigations indicate that increasing the analytical coverage of a biological 
system through optimal pairings of metrics leads to more robust results.

Evaluating the performance of individual metrics. To evaluate the ability of the metrics to identify essential 
biomarkers, we calculated the Integrated AUC of biomarkers selected by each metric in Table 1a. For compari-

Table 1.  Top biomarkers in the PPI network based on all 12 network scoring metrics.

(a) Top ranked nodes found through all 12 topological scoring methods

Scoring method Top-ranked genes (listed in order of disease scores)

Degree IL6, ASPM, TTK, KIF20A, TPX2, CENPF, UBE2C, CCNB1, CDK1, NUF2, KIF11, KIF4A, DLGAP5, TOP2A, 
MAD2L1, PBK, BIRC5

MCC ASPM, BIRC5, BUB1B, CNNB1, CCNB2, CDC20, CDK1, CENPF, DLGAP5, KIAA0101, KIF11, KIF20A, KIF4A, 
MAD2L1, MELK, NDC80, NUF2, NUSAP1, PBK, RRM2, TOP2A, TPX2, TTK, UBE2C, ZWINT

DMNC HMMR, CDKN3, CEP55, CENPF, BUB1B, UBE2C, CCNB2, RRM2, NUSAP, NDC80, KIAA0101, TOP2A, ZWINT, 
CDC20, MAD2L1, PBK, MELK

MNC IL6, KIF20A, DLGAP5, ASPM, KIF4A, KIF11, NUF2, CDK1, CCNB1, TPX2, BIRC5, TTK

Clustering coefficient ABCA3, ACADL, BCHE, CA4, CDCA7, DKK2, FAM107A, FHL1, GINS1, GPX3, HS6ST2, LIFR, PTPRB, RASIP1, 
SCARA5, SCN7A, SDPR, SFTA3, SOX7, TMPRSS4, WIF1

Betweenness IL6, BMP2, UBE2C, CAV1, SOX2, SPP1, AQP4, CDH5, NPNT, AGER

Bottleneck IL6, UBE2C, SOX2, CAV1, BMP2, SPP1, AGER, CDH5, AQP4, NPNT, SFTPD

Eccentricity KIF26B, ITGA8, HHIP, NPNT, AGER, THBS2, SFTPC, KIF4A,, HMGB3, SCGB1A1, KIF20A, KIF11, SFTPD, IL6, 
CDH5, CLIC5, GPC3, COL6A6, AGTR1, SFTPB

Closeness IL6, UBE2C, SOX2, CAV1, SPP1, BMP2, CDH5, DLGAP5, CDK1, CCNB1, BIRC5

Radiality IL6, SOX2, CAV1, BMP2, SPP1, CDH5, UBE2C, CLDN5, CEACAM5, TEK

Stress IL6, SOX2, BMP2, CAV1, SPP1, UBE2C, CDH5, SCGB1A1, AQP4, GPC3

EPC Il6, TOP2A, CDC20, CDK1, UBE2T, ZWINT, CDKN3, NUF2, KIF4A, RRM2, KIF11, NEK2, ASPM, NUSAP1, 
KIF20A, HMMR, ANLN, DLGAP5, NDC80

(b) Top 20 genes detected in network analysis based on AUC score

Gene name AUC logFC FDR (adj-pval)

AGER 0.8979 −2.13691 4.45E−84

CA4 0.8952 −1.50475 1.70E−89

RASIP1 0.8899 −1.20962 3.52E−65

CAV1 0.8741 −1.41913 5.23E−55

FAM107A 0.8731 −1.94635 1.39E−72

CDH5 0.8725 −1.40895 3.69E−63

TEK 0.8724 −1.45729419 2.13E−73

CLDN5 0.8697 −1.21244 1.24E−56

CLIC5 0.8686 −2.03743 4.42E−61

SPP1 0.8647 2.334613 6.97E−60

KIF26B 0.8636 1.293536 2.98E−48

PTRB 0.8604 −1.653827903 1.57E−61

SOX7 0.8560 −1.599491119 2.45E−48

SDPR 0.8542 −1.861487998 2.53E−56

TOP2A 0.8516 2.014367341 4.75E−58

TMPRSS4 0.8459 1.634397285 1.70E−44

AGTR1 0.8446 −1.503517517 5.72E−52

CDCA7 0.8417 1.650737609 6.42E−52

GPX3 0.8416 −1.388971807 9.69E−46
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son, the mean of the AUCs of individual genes selected by each metric was also calculated. However, without 
considering the diagnostic effects of genes together, the performance of the mean individual AUC is lower, as 
it cannot effectively capture the interactions between genes and is also more susceptible to outliers. In general, 
Integrated AUC has higher performance and is more robust, and will be used as the main performance measure 
in this study.

The top local and global metrics found are Clustering Coefficient (AUC  =  0.8770) and Bottleneck 
(AUC = 0.8609) respectively (Table 2). Compared to the commonly used  Degree27, the AUC of Clustering 
Coefficient is 11% higher. Rather than simply using Degree to select genes with many connections, these results 
explore and confirm that other scoring methods better capture the functional features of protein networks. With 
Integrated AUC, we can validate the connection between the geometric metrics and their functional significance.

Figure 3.  Performance of 4-gene signature.

Figure 4.  Differential expression of 4-gene signature in NSCLC patients.
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Design of C‑Index. In this second stage, we systematically composed metrics to find an ideal set of scoring 
methods that can adequately capture the interactions in biological networks without incurring high complexity. 
We evaluated composite performances using Integrated AUC of the top 10 and 20 genes of the superset of the 
metrics. Furthermore, we assessed the performance of the metrics using a Precision measure, as defined in the 
Methods section. Precision measures the accuracy of the composite metrics in identifying the top 10 and 20 
disease-correlated genes (by AUC score) listed in Table 1b.

To measure both the node-level properties and the network-level properties, we chose to compose the top 
local and global metrics (which were also the top two metrics overall), Clustering Coefficient and Bottleneck 
(Fig. 5). 7 out of the top 10 overall genes were correctly identified, resulting in a 70% precision, and the Integrated 
AUC of the top 10 nodes was 0.9027. Likewise, the top 20 nodes had 70% precision, and Integrated AUC was 
0.8765. Already, the composition results in a higher AUC than any of the individual metrics.

To determine whether the composition of Clustering Coefficient and Bottleneck is the most optimal, we also 
composed the three metrics Clustering Coefficient, Bottleneck, and Eccentricity. Although Betweenness out-
performed Eccentricity, we chose to use Eccentricity because by definition Betweenness is essentially the same 
measure as Bottleneck and is thus not needed in the composite. With three, although the precision increased, the 
Integrated AUC reduced slightly. We also composed the top four metrics but obtained no improvement in AUC 
or precision. Considering the vastly increased complexity of adding more metrics, using two metrics together 
is ultimately more powerful than using three or more.

Our investigations have shown that Clustering Coefficient and Bottleneck can work together to adequately 
capture the significant biomarkers in the network with the most efficiency, and we propose to compose them as 
a new metric, C-Index. C-Index is defined as

Table 2.  Scoring metrics ranked by AUC.

Scoring metric Integrated AUC Mean individual AUC 

Clustering coefficient 0.8770 0.8159

Bottleneck 0.8609 0.8012

Betweenness 0.8517 0.8091

Eccentricity 0.8409 0.8017

Stress 0.8179 0.7919

DMNC 0.8136 0.7860

MCC 0.8114 0.7874

EPC 0.8030 0.7959

Degree 0.7875 0.7877

MNC 0.7748 0.7890

Radiality 0.7904 0.8100

Closeness 0.6366 0.7986

Figure 5.  Performance of composite network scoring metrics.
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where Ntop represents the top genes selected from the union of the sets Sclustering coeff  and Sbottleneck . These are the 
sets of top genes identified by Clustering Coefficient and Bottleneck respectively.

C-Index outperforms all individual metrics and other compositions. It can achieve the comprehensiveness of 
using all metrics while vastly decreasing the complexity and inefficiency. Clustering Coefficient and Bottleneck 
work together as local and global metrics to better capture the nature of cancer and are capable of identifying 
essential genes that are prevalent throughout the entire network as well as locally.

Most literature studies use Degree and occasionally Betweenness to find their top  biomarkers28,29. To inves-
tigate whether the combination of these two metrics results in effective biomarker selection, we calculated the 
performance of their composition. We obtained shockingly poor results: the top 10 genes had 40% precision, 
and 0.6295 Integrated AUC, while the top 20 genes had only 25% precision, and 0.6721 Integrated AUC. This 
poor performance is due to several factors that are often overlooked by other studies. Degree, a local metric, 
only measures how many connections a node has, which may signify that it regulates many other genes. How-
ever, these highly connected “hubs” have no great overall influence in cancer-causing pathways because their 
neighbors are not necessarily interconnected. In contrast, the Clustering Coefficient of a network, also a local 
metric, measures the tendency of nodes to form densely connected communities. In biological networks, these 
communities signify functional modules and gene complexes that work closely together and share similar func-
tions. Clustering Coefficient identifies key biomarkers located in significant communities that work together to 
induce cancer and is a much more robust local metric than Degree in locating essential genes.

Although Clustering Coefficient alone is a powerful metric, it is local and unable to capture the overall 
topologies of the network. To gain a better view of the essential genes that play important roles in the network 
as a whole, Bottleneck is used complementary with Clustering Coefficient. Bottlenecks, genes with the highest 
betweenness centrality, control most of the information flow and interaction between proteins and are key con-
nectors between regulatory pathways that are identified through Clustering Coefficient.

Together, Clustering Coefficient and Bottleneck are capable of considering multiple biological pathways, and 
improve on the performance of Degree from 78.75 to 88.24%. Not only does C-Index perform better than indi-
vidual metrics, but it matches the performance of using all 12 metrics together with greatly reduced complexity 
and cost. The AUC of the overall top 10 biomarkers identified using all 12 metrics was 0.9064, as calculated in 
Stage I of this study. The AUC of the top 10 biomarkers identified using C-Index was 0.9027. It is as powerful as 
using all twelve, while much more efficient.

Our results indicate that the proposed C-Index is capable of capturing the most critical group of interactive 
genes that can early diagnose cancer. Our method of evaluating scoring methods is transformative and a break-
through in applying topological analysis to biomarker identification.

Performance of C‑Index in validation set. To validate the C-Index, we calculated the Integrated AUC of the 
metrics in the 20% validation set. As predicted, C-Index outperformed Degree and each of its components (Sup-
plementary Table S3). Compared to Degree, the performance of using C-Index to select biomarkers increased 
by 25%. Clustering Coefficient alone improved on Degree by 22.4%. Compared to using all 82 genes found by 
all 12 metrics, the performance of using only genes found by C-Index is 40% higher. This demonstrates that the 
metrics that compose C-Index vastly improve on conventional ones, and are capable of identifying a concise list 
of significant genes most successfully. Benefiting from both metrics with close interactions locally and genes 
that lie on the critical paths linked globally, C-index can revolutionarily select the most representative group of 
biomarkers at a low computational cost for accurate diagnosis.

Machine learning validation of biomarkers and metrics. We further validated the above results with a random 
forest machine learning model to evaluate their capabilities to classify cancer from no cancer in the testing 
dataset. The model was trained in the 80% dataset, and validated in the 20% dataset. The model considers not 
only genetic attributes, but also clinical attributes such as age, gender, and smoking status that most impact the 
development of NSCLC to improve the accuracy of diagnosis. Literature studies often decouple genomic and 
clinical attributes in cancer prediction. To incorporate both types of attributes and provide a validation method 
that does not involve Integrated AUC, we design this clinicogenomic model to explore their potential for disease 
diagnosis.

With the addition of the 4-gene signature, the purely clinical model was improved by 51% (Fig. 6a). Compared 
to using biomarkers alone, the addition of clinical variates also increased performance. The 4-gene model once 
again outperforms the top-10 gene model, validating the effectiveness of the signature. In addition to validating 
its ability to distinguish cancer from no cancer, the 4-gene model was further extended to diagnose early vs. 
late disease stage, as well as NSCLC stages I–IV with a multi-stage Cascading Model design that is described in 
greater detail in “Methods” (Fig. 6d).

C-Index outperformed the conventional metric by 25% and all the metrics together by 37% (Fig. 6b). Utiliz-
ing all metrics suffered from the existence of outliers and inaccuracy. Degree, on the other side of the spectrum, 
was unable to identify a complete set of genes that could accurately capture the interactions of the network and 
thus performed poorly.

Furthermore, validation was conducted not only on the testing set, but also on the TCGA LUSC and LUAD 
cancer datasets (Fig. 6c), obtained from UCSC  Xena30, which were processed in the same manner as the GEO 
dataset. The pretrained 4-gene and C-Index models were assessed on their ability to discern between cancer 
and non-cancer cases in this new validation cohort. The 4-gene model achieved 96% accuracy, and the C-Index 

(1)C-Index = Ntop(Sclustering coeff ∪ Sbottleneck)
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model achieved 94% accuracy. Both models exhibited high performance, supporting the efficacy of the metrics 
and signatures presented in this study.

Discussion
It is vitally important to identify critical biomarkers for exploring the pathogenesis of NSCLC, one of the deadliest 
cancers in the world. The key to improving prevention and early diagnosis is to find metrics and methods that 
can guide the effective yet cost efficient search of biomarkers.

There are several important findings from this study. First, through a series of functional, network, and statisti-
cal analyses, we identify a 4-gene biomarker signature consisting of AGER, CA4, RASIP1, and CAV1 that can be 
further explored as possible therapeutic targets for drug treatment. Second, we prove that the most widely used 
topological scoring metric, Degree, is not the best suited for biological networks. We instead propose C-Index, 
a novel composite index that combines Clustering Coefficient and Bottleneck to best capture the interactions 
in gene networks for high efficiency and performance. Our results solidify the connection between geometric 
connectivity and functional connectivity. For validating the C-Index and 4-gene signature, we exploited the use 
of a machine learning model that considers both genomic and clinical factors concurrently.

To the best of our knowledge, this is the first study that comprehensively evaluates all 12 topological network 
scoring metrics and their effectiveness in identifying cancer-related biomarkers in biological networks. Compared 
to previous studies that solely relied on popular metrics like  Degree15–17, selected metrics without any validation 
or reasoning provided, or simply used all 12 metrics  together6,25, which was shown to be inefficient in this study, 
our study thoroughly evaluates all 12 metrics using our proposed Integrated AUC. Moreover, many previous 
studies only used one metric or lacked effective metric composition, which is not enough to accurately quantify 
and characterize the disease network. Our study advances upon these studies by evaluating and validating dif-
ferent metric compositions to identify the most effective one for biological networks: the C-Index.

The two metrics that compose C-Index, Clustering Coefficient and Bottleneck, effectively capture local and 
global gene interactions in the network. We hypothesize that Clustering Coefficient identifies significant com-
munities that are most likely involved in pathways to promote tumorigenesis. Bottlenecks are critical points in 
the network that connect the biological pathways identified through Clustering, and may act as key signaling 
molecules. These two metrics work in tandem to effectively identify genes that work together in pathways to 
induce cancer. Additionally, we hypothesize that Degree, which only considers the immediate neighborhood of 
 nodes27, may not be a robust indicator of network topology as it fails to adequately capture the connectedness 
and centrality of nodes within the network.

This study largely focused on biological implications. Through functional enrichment analysis, we found 
that the four genes in the 4-gene signature are enriched in GO terms of receptor activity, immune response, 

Figure 6.  Machine learning validation of biomarkers and metrics.
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extracellular matrix, and signaling activity, which all play an important role in regulating proliferation, dif-
ferentiation, and apoptosis. The significant down-regulation of these four anti-tumor genes in NSCLC patients 
signifies that a change in their expressions disrupts the tumor microenvironment, promoting tumorigenesis. 
These results match the significant GO and KEGG pathways identified in the first part of work.

In particular, AGER exhibits significant enrichment in immune signaling pathways. AGER has been found 
to be downregulated in NSCLC cancer cells, and its overexpression has been shown to suppress cancer cell pro-
liferation, invasion, and migration, while promoting  apoptosis26. Therefore, its downregulation decreases the 
effectiveness of these inhibitory effects. Similarly, CA4, which affects the cell cycle and inhibits cell proliferation 
by downregulating the expression of CDK2, was found to be downregulated in NSCLC cancer  cells31. Its down-
regulation prevents the inhibition of tumor cell proliferation. The downregulation of RASIP1, which is involved 
in GTPase binding and cell-cell attachment, was found to impair cell-cell attachment and possibly promote cell 
migration in NSCLC  patients32. Finally, CAV1, a scaffolding protein that may act as both a tumor suppressor 
and a promoter of metastasis, depending on the type of cancer and  stage33, has been found to be downregulated 
in many tumors, including  NSCLC34. The significant biomarkers discovered may be further explored through 
knock-out trials and analysis of their impacts on cancer prognosis. Results from these trials can be applied to 
developing drug therapies that target these biomarkers.

This study has shown that using multiple biomarkers and metrics concurrently greatly improves performance. 
This is because genes work together in pathways that lead to tumorigenesis, and single genes cannot cause can-
cer without having numerous regulatory effects on other genes through signal transduction pathways. Cancer 
is a complex disease caused by the interaction of multiple environmental factors and genes. It is the combined 
effect of all these genes in the pathway together that leads to cancer onset. The 4-gene biomarker signature and 
biomarkers selected by C-index accurately capture the nature of cancer. With further validation and refinement 
in other cancer datasets, they are promising for the study of biomarkers and all cancers. The C-Index greatly 
increases the efficiency and accuracy of future biomarker searches, allowing for the low-cost identification of 
biomarkers with great diagnostic capability. The findings from this study provide an experimental foundation 
for further exploration of the usage of PPI networks to diagnose cancers. Most importantly, our results indicate 
that the conventional method of approaching TDA in oncology is greatly ineffective.

Topological analysis is a powerful method to analyze biomedical data. Our work lends itself to further explo-
ration in settings other than biomarkers. Possible future directions include predicting treatment responses, 
cellular architecture determination, tumor segmentation, and other applications of cancer data. Our research 
can be expanded to other types of cancers and more datasets, and our gene signature and C-Index need to be 
further extensively validated. The proposed methodology of finding top metrics can be extended to effectively 
and efficiently select biomarkers in various types of cancers, not just NSCLC, which helps to fundamentally 
advance the topological network research for the continuous pursuit of cancer prevention.

Methods
Stage I: Biomarker signature identification. Dataset. In total, we analyzed 547 NSCLC samples con-
sisting of 467 lung tumor samples and 80 normal lung samples from the Gene Expression Omnibus (GEO) 
 database19, a national repository of genetic information databases. In this study, we retrieved and combined 
three gene expression profiles (GSE31210, GSE33356, and GSE50081) to ensure greater accuracy and compre-
hensiveness. The datasets are summarized in Supplementary Table S1. Finally, the merged dataset was randomly 
divided into 80% for identification of top biomarkers and metrics, and 20% for validation.

Data preprocessing and DEG identification. GEO2R analysis was performed to detect DEGs in NSCLC tumor 
samples compared with normal lung samples. An initial pool of 267 statistically significant DEGs (p-value < 0.01 
and |logFC| > 1.2 ) were identified for further analysis and classified as up or down-regulated. The raw gene 
expression values are normalized using a z-score.

Functional enrichment analysis. We performed functional enrichment analyses using the Database for Anno-
tation, Visualization and Integrated Discovery (DAVID) gene functional annotation  tool35,36 to identify signifi-
cant Gene Ontology (GO) terms with FDR < 0.05 . GO terms are biological annotations that signify functional 
characteristics. They are divided into three main categories: molecular function (MF), cell composition (CC), 
and biological processes (BP). The most significant GO terms were analyzed using DAVID to identify enriched 
terms with a threshold value of FDR (adjusted p-value) < 0.05 . Similar in function to the adjusted-p-value, the 
lower the FDR, the more significant the enrichment. Statistically significant GO terms were also expressed as a 
z-score expression

where Nupregulated and Ndownregulated represent the number of upregulated and downregulated genes respectively. 
This expression value signifies whether the GO term is more likely to be downregulated (negative value) or 
upregulated (positive value). We visualized the top 10 GO terms and their z-score expressions using the GOplot 
package (version 1.0.2) in  R37.

String-db38 analysis was also utilized to identify significant Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways. The KEGG database contains genomic information, functions, recognized pathways, and 
networks with higher-order functional information of various  organisms39.

(2)z-score =

Nupregulated − Ndownregulated
√

count
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PPI network construction. We constructed a protein-protein interaction (PPI) network based on the DEGs 
using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) Interactome  database38. It is 
a biological database and web resource of known and predicted protein-protein interactions. The network was 
then input into Cytoscape22 for further analysis with the  CytoHubba23 plugin. Using all 12 topological analysis 
methods, we identified our list of candidate biomarkers composed of the top genes selected by each method.

AUC performance evaluation and Integrated AUC . We evaluated the diagnostic value and functional signifi-
cance of the biomarkers using AUC, which measures the trade-off between sensitivity and specificity. AUC was 
calculated for each gene using the pROC package in R  Studio40, which was also used to visualize the ROC curves. 
Similarly, to evaluate the performance of multiple biomarkers at once, Integrated AUC was calculated by first 
aggregating (in this study, we use mean) the expression values of the biomarkers, and then evaluating the AUC 
of that aggregated expression. To identify our 4-gene signature, we systematically aggregated the top biomarker 
expression values one by one and determined when the AUC reaches its peak.

Survival analysis and validation of biomarkers. The Kaplan–Meier plotter database (http:// kmplot. com) is an 
online tool used to analyze the associations between the identified hub genes and overall survival. The overall 
survival (OS) plots were based on 1925 lung cancer patients from GEO and TGCA (The Cancer Genome Atlas 
database) datasets. For the RASIP1 gene, however, the dataset used for analysis was restricted to only samples 
that were tested with the HGU133 Plus 2.0 microarray, as it was the only probe set available for RASIP1. There-
fore, the Kaplan-Meier for RASIP1 was limited to 1144 patients. The hazard ratio (HR) with 95% confidence 
intervals and log-rank p-value were calculated, and a p-value < 0.05 was used to indicate a statistically signifi-
cant difference.

The expression levels of the hub genes and their association with survival were additionally assessed using 
the web-based GEPIA database (http:// gepia. cancer- pku. cn/)41 with the settings of p < 0.05 and |Log2FC| > 1.

Stage II: Critical network topological metrics. Evaluation of composite metrics. To evaluate compos-
ite metrics, we first fused, or supserset, the genes identified through each individual metric. Then, Integrated 
AUC of the top 10 and 20 genes of the superset was evaluated to ensure a fair assessment of each composition 
and to eliminate any bias surrounding using more or less number of biomarkers.

In addition to AUC, to quantify the ability of each metric to correctly identify the biomarkers that were 
included in the overall top 10 and top 20 ranked biomarkers found in Table 1, we also define a Precision metric 
as follows:

where Ncorrect and Ntotal represent the number of correctly identified genes and total number of top ranked genes 
respectively.

To find the number of correctly identified genes ( Ncorrect ), we took the top 10 and 20 disease genes from the 
supersets of the genes selected by the composite metrics and calculated how many of them matched with the 
overall top 10 and 20 disease-correlated genes from Table 1b. These overall top 10 and 20 genes were identified 
by AUC score in the “PPI network analysis” section.

Machine learning validation and Cascading Model design. The primary focus of this study was to improve 
the diagnostic capability of early cancer detection. To validate our findings, we evaluated the diagnostic per-
formances of the metrics and signatures with clinicogenomic random forest (RF) models in the 20% dataset. 
Among various classification models, including artificial neural networks, XGBoost models, SVM, and decision 
tree models, the RF models exhibited the best performance. RF was additionally found to have advantages over 
other classification algorithms in terms of robustness to overfitting, ability to handle non-linear data, and stabil-
ity in the presence of outliers, as previously  reported42.

Our work above focused on the performance of biomarkers and how to improve the search for them. However, 
compared to only using genetic information, the usage of a variety of other factors will help improve the accuracy 
of diagnosis. Some clinical attributes that impact the development of NSCLC are age, gender, and smoking status. 
In order to incorporate both clinical and genomic attributes, we explored the use of machine learning techniques 
to adequately consider multiple factors at once in cancer prediction to design a clinicogenomic model.

The 4-gene and C-Index models were further validated in an external cohort, the TCGA LUAD and LUSC 
datasets. Phenotype and gene count files were obtained from the UCSC Xena database, and underwent similar 
preprocessing and normalization procedures as the GEO datasets. Subsequently, the pretrained models were 
assessed using this new dataset.

In addition to validating our models, we sought to expand the 4-gene model into a Cascading Model that 
not only leverages the top biomarkers for accurate prediction of cancer status, but also has the capability to dif-
ferentiate between early and late stages of cancer and lung cancer stages I–IV. Our goal is to develop a precise 
clinicogenomic diagnostic model that can utilize the selected top biomarkers to accurately predict NSCLC disease 
stage. In our initial study, we extended the RF model to a multi-class model, which as expected, exhibited high 
accuracy in classifying cancer from non-cancer cases. However, the multi-class model showed lower accuracy 
in classifying cancer stages, likely due to limited data availability for stages III and IV.

To more accurately identify the stage of cancer, we propose a multi-stage Cascading Model with 3 stages, 
depicted in Supplementary Fig. S2. The model evaluates the diagnostic capability of the 4-gene model. It first 

(3)Precision =

Ncorrect

Ntotal
,

http://kmplot.com
http://gepia.cancer-pku.cn/
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classifies the data into cancer or no cancer, then further classifies those with cancer into early vs. late stages of 
cancer, and finally classifies early and late one step further into cancer stages I–IV. In the 4-gene model, the first 
classification cancer status had an average accuracy of 0.9553 and AUC of 0.98605. The second classification, 
early vs. late stages, had an average accuracy of 0.9716 and AUC of 0.9902. Cancer stages I–IV classification 
had an average accuracy of 0.7137, which may be due to the minor difference between the four cancer stages 
of patients. The difference of clinical attributes between cancer and no cancer and early vs. late is a lot greater 
than the difference between the four stages. The model may have difficulty distinguishing the two sides of the 
boundary. However, as exemplified in the performance study, the Cascading model greatly improves the ability 
to accurately differentiate between multiple stages of cancer, and is one of the first capable of accurately predict-
ing early vs. late cancer stages.

Data availibility
The datasets GSE31210, GSE33356, and GSE50081 are available online from the GEO database.

Code availability
https:// github. com/ iwu24/ NSCLC casca dingm odel. git.
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