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Adaptive elevator kinematics 
optimization based dual response 
algorithm for determining proper 
levels in plaster milling process 
parameters
Pongchanun Luangpaiboon  1 & Sirirat Juttijudata  2*

This study proposes a novel hybrid approach, called Adaptive/Elevator Kinematics Optimization 
algorithm based on dual response algorithm (A/EKO-DRA), to enhance the robust parameters 
estimation and design of the plaster milling process. The A/EKO-DRA method reduces variability while 
maintaining the desired output target, thereby minimizing the impact of variance on the expected 
stucco combined water. The performance of the A/EKO-DRA is compared with conventional processes 
through numerical examples and simulations. The results show that the A/EKO-DRA method has the 
lowest mean absolute errors among other methods in terms of parameter estimation, and it achieves 
the response mean of 5.927 percent, which meets the target value of 5.9 percent for industrial 
enclosures, with much reduction in the response variance. Overall, the A/EKO-DRA method is a 
promising approach for optimizing the plaster milling process parameters.

Plaster is a cement that is also known chemically as calcium sulfate hemihydrates. It is used in a range of applica-
tions such as construction materials, ceramic industries in dentistry, metal casting, jewelry, medical equipment, 
and cosmetics. The key attribute that makes it popular is its capacity to harden the shape of the mold used with 
only a little change in size. Plaster is manufactured by heating the naturally occurring material gypsum. This 
causes some of the moisture in the molecule to evaporate and the molecule’s chemical structure changes into 
plaster or stucco. The usage of calcification machinery, which can be utilized in the production of ceiling panels 
or gypsum board, is an important aspect of the process for gypsum ore processing. The usage of calcification 
machinery, which can be utilized in the production of ceiling panels or gypsum board, is an important aspect 
of the process for gypsum ore processing. In the manufacturing process, crusher machines, conveyors, grinding 
rolls, and kettle machines are all used.

The newly installed production line also includes a new plaster milling machine that includes the grinding 
and calcining equipment. This adds to the complexity of the production process control system. With rigorous 
environmental control, soluble anhydride levels may be kept substantially below their respective acceptable ranges 
of 5.5 and 6.2 percent, and quicklime can be completely eradicated1. The operation of independent factors that 
occur throughout the plaster milling process, such as mill outlet temperature, air speed in the system, heating 
in the system (burner output), and other variables, must be controlled.

Quality control is crucial in this manufacturing process because it impacts the system response of stucco 
mixed water2. As a result, quality control and production control can be complex and time-consuming, causing 
production costs to grow. Previous quality inspection data revealed that the loss was due by low-quality cement 
manufacturing3. To start a new production process, low-quality cement must be removed from the silo. As a 
result, variable control in the manufacturing process is crucial for the quality of the finished mortar. This sparked 
the researcher’s curiosity in learning more about the components that influence the plaster milling process.

In order to build models and assess issues, the response surface method (RSM) integrates mathematical and 
statistical methodologies4,5. The experimental design plan must determine the level of factors that will provide the 
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best response value6–8. In the case of a response that is associated with multiple independent factors or variables. 
In reality, the correlation model must be estimated because practices frequently lack knowledge of the genuine 
relationship between the response variable and the independent variable9.

Following that, the dual response surface technique involves establishing the ideal setting condition for the 
controllable parameters in order to reduce performance variability and departure from the decision maker’s 
desired target10. This method extends Myers and Carter’s basic ridge analysis procedure. To do this, three main 
strategies are used: experimental design, regression fitting, and optimization. The least squares method is often 
used for regression fitting to create suitable response functions for the process mean and variance, provided that 
the data is normally distributed11.

However, when dealing with the tradeoffs between the bias and variance components of mean squared error 
(MSE) in noisy situations, this technique has several drawbacks. When finding optimum setting circumstances, 
this paper takes the accuracy of the predicted response into serious consideration. Metaheuristics are considered 
as a component in the construction of various models. The metaheuristic method evolved from the development 
and adaptation of heuristic methods. The purpose is to enable flexibility in finding answers to any complicated 
choice problem with many factors, allowing for quick and effective decision making. Even if the outcome does 
not guarantee an optimal solution, it is satisfactory and allows a search to be completed in a reasonable amount 
of time.

In today’s data-driven enterprises, an automated data system collects and organizes information. Data ana-
lysts are frequently overwhelmed by the volume of interlocking data sets acquired to obtain information on all 
parameters and their interactions, in addition to the standard designed trials12. When establishing the optimum 
setting settings, this paper takes the accuracy of the predicted response into serious consideration. As a result 
of this research, a fresh technique or metaheuristic evolutionary elements on a dual response algorithm13 are 
introduced. An adaptive elevator kinematics optimization technique is based on the similarities between the 
elevator kinematics performance method and the solution to challenging problems with optimization. It is simple 
to implement and can readily overcome various limitations in the dual response method, yielding ever-better 
outcomes using simple algorithmic principles14,15.

Today’s highly competitive world necessitates concise, appropriate, and cost-effective supply chain manage-
ment of items or installations, which in turn necessitates challenging engineering jobs. Engineers must conduct 
study in order to employ ideas and methods to optimize it. The problem must be mathematically modelled, 
and computer approaches must be the primary emphasis of the study. This makes optimization tactics vital 
and interesting to researchers. When the optimum value problem is complicated, multimodal, and has several 
ideal points, as well as significant non-linearity in the search space, the standard optimization paradigm fails 
to locate an overall optimal point due to the stagnation of local optima. As a result, there was growing interest 
in metaheuristic approaches. In metaheuristics algorithms, optimizations are viewed as black boxes with no 
mathematical modeling requirements16.

Metaheuristic algorithms can be used to solve problems in a variety of industries because of their great flexibil-
ity and more local optimal avoidance. Artificial intelligence algorithms are classified into several categories in the 
literature17. The idea stems from imitations of natural phenomena’s rules as well as their unpredictability. The two 
main categories are determined by algorithm inspiration in each phase of optimization and the number of ran-
domly generated applicants. The first integrates intelligence, evolution, and physics-based swarm algorithms18–22.

The second category includes algorithms that use individuals and populations to develop and enhance at 
random during the optimization process. There is no algorithm that can successfully address all optimization 
difficulties. Theoretical literary research may be thought to improve and hybridize with other metaheuristic com-
ponents. The elevator optimization approach is proposed in this paper with various evolutionary components23. 
Researchers searched additional mechanisms to implement mathematical or random approaches to improve 
performance24–26.

The major purpose of this effort was to establish the best levels of process parameters for a plaster milling 
process. A conventional factorial design was utilized in the studies, as well as multiple linear regression on mean 
and standard deviation. An analytical model for optimizing process parameters was established based on the CN 
or Copeland and Nelson’s method27. The process parameters investigated in this study were mill outlet tempera-
ture, motor fans #1 and #2, burner rate, and classifier. We propose an adaptive elevator kinematics optimization 
algorithm for developing alternative regression models for the traditional ones based on mean and standard 
deviation to alleviate the issues associated with the CN described model. The proposed approach has the key 
advantage of not requiring any fresh series of experimental designs if the model or regression coefficients have 
no significant effects. The plaster milling process (PMP) is briefly detailed in the second part. The adaptive eleva-
tor kinematics optimization technique is described in detail in the section "Proposed method: adaptive elevator 
kinematics optimization based dual response algorithm (A/EKO-DRA)". The results achieved by the Adaptive 
Elevator Kinematics Optimization-based Dual Response Algorithm are reported in the section "Numerical 
results and analysis". Finally, the section "Conclusions and discussions" contains the research’s conclusions and 
discussions, as well as ideas for further research.

Plaster milling process (PMP)
Typical plaster milling processes start with crushed gypsum from a crusher machine that meets standards for 
rock size, gypsum moisture, and gypsum purity. The gypsum is then transported from the silo to the new plaster 
grinding (calcination) process through a chain feeder. The new proposed plaster milling process (PMP) combines 
crushing and calcination operations with dual motor fans and is designed as a flash calciner manufacturing unit. 
This PMP will fully grind the gypsum before burning it into a plaster or stucco.
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The expert system was used to investigate the plaster milling process, and it was determined that various 
factors related to the new plaster or stucco milling process, as well as additional conditions for quality control 
of the system, which sets the product moisture content at 5.5–6.2 percent (the given value has been converted 
to protect the company’s confidentiality).

During this process, several relevant parameters influence the product moisture content (response). The 
burner rate (%) refers to the controlled heating given to the production process. Classifier (%) is the percentage of 
the opening of the classifier blade that is used to control the fineness of the mortar. The mill outflow temperature 
is the temperature at which the plaster and air exit the kiln. Motor Fan #1 and 2 (kW) are the motor power control 
values utilized to control air circulation in the planned twin motor fan PMP, which are situated at positions 1 
(right) and 2 (left). Gypsum moisture is the uncontrollable parameter of the moisture content of gypsum minerals 
utilized in production (see Fig. 1). The finished stucco will be delivered by air to the dust collector and passed 
through a cooler drum. It will be moved to the stucco silo where it will be used in the final manufacturing process.

Following the processing of the plaster, a moisture analyzer is utilized to measure the response of Stucco 
Combined Water with on-the-spot monitoring. The Standard Operating Procedure (SOP) oversees the proce-
dures for collecting mortar samples for use in moisture assessment, ensuring that every worker adheres to the 
same standards.

Proposed method: adaptive elevator kinematics optimization based dual response 
algorithm (A/EKO‑DRA)
The dual response algorithm (DRA) for response mean ŷµ and variance ŷσ 2 can be used in robust parameter 
design for the larger-the-better, smaller-the-better, and nominal-the-best criteria28. With the aid of a Factorial 
Experiment, the impact of various factors and their interactions can be studied. There are two types of effects: the 
main effect or the effect created by every factor, and interactions with two or more factors or the effects caused by 
considering factors concurrently. It also makes use of multiple regression analysis to investigate the relationship 
between independent xi and dependent variables yµ and yσ 2 resulting in prediction models for  ŷµ and ŷσ 2 that 
can be used latter on for the robust process optimization.

Regression coefficients β̂i are normally calculated using least-squares error analysis, however they can alterna-
tively be calculated using various optimization approaches to minimize any selected error indicator. To increase 
the DRA robustness, the regression coefficients along with experimental data points to be selected for the param-
eter estimation are determined by Adaptive Elevator Kinematics Optimization (A/EKO) via mean absolute error 
(MAE) minimization (discussed in later sections). The proposed method is hence called Adaptive Elevator 
Kinematics Optimization based Dual Response Algorithm (A/EKO-DRA).

In this study, the nominal-the-best scenario is used for DRA robust parameter design. CN or Copeland and 
Nelson’s approach27 is adopted i.e. minimizing the response variance 

(
ŷσ 2

)
 while constraining the response mean (

ŷµ
)
 and the controllable variable (xi) to be within specific range from the target value and bound, respectively. 
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Figure 1.   Design and noise parameters of the new PMP.
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subject to

where � is the maximum allowable deviation for the response mean ( ̂yµ ) from the specified target value ( T).
The robust parameter design is updated iteratively by updating the dual response surface (DRS) multiple 

regression models in (1)–(2) with additional experimental data done at the optimal parameter set obtained in 
the previous iteration from (3) to (5) as depicted in Fig. 2.

Elevator kinematics optimization algorithm.  Elevator designs frequently include the associated ele-
ment in the number of building floors since it influences negotiation prices and mechanical elevator systems. 
Size, breadth, and height parameters are used to evaluate the motor size and speed of the lift body. Several large 
corporations are currently competing for the control system factor. The elevator group’s control unit is a system 
that can always monitor the status of elevators via the Internet and online platforms. It seeks to display consump-
tion, status, and data utilization for analysis in elevator targets.

Elevators typically move limited passengers based on their load capacity. As a result, in many large buildings, 
the elevator waiting time is kept as short as possible in order to maximize passenger comfort. It may also go as 
quickly as possible to the desired floor while maintaining maximum energy efficiency. Furthermore, the parked 
floor of elevators must be established in order to meet the needs of the majority of passengers during each usage 

(3)min
xi

ŷσ

(4)(T −�) ≤ ŷµ ≤ (T +�)

(5)LB ≤ xi ≤ UB; i = 1, 2, . . . , k,

Figure 2.   A/EKO-DRA diagram for process improvement.
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period. However, the elevator’s usage is unidirectional in every phase, which means that if the elevator climbs 
upstairs, the floor with the calling command of the hall will only be viewed as heading upwards and downwards. 
This process is repeated until it reaches the maximum level under control. The elevator returns to idle, receives 
the next order to enter the system, and repeats the process.

Nowadays, manufacturers create different techniques to adjust the degree of control by manipulating the 
controls into a group structure for the elevator movement to be easily regulated. It can adapt to passenger usage 
and save energy while moving. It spurred the creation of an elevator kinematics optimization algorithm (EKO) 
that used the concept of elevator passenger kinetics as a major component in many aspects indicated by the 
implementation of various elevator groups29.

When comparing the EKO structure to the nature of the elevator, it seeks the optimal park floor indicated by 
the greatest degree of passenger satisfaction30. Similarly, optimization approaches are determined in the global 
optimum by objective function assessment. A passenger command estimate moves the elevator to a different floor. 
Controlling the elevator group based on distance and time as assessed by proper elevator kinematics functions 
can change the elevator’s position. Iteration can also be used to improve the evaluation of the objective func-
tion. Mechanical characteristics as an elevator include machine parameters like as speed, acceleration, and jerk.

Functional improvement is a key solution to process development. The passenger’s overall time to reach the 
target floor may be determined by the distance convergence rate. Lift travel’s primary goal is to reduce journey 
time with fewer pauses in order to improve customer satisfaction and reduce lifting distance. During elevator 
travel, the same targeted passengers select a level from a possible range at the same time, and those floors are 
evaluated as a single control. If this floor is frequently used, the memory of floor selection will save the data. This 
allows the parking regulations on this floor more leeway.

To give a single solution to the optimization problem, each initial answer is likewise chosen at random from a 
set of values31. If the right option is supplied to all of the decision variables’ values, that experience is stored in the 
memory of each variable. There is a good probability that a superior solution will be identified. Elevator memory 
sizes or the number of elevator memory ( EM ) solutions, speed ( v ), acceleration ( a ), trip height interval ( THI ), 
the probability of selecting a floor ( PSF ), probability for a reject command ( PRC ), and maximum replication/
search iteration ( N ) are all EKO settings.

The distance ( d ) is defined as the absolute difference between the maximin and minimax variables. This 
distance is used to select one of A, B, or C’s three moving requirements (see Table 1). The first is a movement 
that does not accelerate the transition. A lift does not reach the end of the transitional acceleration, which is the 
second move or motion to a transitional acceleration. When there are multiple elevator control circumstances, 
the last move is made.

Furthermore, while EKO is a resilient strategy for handling hard combinatorial problems and may converge 
to the optimal solution given enough computation time, it suffers from premature convergence and takes a long 
time to find high-quality solutions. Solution diversity is a key aspect in enhancing metaheuristic algorithm 
performance.

This work applies the EKO to two adaptive mechanisms (AM) based Energy consumption in an elevator 
system: a revisiting avoidance mechanism based on unnecessary stops or a tabu-list and the intelligent integration 
of two neighbouring elevators (AM1) and adaptive elevator group control (AM2). The proposed new EKO will be 
referred to as adaptive elevator kinematics optimization (A/EKO).

Since hydraulic elevators have been phased out, all current elevator systems placed in buildings can be 
depicted as a counterweight plus cabin and ropes system32. This situation can be used to calculate the energy 
consumption of an elevator hoisting mechanism and its implications. It is possible to conclude that elevators 
do not expend energy with every movement33. In fact, when an elevator goes downwards with less than half the 
maximum allowable load or upwards with more than half the maximum allowable load, the hoisting system 
wastes energy.

Unnecessary stops and neighbourhood (AM1).  The hoisting system, on the other hand, gains energy 
anytime the deck moves downward with more than half the maximum allowable load or upward with less than 
half the maximum allowable load. Current brakes use resistors that can recover the energy gained, however not 
all of the energy can be recovered owing to mechanical friction. Efficiency in dispatching has a significant impact 
on energy system consumption in this case. It is a common practice to use a policy to avoid unnecessary stops.

When dispatching for average waiting time optimization, it is common to use a policy to avoid unnecessary 
stops, such as when it is predicted that there will not be sufficient room for all passengers making the landing 
call, necessitating another stop in the future to collect the passengers who have been left. As a result, instead 

Table 1.   New position classified by type or distance of motion.

Motion type Distance New position

A d ≤
V2
1

a NewXi = Xi + Rand(−1, 1)×
V2
1
2a
THI

(6)

B V2
1

a ≤ d ≤
V2
Max
a NewXi = Xi + Rand(−1, 1)×

((
1
3a

)( V3
Max
V1

− V2
1

)
+

V2
1

2a

)
/THI (7)

C d ≥
V2
Max
a

NewXi = Xi + Rand(−1, 1)×

((
1
3a

)( V3
Max
V1

− V2
1

)
+

V2
1

2a +
(
Xb − Xg

))

where Xg is the global best solution, Xb is the best solution at the current position
(8)
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of making one stop, the elevator would make two, lowering overall performance, especially during peak traffic 
periods. However, having two stations or neighborhoods instead of one could be profitable in terms of energy. 
Everything is dependent on the current scenario. In a variety of ways, neighborhood structures can assist the 
generation of new solutions, allowing for more diversified solutions in the pursuit of an optimal solution.

A neighboring solution is generated by the aforementioned neighbourhood structure. For each acceptable 
neighboring perturbation, candidates may be deleted from prior solutions34. As we all know, if a new generated 
neighboring solution outperforms the old one in each iteration of A/EKO, the new generated neighboring solu-
tion will be accepted. If the new generated neighboring candidate has a worse objective function value than the 
old one, depending on the present EKO settings and the objective function difference, the new candidate has a 
probability of being accepted. The prior candidate who was removed from the solution list will be added to the 
unnecessary stops after the new candidate is accepted. If the unnecessary stop is already full, the candidate that 
was added to it first will be removed. Candidates on the unnecessary-stop are not allowed to be incorporated 
into the new solution until it has been eased when we complete the neighbourhood transformation.

Unpredictable future (AM2).  During the downpeak or uppeak periods, destination or starting floors are 
often known, and this also occurs during the lunchpeak time (which is a combination of both), limiting dis-
patching possibilities35. Furthermore, because there are so many passengers during these times, waiting time is 
critical. As a result, the EGCS is usually able to dispatch landing calls during the interfloor pattern, when dis-
patching options are higher and traffic is lighter (so the waiting time problem is not as important as it is at other 
times), with the energy problem taking precedence over other factors36.

It is difficult to know the destination of each passenger before they reach the cabin, as well as the exact number 
of passengers who will alight or board on both car and landing calls, without hall call allocation panels on each 
level. Better detection technologies, such as special cameras, laser beams, or a good mass transducer, can also be 
employed to detect each passenger as soon as he OR SHE enters the cabin.

If the search process in A/EKO produces the same solution after several iterations, it signifies that the proce-
dure was unable to locate a better solution or escape from this solution. The algorithm will assume that this is a 
local solution. Figure 2 depicts the process of re-initialization.

Adaptive elevator kinematics optimization.  The dual response used response mean and variance as 
independent functions for the system under investigation. The functions are then optimized based on the opti-
mization technique used to identify the system’s optimum operating conditions. We provide a new optimization 
technique for a dual response algorithm based on the A/EKO improvement elements in this paper. A traditional 
DRA is replaced by a series of A/EKO model error minimization in the proposed method.

Vining and Myers37 proposed a method for simultaneously optimising mean and variance using Lagrangian 
multipliers. Lin and Tu38 observed that the Vining and Myers approach does not always guarantee global opti-
mum solutions due to the limitation of equality constraints. Based on this, they proposed minimising the mean 
squared error model by introducing a slight bias to reduce response variability. The minimising MSE function, 
according to Copeland and Nelson, does not specify how far the estimated mean might deviate from the specified 
target value. Instead, they altered the VM model by adding a constraint that minimizes the regression model of 
mean if the squared difference to the target is less than a certain value.

The A/EKO-DRA enhanced dual response algorithm is then proposed to find optimal levels of k influential 
parameters that contribute to optimal levels of process response. Lower and upper levels of process parameters 
can also be introduced to prevent design points from extrapolating too far outside the feasible range of the 
experimental design spaces. The following are the procedure steps for the proposed methodology.

Machine learning metrics are used to assess regression model performance. The most widely used forecast 
error metrics for point forecasts are mean absolute error (MSE), mean square error (MSE), and root mean 
squared error (RMSE). The MAE is a commonly used metric because the error value is simple to interpret39. 
Furthermore, MAE error value units are linear and intuitive, and corresponding to the predicted target value unit 
on the same scale40. The integrated expert system with A/EKO methods retains its resilience and exhibits only 
modest changes when subjected to noise or overstated inputs. Despite the fact that all of these learning metrics 
are built into the proposed methods in the real process, the fitness function in this study is solely determined by 
minimizing the mean absolute error (MAE) between the observed ( ̂yActµ (i) or ŷActσ (i) ) and estimated ( ̂yEstµ (i) or 
ŷEstσ (i) ) values, where i is the number of observations; and N is the sample size41.

Numerical results and analysis
Pre‑experiment.  Newly designed plaster manufacturing processes, combining the griding and calcinating 
processes, must assure accuracy in order for the product to serve its intended purpose. The first step is to collect 
baseline data on anticipated factors that may affect the quality or specification of the stucco by an expert system 
in each subprocedure. The goal of experimental design and analysis is to screen and identify most important 
parameters and interactions. Table 2 shows the results of the preceding steps.

(9)MAE =
1

N

N∑

i=1

∣∣(ŷActµ (i)− ŷEstµ (i))
∣∣or

(10)MAE =
1

N

N∑

i=1

∣∣(ŷActσ (i)− ŷEstσ (i)
)∣∣
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The second step was to prepare the experiment in terms of both the instrument used to evaluate the response 
or stucco combined water and the most cost-effective experimental design plan. It could, however, obtain all study 
results in terms of main effects and interactions. Because the experiment is a test of the actual manufacturing 
process, the work must be planned as concisely as possible.

The third step was to carry out the experiment as planned and to adjust the level of factors in the real pro-
duction process in collaboration with all of the experts. The response level value (Stucco mixed water) must 
be recorded every hour to see the effect of experimenting with the actual production process. The operational 
settings were adjusted according to the experimental plan for the next 24 h of the experiment until results were 
achieved to establish A/EKO procedure.

The fourth step was a preliminary trial to verify the study results ultilizing the expert system prior to the 
proposed algorithm comparisons. In all treatments, the maximum allowable values of Gypsum’s uncontrollable 
factors of Purity and Moisture were 90–95% and 7%, respectively.

Proposed algorithm comparisons.  The engineering department is in charge of measuring the machine’s 
efficiency. The plaster milling process (PMP) with dual motor fans and its main controllable and uncontrollable 
factors are depicted in Fig. 3.

The numerical results of Metaheuristic evolutionary elements on dual response algorithm are presented in 
detail in this study. The stucco combined water response has only one response in the PMP ( y ). Explicit con-
straints keep the parameter levels within their feasible ranges. The A/EKO metaheuristic is used to determine 
alternate design points in addition to the conventional design point. The A/EKO was constructed based on four 
influential parameters.

The A/EKO’s metaheuristic algorithm optimized the levels of the four influential parameters ( xi ; i = 1, 2, 3, 
4). Table 3 shows mill outlet temperature ( x1 ), motor fan #1 ( x2 ), and #2 ( x3 ), burner rate ( x4 ) and classifier ( x5 ) 
parameters, as well as their current and feasible ranges in coded levels. The following equation can be used to 
convert a real value ( XACTUAL

i  ) into a coded value ( Xi ) according to the predetermined experimental design:

(11)Xi = ωi(
XACTUAL
i − XACTUAL

i0

�XACTUAL
i

)

Table 2.   Process variables categorized by subprocedures for an A/EKO-DRA application.

Subprocedure Variable description Expert system declaration

After crushing

Rock size with 45–50 mm maximum No involvement

Gypsum moisture with 5–7% maximum Uncontrollable variable

Gypsum purity with 90–95% minimum No involvement

Mill outlet Mill outlet temperature Controllable variable

Mill inlet press Mill inlet pressure No involvement

Burner Burner rate Controllable variable

Cooler Stucco after cooler temp No involvement

Main System Fan
Motor fan #1 Controllable variable

Motor fan #2 Controllable variable

Classifier Percent open Controllable Variable

Figure 3.   Plaster milling process (PMP).
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where �XACTUAL
i  is the interval between the actual value in the centred point and the real value in the superior 

or inferior level of a parameter, ωi is the matrix’s major coded limit value for parameter, i, and XACTUAL
i0  is the 

actual value in the centered point. The completely randomized design is adopted to screen all process parameters 
from all existing design points via the analysis of variance.

It began by identifying the number of levels in each parameter using the conventional 25 factorial-design 
experiments with the requirement that the number of trials be kept to a minimum. The findings of analysis of 
variance (ANOVA) were employed correctly to summarize the influences arising from the main or all associ-
ated interaction effects, as well as the results of model adequacy checking for all normal distribution properties, 
independence, and constant variance.

The dual-response experiments were designed and analyzed based on the preliminary experimental analysis 
to assess the influence of various parameters on both the mean and the variance. Before interpreting the analysis 
of variance, the model’s suitability for all properties of normally distributed data, independence, and constant 
variance must be checked.

A preliminary trial with a two-level five-factor trial design plan and a replicate of two for all treatments was 
conducted to validate the results obtained through the expert system. However, one additional experiment was 
performed for some of the methods to determine the factors influencing both the mean and the variance for 
the proposed method, and the minimum additional run time was attempted. The additional stucco combined 
water levels for treatments 8, 9, 25, 26, 27, 28, and 29 were 5.96, 5.87, 6.00, 5.92, 5.83, 5.90, and 5.96, respectively. 
Table 4 shows the experimental results as well as response mean and standard deviation (Stdev).

The experimental results of the ANOVA of mean and variance are shown in Table 5. Only interaction of 
the mill outlet temperature ( x1 ) with burner rate ( x4 ) and the burner rate ( x4 ) with classifier ( x5 ) influences 
the response mean at the 95 percent confidence level. The interactions of the mill outlet temperature ( x1 ) with 
motor fan #1 ( x2 ), motor fan #1 ( x2 ) with motor fan #2 ( x3 ) and motor fan #2 ( x3 ) with classifier ( x5 ), on the 
other hand, significantly affect the variance response at the same confident interval level. Only the interaction 
of the motor fan #1 ( x2 ) and burner rate ( x4 ) has a significant influence on both mean and variance responses. 

These experimental results were used to confirm the variables involved in the problem of interest. All vari-
ables screened by a system of experts working with the cementing engineer to develop the cement production 
process influence the established response, some of which may have both mean and variance effects, while others 
may just have mean or variance effects. The experiment will then incorporate a management system that uses a 
metaheuristic approach to continuously search for optimal parameter levels of factors. The experimental level 
must be chosen with care in the early stages so that experts can detect errors quickly and efficiently before they 
are used in the actual production system. A multivariate linear model and the enhanced dual response algorithm 
with the A/EKO (A/EKO-DRA) were used. The multivariate quadratic model is also taken into accounted in 
subprocedures included in the process development process.

Apart from the typical experiment design, the next issue is attempting to analyze the data from multiple 
or disjointed sources. Various types of data are frequently housed in a comprehensive and centralized system. 
Analysts will have to assess a wide range of information, allowing for cross-comparisons and ensuring that data 
is complete using multi-step response surface methods. AM, EKO, and A/EKO were built to calculate stucco 
combined water based on the mill out temperature ( x1 ), motor fan #1 ( x2 ), and #2 ( x3 ), burner rate ( x4 ) and 
classifier ( x5 ). Visual Basic 2017 on an AMD Ryzen 5 2400G with Radeon Vega Graphics 3.60 GHz PC is used 
to estimated response models and solve the optimization problem. EKO’s optimal parameters are also critical.

The values of EM, a, v,THI , PRC, PSFmin and PSFmax in this study were defined as 40, 1, 0.8, 100, 0.95, 0.40 
and 0.60, respectively, as per42, who thoroughly studied them to find optimal values. Data from previously avail-
able operating conditions were used to estimate the dual response surface regression coefficients βi in (1)–(2). 
A/EKO combines the capabilities and benefits of both AM and EKO technologies. In each iteration, two best 
solutions are compared, then better candidates are assigned to the global best solutions. Both algorithms are 
capable of coping with parameter estimation difficulties. AM and EKO are driven to develop new candidates by 
transferring system solution parameters to their global best.

If the best EKO solution is influenced by the best AM solution, the improved EKO’s motion direction will be 
examined. As a result, the direction operator must be updated during the A/EKO iteration. Initialization and 
solution management are the two main algorithms of A/EKO. Table 6 shows the solution handling steps for the 
AM, EKO, and A/EKO algorithms. The regression coefficients for the response mean ( ̂yµ ) and variance ( ̂yσ 2 ) 
can be iteratively updated until mean absolute error (MAE) for   ŷµ and ŷσ 2 response surfaces are minimal for 
the given set of data collection by means of A/EKO:

Table 3.   Parameters and their current and feasible coded levels.

Process parameter

Coded level

Current Lower bound (LB) Upper bound (UB)

x1 0.0005 0.0001 0.001

x2 0.065 0.05 0.075

x3 18 15 20

x4 1 0 2

x5 28 20 30
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After obtaining the dual response surface models for ŷµ and ŷσ 2 from A/EKO-DRA using the actual response 
as a reference43, the optimal parameter levels were determined by using Copeland and Nelson’s dual response 
algorithms in (3)–(5). The maximum deviation ( � ), which is calculated from the response mean ( ̂yµ ), and the 
specified target value ( T ) are set at 0.05 and 0.059, respectively.

Table 6 shows the regression coefficients βi and relative error predictions for each method. It was evident that 
the proposed A/EKO method outperforms AM and EKO. Process optimization using A/EKO-DRA optimiza-
tion yields the optimal values of mill out temperature ( x1 ), motor fan #1 ( x2 ), and #2 ( x3 ), burner rate ( x4 ) and 
classifier ( x5 ) are at 0.001, 0.05, 15, 0, and 30, respectively (Table 7). Further, it is also observed that the mean of 
stucco combined water changes from 6.152% to 5.927% based on gypsum purity of 90–95%, while the variance 
of stucco combined water is statistically reduced from 0.152 to 0.034 (Fig. 4).

(12)ŷµ = −0.000698− 5.601736x1 + 0.662034x2 − 0.000429x3 − 0.001102x4 + 0.857925x5

(13)ŷσ 2 = −0.000840− 0.381147x1 − 0.045282x2 + 0.00102x3 − 0.000242x4 + 0.00109x5

Table 4.   The fundamental experimental results were classified according to the treatment for expert system 
confirmation of the related parameters.

Treatment

Replicate
Statistics for all 
replicates

1 2 Mean Stdev

1 5.95 5.95 5.948 0.00354

2 5.97 5.95 5.958 0.01768

3 5.96 5.93 5.943 0.02475

4 5.87 5.95 5.908 0.05303

5 5.95 5.95 5.948 0.00354

6 5.95 5.95 5.949 0.00141

7 5.93 5.92 5.926 0.00566

8 5.97 5.95 5.960 0.01000

9 5.94 5.97 5.927 0.05132

10 5.94 5.96 5.950 0.01414

11 5.98 5.88 5.930 0.07071

12 5.94 5.96 5.950 0.01414

13 5.89 5.95 5.920 0.04243

14 6.01 5.93 5.970 0.05657

15 6.00 5.94 5.970 0.04243

16 5.92 5.93 5.925 0.00707

17 5.83 6.00 5.915 0.12021

18 5.90 5.92 5.910 0.01414

19 5.96 5.83 5.895 0.09192

20 5.96 5.90 5.930 0.04243

21 5.97 5.96 5.965 0.00707

22 5.86 5.96 5.910 0.07071

23 5.90 5.87 5.885 0.02121

24 5.90 5.95 5.925 0.03536

25 5.93 5.95 5.960 0.03606

26 6.04 5.93 5.963 0.06658

27 5.96 5.97 5.920 0.07810

28 5.96 5.94 5.933 0.02969

29 5.93 5.94 5.942 0.01662

30 5.93 5.98 5.955 0.03536

31 5.92 5.86 5.889 0.04031

32 5.95 5.90 5.927 0.03748
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Table 5.   Analysis of variance (ANOVA) based on response mean and variance.

Source of variation

Mean Variance

F-value P-value F-value P-value

x1 28.90 0.117 1.72 0.415

x2 242.64 0.041 354.91 0.034

x3 2.14 0.382 106.27 0.062

x4 0.04 0.876 85.03 0.069

x5 117.43 0.059 812.70 0.022

x1*x2 11.82 0.180 164.45 0.050

x1*x3 49.17 0.090 107.39 0.061

x1*x4 331.51 0.035 2.94 0.336

x1*x5 1.60 0.425 211.75 0.044

x2*x3 25.97 0.123 332.62 0.035

x2*x4 173.68 0.048 432.10 0.031

x2*x5 294.49 0.037 73.46 0.074

x3*x4 22.72 0.132 19.72 0.141

x3*x5 23.84 0.129 230.60 0.042

x4*x5 935.93 0.021 38.73 0.101

x1*x2*x3 37.80 0.103 0.04 0.879

x1*x2*x4 56.04 0.085 295.60 0.037

x1*x2*x5 1.61 0.425 885.25 0.021

x1*x3*x4 16.02 0.156 330.56 0.035

x1*x3*x5 87.41 0.068 269.33 0.039

x1*x4*x5 0.28 0.690 725.26 0.024

x2*x3*x4 60.56 0.081 5.19 0.263

x2*x4*x5 4.67 0.276 306.77 0.036

x2*x4*x5 4.06 0.293 24.94 0.126

x3*x4*x5 40.47 0.099 3.32 0.320

x1*x2*x3*x4 10.58 0.190 585.74 0.026

x1*x2*x3*x5 139.44 0.054 283.59 0.038

x1*x2*x4*x5 94.97 0.065 501.43 0.028

x1*x3*x4*x5 231.81 0.042 90.30 0.067

x2*x3*x4*x5 50.98 0.089 170.63 0.049

x1*x2*x3*x4*x5 331.41 0.035 510.22 0.028

Table 6.   Estimated coefficients of multiple regression.

Response Coefficients Least squares techniques

EKO

AM1 AM2 AM

ŷµ

β̂0 − 0.000343 − 0.000650 − 0.000299 − 0.000698

β̂1 − 5.528624 − 5.595736 − 5.589455 − 5.601736

β̂2 0.672766 0.668565 0.676981 0.662034

β̂3 − 0.000525 − 0.000568 − 0.000369 − 0.000429

β̂4 − 0.002048 − 0.001963 − 0.001857 − 0.001102

β̂5 1.697655 1.097655 1.259747 0.857925

MAE 1.697655 1.097655 1.259747 0.857925

ŷσ 2

β̂0 − 0.000744 − 0.000685 − 0.000902 − 0.000840

β̂1 − 0.409258 − 0.397410 − 0.389577 − 0.381147

β̂2 − 0.050336 − 0.038064 − 0.050243 − 0.045282

β̂3 0.000214 0.000197 0.000096 0.000102

β̂4 − 0.000384 − 0.000288 − 0.000302 − 0.000242

β̂5 0.000115 0.000227 0.000089 0.000109

MAE 3.630225 3.287350 3.897230 3.005420



11

Vol.:(0123456789)

Scientific Reports |         (2023) 13:8855  | https://doi.org/10.1038/s41598-023-35119-2

www.nature.com/scientificreports/

Conclusions and discussions
This research presents the framework for the adaptive elevator kinematics optimization using the dual-response 
surface algorithm (A/EKO-DRA) to solve the constraints of the response surface method and make it more 
appropriate for usage in noisy environment optimizations. To define new solutions without further experi-
mental design implementation or extra design points, one goal is to determine the significant effects of the key 
parameters.

The technique is used to drive the stucco combined water to reach the industrial standard target with minimal 
variation amid changing environmental conditions during the plaster milling process. The novel meta-heuristic 
search method, A/EKO, is integrated to create process settings. The effectiveness of this strategy in combination 
with the prior operating state is also attempted to be assessed. The results of an experimental investigation show 
that the number of stucco combined water from the proposed one is, on average, closer to the objective than the 
previous one. As a result, it increases the likelihood that the proposed method will be efficient as well as robust. 
Future study in this field ought to be promoted.

Data availability
Data available on request from the authors: The data that support the findings of this study are available from 
the corresponding author, [Sirirat JUTTIJUDATA], upon reasonable request.
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