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Physical distancing versus testing 
with self‑isolation for controlling 
an emerging epidemic
Stephen C. Newbold 1*, Madison Ashworth 1,2, David Finnoff 1, Jason F. Shogren 1 & 
Linda Thunström 1

Two distinct strategies for controlling an emerging epidemic are physical distancing and regular 
testing with self‑isolation. These strategies are especially important before effective vaccines or 
treatments become widely available. The testing strategy has been promoted frequently but used 
less often than physical distancing to mitigate COVID‑19. We compared the performance of these 
strategies in an integrated epidemiological and economic model that includes a simple representation 
of transmission by “superspreading,” wherein a relatively small fraction of infected individuals 
cause a large share of infections. We examined the economic benefits of distancing and testing over 
a wide range of conditions, including variations in the transmissibility and lethality of the disease 
meant to encompass the most prominent variants of COVID‑19 encountered so far. In a head‑to‑
head comparison using our primary parameter values, both with and without superspreading and a 
declining marginal value of mortality risk reductions, an optimized testing strategy outperformed 
an optimized distancing strategy. In a Monte Carlo uncertainty analysis, an optimized policy that 
combined the two strategies performed better than either one alone in more than 25% of random 
parameter draws. Insofar as diagnostic tests are sensitive to viral loads, and individuals with high 
viral loads are more likely to contribute to superspreading events, superspreading enhances the 
relative performance of testing over distancing in our model. Both strategies performed best at 
moderate levels of transmissibility, somewhat lower than the transmissibility of the ancestral strain of 
SARS‑CoV‑2.

The United States initially attempted to combat the spread of SARS-CoV-2, the virus that causes COVID-19, 
using a portfolio of controls that is heavy on physical distancing and masks and light on regular diagnostic testing 
with self-isolation1,2. The widespread use of physical distancing measures—which we construe broadly to include 
work-from-home requirements, complete or partial school and business closures, inter- and intra-national travel 
restrictions, and related mandates or recommendations for voluntary behavioral changes that will limit inter-
personal contacts—were particularly important in the early stages of the pandemic, before reliable diagnostic 
tests and effective vaccines and treatments for COVID-19 were widely available. However, these same measures 
also have led to reduced employment, lost earnings, and a variety of adverse physical and mental health impacts 
due to withdrawing from economic activities and curtailing social interactions for long  periods3–5.

A number of prominent researchers and public health experts have advocated widespread and frequent 
diagnostic testing for mitigating the COVID-19  pandemic6–8. These pleas are supported by numerous epide-
miological and economic modeling studies, which on the whole suggest well-implemented programs of testing 
with self-isolation can substantially improve upon a policy approach that relies predominantly on physical 
 distancing9–15. None of these studies, however, accounted for the heterogeneity in transmissibility of infected 
individuals, where a large share of secondary transmissions are caused by a relatively small share of infected 
 individuals16,17. Such “superspreading” transmission is a common feature of infectious  diseases18. For example, 
Woolhouse et al. found that in 9 of 10 datasets, 20% of infected individuals were responsible for at least 80% 
percent of secondary  infections19, and in a review of the role of superspreading in infectious disease outbreaks, 
Stein suggested that models excluding this feature “will inaccurately portray pathogen dynamics and hinder the 
successful implementation of infection control  strategies20”.

We developed an integrated epidemiological and economic model (an ‘epi-econ model’) by coupling a com-
partment model of an infectious disease outbreak with an economic model of the benefits and costs of the 
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associated health outcomes and control measures. We used our epi-econ model to compare two distinct con-
trol strategies—physical distancing versus testing with self-isolation—using a common set of assumptions and 
parameter values. The model includes the possibility of transmission by superspreading to allow a comparison 
of control strategies when a disproportionate share of secondary transmissions are caused by a small fraction of 
infected individuals, as seems to be indicated for COVID-1917,21–23.

We also examined the performance of the testing strategy using relatively inaccurate diagnostic tests, since 
such rapid tests may be the most cost-effective basis for a widespread and frequent random testing program. 
Specifically, we examined the influence of false negative and false positive testing error rates, the time delay 
between administering a diagnostic test and reporting the result, and the self-isolation compliance rate on 
the performance of an optimized testing program relative to optimized physical distancing measures. We also 
decomposed the costs of each strategy into lost economic productivity or earnings from physical distancing or 
isolation, which will be borne mainly by households and firms, and the cost of diagnostic testing, a large share 
of which may need to be subsidized by local or state governments to achieve sufficiently high rates of testing.

We designed this study to provide insights about the relative performance of physical distancing and testing 
with self-isolation control strategies not only for COVID-19 but also for other pathogens that fall within the broad 
parameter space considered here. Our primary results are based on parameter settings meant to represent the 
ancestral strain of SARS-CoV-2, which circulated around the world between January 2020 and the final months 
of 2021. For comparison, we also present results from alternative parameterizations meant to encompass a wide 
range of possible variants—including Omicron, which is more transmissible but apparently less lethal than prior 
SARS-CoV-2 variants—as well as additional sensitivity analyses. Therefore, the results from this study should be 
useful for informing our response to possible future waves of COVID-19 fueled by other more or less transmis-
sible or lethal variants, or an entirely different contagious respiratory pathogen that might emerge in the  future24.

An important set of parameters in our model includes those characterizing the accuracy of the diagnostic tests 
that would support a control strategy based on regular testing with self-isolation, and the rate of compliance with 
recommendations by public health authorities to isolate upon receiving a positive test result. Diagnostic tests for 
COVID-19 are known to be  imperfect25,26. They fail to identify some individuals who are in fact infected (false 
negatives) and they erroneously identify as infected some individuals who are not (false positives). Furthermore, 
some people who receive a positive test result may choose not to comply with guidance to isolate for a variety 
of reasons. They may have work, family, or personal obligations that are overriding, or they may be “conscien-
tious objectors” who do not believe the virus poses a severe enough threat to justify restrictions on individuals’ 
freedom of movement and association even for those who are  infected27. Among our main goals in this study is 
to examine how robust a random testing and self-isolation policy is to these limitations. What are the highest 
levels of testing error rates and non-compliance that a regular testing and self-isolation policy could exhibit and 
still provide positive net benefits or perform better than an optimized physical distancing policy? Some of the 
key elements of our model were chosen to accommodate these important features of a testing program.

A brief description of the key elements of our model follows, and a complete description can be found in the 
Methods section. Our point of departure is a continuous-time compartment model based on a standard S-I-R 
 framework28. We added a primary compartment for infected individuals with elevated transmissibility (“super-
spreaders”)18 plus 13 secondary compartments to track the fate of individuals who get tested for COVID-19, 
including individuals who are waiting for a test result and those in self-isolation. The model includes parameters 
representing the share of infected individuals who become superspreaders (k), the delay in receiving a diagnostic 
test result ( σ ), the false positive and false negative error rates of the tests ( ε1 and ε2 ), the average compliance rate 
among individuals who receive a positive test result and are asked to self-isolate ( � ), the reduced frequency of 
inter-personal contacts due to physical distancing measures (x), and the frequency of random diagnostic test-
ing ( τ ). The regulator’s task is to choose the level (x) and duration ( Tx ) of physical distancing, or the frequency 
( τ ) and duration ( Tτ ) of random testing, or both, to maximize the net benefits of the control measures, which 
comprise the value of reduced mortality risks minus the value of lost economic output both during the period of 
implementation and during the period of economic recovery. We compute the value of mortality risk reductions 
using a central estimate of the “value per statistical life” (VSL)29, and we use a concave utility function whose 
curvature is controlled by the coefficient of relative risk aversion ( η ), which implies a downward sloping demand 
curve for mortality risk  reductions30.

Results

Our main results from four model variations, which are distinguished by whether or not we include super-
spreaders or a diminishing VSL, are presented in Table 1. The first row in each section of the table represents the 
uncontrolled scenario, under which 0.894% of the population dies from infection. No benefits or costs accrue 
under this scenario because no policy controls are implemented.

Under the first model variation, which includes superspreading and a diminishing VSL, the optimal distanc-
ing policy reduces the contact rate by [1− (1− 0.189)2] × 100 = 34.2 % of its uncontrolled level for around 
four and a half months, which reduces deaths from infection by 23%. The present value of benefits of this policy 
are equivalent to 24.9% of annual GDP, and the total (short- plus long-run) costs are 14.8% of GDP, so the net 
economic benefit is equal to 10.2% of GDP. Under the optimal testing policy, everyone who is not already iso-
lated or waiting for a test result is tested about every other day (52.2% of days) for about 10 months. This policy 
reduces deaths from infection by 67.4%, with benefits, costs, and net benefits of 55.0%, 30.3%, and 24.7% of 
GDP. Under this model variation, we could find no combination of distancing and testing that could improve 
on the optimal testing strategy.
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Under the second model variation, we removed superspreaders from the system by setting k=0 . We then 
re-solved the distancing, testing, and combined policy optimization problems to isolate the influence of super-
spreaders by contrast to the outcomes under the first model variation. The qualitative results are similar to the 
case with superspreaders: the testing strategy performs better than the distancing strategy, and again we found 
no combined strategy that could improve upon the optimal testing strategy. Two notable results are that the per-
formance of the optimized distancing policy is the same with and without superspreaders, and the performance 
of the testing policy is lower without superspreaders than with. The reason for the former result is that the S-I-R 
model is calibrated to the same R0 value with or without superspreaders, and we assumed that the behaviors 
of infected and superspreading individuals are the same. What distinguishes them is a higher viral  load31, not 
a higher rate of social mixing by superspreaders. While our model explicitly incorporates only the first factor, 
in reality superspreading may stem from either factor or both factors working  together32. This assumption also 
explains why the optimized testing policy performs better with superspreaders. We assumed that the sensitivity 
of diagnostic tests is positively related to the viral load of the test subjects, so superspreaders are more likely to 
be identified by testing than are non-superspreading infected  individuals33. In some cases, rapid tests that fail 
to detect individuals with low viral loads may be preferred to very sensitive tests. Such low-sensitivity tests can 
catch superspreaders but would allow individuals with lower viral loads who have a much lower risk of spread-
ing the virus to pass through the detection net, thereby saving the cost of unnecessary isolation. Also note that 
because we calibrated k and α such that R0 remains fixed, this influence of superspreading is separate and apart 
from any differences in the performance of the two policy strategies at different levels of R0.

Under the third model variation, we included superspreaders again by setting k = 0.1 , but we made the VSL 
constant rather than diminishing with the size of the risk reduction by setting η = 0 . In this variation, both 
optimized policies are more stringent than under the second model variation because the benefits of control are 
higher with a constant VSL, all else equal. As before, the optimized testing strategy significantly outperforms the 
optimized distancing strategy. In this case, the combined policy performs slightly better than the optimized test-
ing policy alone. Adding a small amount of distancing ( x = 0.096 ) for around three months ( Tx = 121 days) and 
somewhat relaxing the rate and duration of testing increases the net benefits slightly, from 72.7 to 73.7% of GDP.

Under the fourth model variation, we excluded superspreading and used a constant VSL. The optimal distanc-
ing policy is the same as that under the third model variation for the same reasons that the optimal distancing 
policy did not differ between the first two model variations, as explained above. In this case the optimal testing 
policy is extended 11 additional days, but the policy is less effective than under the third model variation because 
the relative advantage testing has in identifying individuals with higher than average viral loads has been lost 
without the superspreaders. As in the third model variation, the combined policy slightly outperforms the opti-
mal testing policy by adding a modest amount of distancing for nearly seven months. A final note on the results 
shown in Table 1 is that in each of the four scenarios the most economically efficient policy (with the maximum 
net benefits) also is the policy with the fewest mortalities.

We performed a series of sensitivity analyses to better illustrate the behavior of the model and to examine the 
influence of several key parameters. Figure 1 shows the net benefits of the physical distancing policy over the full 

Table 1.  Optimal distancing, testing, and combined policies under four model variations. Deaths are reported 
per capita, and capitalized monetary values are reported as a fraction of annual GDP.

x Tx τ Tτ Deaths Value of reduced mortality Short run output loss Short run cost of testing Long run loss Net benefits

With superspreading, with diminishing VSL ( k = 0.1,η = 1)

 No controls 0.000 0 0.000 0 0.00894 0.000 0.000 0.000 0.000 0.000

 Distancing 0.189 141 0.000 0 0.00687 0.249 0.057 0.000 0.091 0.102

 Testing 0.000 0 0.522 304 0.00316 0.550 0.061 0.057 0.185 0.247

 Combined 0.000 0 0.522 304 0.00316 0.550 0.061 0.057 0.185 0.247

Without superspreading, with diminishing VSL ( k = 0,η = 1)

 No controls 0.000 0 0.000 0 0.00894 0.000 0.000 0.000 0.000 0.000

 Distancing 0.189 141 0.000 0 0.00687 0.249 0.057 0.000 0.091 0.102

 Testing 0.000 0 0.399 224 0.00509 0.413 0.043 0.034 0.121 0.216

 Combined 0.000 0 0.399 224 0.00509 0.413 0.043 0.034 0.121 0.216

With superspreading, with constant VSL ( k = 0.1,η = 0)

 No controls 0.000 0 0.000 0 0.00894 0.000 0.000 0.000 0.000 0.000

 Distancing 0.386 334 0.000 0 0.00023 1.207 0.294 0.000 0.461 0.452

 Testing 0.000 0 0.995 327 0.00031 1.196 0.085 0.098 0.287 0.727

 Combined 0.096 121 0.753 342 0.00018 1.214 0.102 0.084 0.291 0.737

Without superspreading, with constant VSL ( k = 0.1,η = 0)

 No controls 0.000 0 0.000 0 0.00894 0.000 0.000 0.000 0.000 0.000

 Distancing 0.386 334 0.000 0 0.00023 1.207 0.294 0.000 0.461 0.452

 Testing 0.000 0 1.000 338 0.00092 1.112 0.090 0.101 0.299 0.622

 Combined 0.139 198 0.690 343 0.00018 1.215 0.131 0.080 0.330 0.674
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range of the distancing fraction, x, from 0 to 1 at two levels of the coefficient of relative risk aversion, η = 1 and 
0 (top panel), and the testing policy over a range of testing rates, τ , from 0 to 1 per day at four different assumed 
prices of the tests, p = $25, $50, $100, and $150 (bottom panel). In each case the duration of the policy—Tx for 
the distancing policy and Tτ for the testing policy—has been optimized conditional on x or τ . With η = 1 , the 
net economic benefit of the physical distancing policy reaches a global maximum at around x = 0.2 . With η = 0 , 
the net economic benefit of the physical distancing policy initially increases to a local maximum around x = 0.2 , 
then declines slightly, then increases again to its global maximum around x = 0.4 , then decreases smoothly to 
zero around x = 0.9 . The curves do not drop below zero because Tx is optimized simultaneously, so if x is too 
high then Tx will be reduced to zero if necessary. The bottom panel shows that, at our primary test price p = $50, 
the net economic benefit of the random testing policy increases relatively rapidly from τ = 0 to about 0.25 then 
remains relatively flat but maximum value around τ = 0.5 . The additional curves for p = $25, $100, and $150 
show that the optimal testing rate decreases from close to 1 at low test prices down to around 0.2 for sufficiently 
high test prices.

To help explain the behavior of the curves shown in Fig. 1, net benefit curves across the full range of the testing 
policy duration, Tτ—each one holding the testing rate constant at τ = 0.2, 0.4, 0.6, 0.8, or 1.0—are shown in Fig. 2. 
The solid curve shows that the optimal duration of the testing program for τ = 0.2 is around 120 days, and there 
is only one local maximum in this case. The dashed and dotted curves show that there can be two local maxima 
when τ is between 0.2 and 0.6: for τ = 0.4 , one local maximum occurs around 120 days and the other around 250 
days. The latter maximum is the global optimum for this testing rate. The remaining curves show that the local 
maximum at the lower values of Tτ disappears by the time τ has reached 0.6. The shapes of these curves are due 
to the fact that if the testing rate is high, then as long as the testing program is in place viral transmission will 
be suppressed. If the program is ended prematurely, then the epidemic can re-ignite and cause a second wave of 
infections that peaks before the vaccine arrives. For example, the policy with τ = 1.0 and Tτ = 250 days would 
lead to a large net loss. In this case, a high cost of testing will accrue over the course of the testing program, but 
after testing ceases enough time remains for nearly the full curve of infections to peak and decline before the 
vaccine arrives. Many resources will have been wasted just to delay nearly the same sized peak until later in the 
year with nearly the same number of deaths as in an uncontrolled scenario. This highlights the important role 
of the anticipated vaccine arrival time, Tv.
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Figure 1.  Net benefits (as a fraction of GDP, y-axis) of the physical distancing policy (top) and the random 
testing and self-isolation policy (bottom).
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Results from sensitivity analyses that compare the performance of physical distancing and random testing 
under a range of assumed values for parameters that are common to both strategies are shown in Fig. 3. Key 
results illustrated in the panels from left to right and top to bottom are as follows. Holding all other parameters 
at their primary values, testing outperforms distancing over the full range of R0 values. Beyond R0 ≈ 5 , no con-
figuration of the distancing policy has positive net benefits, while some configurations of the testing strategy 
can be beneficial for R0 values at least up to 7. Both strategies perform best when R0 is slightly less than 2. The 
net benefit of distancing declines while the net benefit of testing increases with the average infectious period, 
1/γ . The net benefits of both strategies increase with the infection fatality rate, ρ . A notable distinction between 
the two strategies along this dimension is that the performance curve for the testing strategy separates from the 
x-axis at a lower value of ρ : even for very low levels of lethality, some configuration of the testing strategy can be 
beneficial while the distancing strategy cannot. The performance of both strategies changes little with the initial 
fraction of the population that is infected, i0 , so both strategies appear to be reasonably robust to their start dates. 
The performance of both strategies declines as the anticipated arrival time of the vaccine increases. The testing 
strategy outperforms the distancing strategy at all levels of Tv considered, between one half and 2 years. The 
performance of both strategies declines linearly with Tv up to around 300 days for the distancing strategy and 
nearly 400 days for the testing strategy. After those points, both strategies maintain their performance because 
herd immunity has been reached by this time. The performance of the testing strategy increases slightly with the 
share of infections attributable to superspreaders, α , while the distancing strategy is not affected by this parameter. 
Testing is beneficial for VSL values greater than about $2 million, while distancing is beneficial for values above 
around $4 million. The net benefit of both strategies declines with η , rapidly for values of η below 1, then far less 
rapidly for values between 1 and 3. The testing strategy still outperforms the distancing strategy at all levels of η 
between 0 and 3. The net benefit of both strategies also declines with tR , the time required for the output gap to 
shrink by 95%. As for all other parameters shown in the figure, the testing strategy outperforms the distancing 
strategy over the full range of tR considered.

Results from sensitivity analyses that compared the performance of the optimized testing with that of the 
distancing policy under a range of assumed values for parameters unique to the testing policy are shown in 
Fig. 4. Net benefits of random testing remain larger than that for physical distancing over most of the ranges 
of each parameter in turn—with a few notable exceptions—holding all other parameters fixed at their primary 
values. The performance of an optimized testing strategy is maximized at a type I (false positive) error rate of 
0, and only at very high type I error rates does the performance of testing decline to essentially match the per-
formance of the optimized physical distancing strategy. At this point the testing strategy erroneously catches 
nearly all those who are tested and the false positives are taken out of circulation, which functions like physical 
distancing. The performance of the testing strategy declines slowly with the type II (false negative) error rate for 
non-superspreading infected individuals. The performance of the testing strategy declines more rapidly with 
the type II error rate for superspreading individuals, and at sufficiently high levels of εZ2 the testing strategy 
performs worse than distancing. The performance of the testing strategy declines with the average wait time 
for test results, as expected, but still outperforms the optimized distancing policy at wait times up to nearly 3.5 
days. The testing strategy outperforms the optimized distancing policy for all levels of compliance greater than 
around 20%. Even at such low compliance, the bias towards identifying superspreaders and the distancing-like 
effect of isolating false positives appears to make the testing strategy relatively robust to non-compliance with 
the self-isolation guidelines. The performance of the testing strategy increases slowly with the average duration 
of self isolation. Beyond an isolation period of around 15 days, the benefits of lengthening the duration of the 
isolation period are nearly offset by the costs, so the performance curve nearly flattens. The ranges of testing 
parameters examined in Fig. 4 are meant to safely cover the plausible values for these parameters, so overall 
these results suggest that a testing policy can perform at least as well as a physical distancing policy throughout 
a large volume of the plausible parameter space.
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Next, we examined the performance of the two strategies over a wide range of combinations of transmissibility 
( R0 ) and lethality ( ρ ). The results of these sensitivity analyses are shown as contour plots in Fig. 5. The top left 
plot shows net benefit contours for the distancing policy, and the top right plot for the testing policy. Both sets 
of contours exhibit a negative marginal rate of substitution between transmissibility and lethality when R0 is less 
than around 1.5 (the contour lines slope down), but the MRS is positive for higher levels of transmissibility (the 
contour lines slope up). In both cases, the best performance occurs when R0 is around 1.5–2.0 and ρ is high. The 
third plot shows contours of the the difference between the testing and distancing net benefits. No 0-contour 
appears on the plot, which indicates that the testing policy outperforms the distancing policy over the entire 
range considered here, and the performance gap is maximized when R0 ≈ 2 and ρ ≈ 0.015.

Finally, we conducted a Monte Carlo uncertainty analysis by placing triangular distributions on all model 
parameters with modes equal to the primary estimates and lower and upper bounds corresponding to the ranges 
for each parameter shown in Table 3. We drew random sets of parameters from these uncorrelated distributions 
and re-solved the distancing, testing, and combined policy optimization problems under each set of parameters. 
The frequency of Monte Carlo iterations in which each strategy was optimal and the frequencies that each strategy 
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outperformed each other strategy are shown in Table 2. Distancing alone was optimal in 17.0% of cases, testing 
alone was optimal in 51.6% of cases, and the combined strategy outperformed both sole strategies in 27.0% of 
cases. The improvement in net benefits of the combined strategy over testing alone was modest but not negli-
gible: among those random parameter draws where testing outperformed distancing and the combined policy 
outperformed testing, the average improvement of the combined strategy over testing alone was 3.09% of GDP.

Discussion
We developed an integrated epidemiological and economic model to compare the performance of two dis-
tinct strategies for controlling an infectious disease outbreak: physical distancing and random testing with 
self-isolation. The model includes a simple representation of superspreading and accounts for false positive and 
false negative diagnostic testing errors and partial compliance with self-isolation recommendations. The model 
also incorporates a diminishing marginal value of mortality risk reductions, which is important for generating 
realistic estimates of willingness-to-pay for large reductions in the risk of death.

The immediate implications of our results pertain to the relative performance of physical distancing versus 
testing with self-isolation control strategies. We found that for an epidemic similar to the ancestral strain of 
SARS-CoV-2, an optimized strategy of random testing with voluntary self-isolation can deliver higher net benefits 
than a physical distancing strategy over a wide range of plausible conditions in our model. The performance of 
both strategies depend strongly on the transmissibility of the pathogen. There is an intermediate level of transmis-
sibility ( R0 ≈ 2 ) at which the net benefits of each strategy is maximized, and as transmissibility increases beyond 
this level their performance degrades until a higher threshold level of transmissibility is reached beyond which 
neither strategy can achieve positive net benefits. The performance of both strategies appears to always increase 
in the lethality of the pathogen, but the performance advantage of the testing policy over the distancing policy 
is maximized at an infection fatality ratio ρ ≈ 0.015 , which is 1.5 to 3 times higher than the ancestral strain of 
SARS-CoV-2. We also found an important influence of “superspreading”—whereby a large fraction of transmis-
sions are attributed to a small fraction of infected individuals—on the relative performance of the two policies. 
Insofar as diagnostic tests are sensitive to viral loads, and individuals with high viral loads are more likely to 
transmit the pathogen to others, superspreading enhances the relative performance of the testing strategy over 
the physical distancing strategy.

Our key result is that an optimized random testing strategy can outperform an optimized physical distancing 
strategy for mitigating COVID-19 or infectious diseases with similar features. One necessary condition for this 
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Figure 4.  Sensitivity of net benefits (as a fraction of GDP, y-axes) of optimal testing and self-isolation policy 
with respect to: ε1 , εI2 , εZ2 , 1/σ , � , and 1/δ (x-axes). The solid lines depict the optimized net benefits of the 
testing policy, the vertical dotted lines correspond to our primary values for each parameter (shown in Table 2), 
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Figure 5.  Contour plots of the net benefits of physical distancing (top left), random testing with self-isolation 
(top right), and the difference between the two (bottom) over a wide range of pathogen transmissibility ( R0 ) and 
disease lethality ( ρ).

Table 2.  Monte Carlo uncertainty analysis results. Frequency that each policy strategy (No controls, 
Distancing, Testing, Combined) was optimal among 500 Monte Carlo iterations (column 1), and frequencies 
that the strategy in each row outperformed each other strategy (columns 2–4). Parameters were drawn from 
independent triangular distributions with modes and endpoints defined by primary values and ranges shown 
in Table 3. Numbers in parentheses are standard errors.

Optimal No controls Distancing Testing

No controls 0.044 (0.009) – 0.252 (0.019) 0.046 (0.009)

Distancing 0.170 (0.017) 0.748 (0.019) – 0.360 (0.021)

Testing 0.516 (0.022) 0.954 (0.009) 0.596 (0.022) –

Combined 0.270 (0.020) 0.956 (0.009) 0.786 (0.018) 0.440(0.022)
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result to hold is that people comply with the self-isolation guidelines at least 20 percent of the time they receive a 
positive COVID-19 test (Fig. 4, bottom center graph). This seemingly low threshold level of compliance emerges 
due to the relatively high overall cost of physical distancing, which affects all individuals on an ongoing basis 
rather than the smaller number of individuals who test positive at any given time. Our primary value of the self-
isolation compliance rate was � = 0.7 , so we assumed reasonably high but not full compliance. Our sensitivity 
analysis showed that a testing strategy can outperform a distancing strategy as long as � > 0.2 . This is paired with 
a high rate of testing ( τ = 1.0 ) and so is similar to full compliance ( � = 1.0 ) at a lower rate of testing ( τ = 0.2 , 
once every five days). The testing strategy is relatively robust to lower rates of compliance because both the ben-
efits and costs of the testing strategy decline with the rate of compliance: if people fail to isolate after receiving 
a positive test result, then fewer cases would be prevented and lower costs would be imposed. The effectiveness 
of the testing strategy from a public health perspective would be degraded at lower levels of compliance, but the 
difference between economic benefits and costs would remain larger than an optimized distancing policy over 
a reasonably wide range of self-isolation compliance rates. If compliance completely unravels such that � < 0.2 , 
then a physical distancing strategy that achieved the optimal distancing fraction ( x = 0.189 ) would be more 
efficient. Naturally, sufficient compliance also would be required for a distancing strategy to perform as predicted. 
This highlights the crucial role of behavioral reactions to public health policies, which can undermine otherwise 
well-designed  regulations34–36.

Another key result is that a combined strategy could not improve on an optimized testing strategy under our 
primary parameter values with a diminishing VSL. However, we found that a hybrid policy including testing and 
a modest amount of physical distancing was optimal when we used a constant VSL. More broadly, our Monte 
Carlo uncertainty analysis using random parameter draws revealed that some combination of distancing and 
testing outperformed either strategy alone in 27.0% of Monte Carlo iterations, testing alone was optimal in 51.6% 
of iterations, distancing alone in 17.0%, and no controls in 4.4%. While testing alone outperformed distancing 
in 59.6% of the iterations, the combined strategies outperformed distancing alone in 78.6% of the iterations. We 
take these results to suggest that a testing strategy should be given consideration at least on par with a physical 
distancing strategy for controlling future epidemics. Though not modeled here, another potential advantage of 
a testing strategy over a distancing strategy is that aggregated testing results could be used to better monitor 
the state of the epidemic as it evolves, which could allow both regulators and individuals to dynamically adjust 
their “top-down” control measures and “bottom-up” self-protection behaviors as the epidemic waxes and wanes 
over  time37.

A broader implication of our results pertains to the level of performance we should expect from even a 
well-functioning policy process in the context of a novel epidemic when key parameters cannot be precisely 
estimated. As Ferguson et al. explained, “Two fundamental strategies are possible: (a) mitigation, which focuses 
on slowing but not necessarily stopping epidemic spread—reducing peak healthcare demand while protect-
ing those most at risk of severe disease from infection, and (b) suppression, which aims to reverse epidemic 
growth, reducing case numbers to low levels and maintaining that situation indefinitely. Each policy has major 
 challenges38”. The twin peaks in the net benefit curves shown in Figs. 1 and 2 can be associated with these two 

Table 3.  Model parameter descriptions, primary values, ranges used in sensitivity analyses, and citations to 
sources used to inform our selections of primary values and ranges.

Parameter Description Primary Range Sources

R0 Basic reproductive ratio 2.5 1–10 38,66–70

1/γ Average infectious period [days] 8 4–12 71

ρ Infection fatality ratio 0.01 0.005–0.050 66,72–74

i0 Initial fraction of population infected 0.01 0.001–0.05 –

Tv Time until vaccine is available [days] 365 183–730 –

k Share of superspreaders 0.1 0.05–0.25 16,22,39

α Share of infections by superspreaders 0.80 0–1 16,22,39

VSL Value per statistical life [106$] 10 1–10 29,49,55,75–77

η Coefficient of relative risk aversion 2.0 1–3 51,56–58

r Discount rate [/yr] 0.03 0.015–0.07 46,54,55

tR Economic recovery time [yr] 5 0–10 78,79

ε1 Type I error rate (1-specificity) 0.03 0.01–0.1 26,80–83

ε2I Type II error rate (1-sensitivity) for infecteds 0.25 0.05–0.30 26,80–83

ε2Z Type II error rate (1-sensitivity) for superspreaders 0.10 0.02–0.20 33,84

1/σ Average test waiting time [days] 1 0.5–5 –

� Self-isolation compliance ratio 0.70 0.1–1 85–87

1/δ Average isolation period [days] 14 5–21 –

p Marginal cost of testing at τ=1/2 [$/test] 50 25–150 26,63,88–90

y Marginal cost of distancing at x = 1/2 [$/yr] 70,693 – 91

θ Normalized slope of marginal cost curves 0.5 0–1 –
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contrasting strategies. The peaks at the the low levels of Tτ in Fig. 2 can be viewed as mitigation strategies, which 
save a smaller number of lives at a low cost, while the peaks at the high Tτ values can be viewed as suppression 
strategies, which save many more lives at a much higher cost. This distinction also shows up in both panels of 
Fig. 1. In the top panel, the lower and higher peaks of the dashed line ( η = 0 ) correspond to mitigation and 
suppression strategies, respectively. In the bottom panel, as the average price of diagnostic tests increases from 
$25 to $100, the optimal frequency of testing drops rapidly from nearly every day ( τ close to 1) down to about 
once every five days ( τ ≈ 0.2 ). The former configuration is a suppression strategy while the latter is a mitigation 
strategy. These results suggest that modest uncertainty about one or more key parameters ( η and p among others) 
can lead to major uncertainty about the optimal policy strategy, to the point where it may be unclear whether 
the qualitatively distinct strategies of mitigation or suppression should be pursued. When the policy strategy 
rankings in deterministic models such as the one used here are substantially sensitive to one or more uncertain 
parameters, it becomes easier to understand the wide range of views about the wisdom of relatively lax versus 
strict controls among the general public and even many experts. Future studies might shed more light on these 
issues by employing a richer model of  superspreading39 and by incorporating endogenous pathogen infectivity 
to mimic the adaptive evolution of the pathogen over  time40.

Methods
We developed a combined epidemiological and economic model that can be optimized by adjusting control vari-
ables representing physical distancing and random testing with self-isolation policies. As with similar compart-
ment-based models used in previous studies, the model used here is as parsimonious as possible while including 
enough detail to address our main research  questions41,42. Descriptions of all parameters and the primary and 
low and high values used in our epi-econ model are provided in Table 3.

Epidemiology. To represent the dynamics of viral spread, illness, and recovery, we couple epidemiological 
and economic processes using a continuous-time compartment model based on a standard S-I-R  framework28,43. 
In addition to tracking the fraction of the population who are susceptible (S), infected (I), recovered (R), or dead 
(D), we add a primary compartment for infected individuals with elevated transmissibility (“superspreaders”) 
(Z)18. We also added 13 secondary compartments to track the fate of individuals who get tested for COVID-19: 
nine distinct states of susceptible, infected, superspreading, and recovered individuals who are waiting for a 
test result ( WSS , WII , WZZ , WRR , WSZ , WSI , WIR , WZR , and WSR ), and susceptible, infected, superspreading, and 
recovered individuals who are in isolation ( QS , QI , QZ , and QR ). While we omit time notation, all upper case vari-
ables are dependent upon time, and time derivatives are denoted by over-dot notation. To define the transition 
rates among these additional compartments, we add parameters to represent the influence of physical distancing 
on the contact rate, the share of infected individuals who become superspreaders, the frequency of testing, the 
delay in receiving test results, the false positive and false negative error rates of the tests, and the average testing 
compliance rate among individuals who receive a positive test result and are asked to self-isolate.

A flow diagram depicting all routes for the transition of individuals between compartments is shown in Fig. 6, 
and the model parameters are described in Table 3. The flows indicated by the arrows in Fig. 6 correspond to state 
transition terms that appear in the equations of motion below. We will describe the elements of several equations 
of motion in detail; the remaining equations can be interpreted using the same logic.

The equation of motion for susceptible individuals is

(1)Ṡ = −(1− x)2[βI (I +WSI +WII)+ βZ(Z +WSZ +WZZ)]S − τS + σ(1− ε1�)WSS + δQS .

Figure 6.  Augmented S-I-R compartment model. The Z compartment represents superspreaders, W 
compartments represent individuals waiting for test results, and Q compartments represent individuals under 
self-isolation. Lines represent transitions between compartments due to infection, recovery, mortality, and 
testing.
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The first term on the right hand side of Eq. (1), (1− x)2[·]S , represents newly infected individuals. Trans-
mission of the pathogen to a susceptible individual, the total number of which is S, can occur by contact with 
a non-superspreading infected individual, the total number of which is I +WSI +WII , or a superspreading 
infected individual, the total number of which is Z +WSZ +WZZ . βI is the product of the average (baseline, 
un-controlled) probability of contact between pairs of susceptible and non-superspreading infected individuals 
and the probability of transmission conditional on contact between them. Likewise, βZ is the product of the 
average (baseline, uncontrolled) probability of contact between pairs of susceptible and superspreading infected 
individuals and the probability of transmission conditional on contact between them. The influence of a physi-
cal distancing policy is represented by x, which is the fractional reduction in the average number of contacts 
that each individual has with other individuals. The term (1−x) is squared in Eq. (1) and elsewhere because 
the number of new infections is proportional to the product of the number who are currently infected and the 
number who are currently susceptible. If only the infected or only the susceptible individuals remain isolated 
on a fraction x of the occasions when they otherwise would make contact with other individuals, then the rate 
of new infections would be (1−x)βSI . Assuming both types of individuals, infectious and susceptible, remain 
isolated on a fraction x of the occasions when they otherwise would make contact with others, the rate of new 
infections becomes (1−x)2βSI.

The second term in Eq. (1), τS , is the number of susceptible individuals who get tested. The third term includes 
those individuals who were tested as susceptible and receive a true negative test result, σ(1− ε1)WSS , plus those 
who receive a false positive test result and do not comply with the request to self-isolate, σε1(1− �)WSS . The 
final term, δQS , represents those who were isolated as susceptible that exit isolation.

The equation of motion for non-superspreading infected individuals is

The first term on the right hand side of Eq. (2) includes the 
(
1− k

)
 share of newly infected individuals who do 

not become superspreaders. The second term includes those who are tested (at rate τ ), those who recover (at rate 
γ ), and those who die (at rate m), where m =

ργ
1−ρ

 and ρ is the infection fatality  ratio44. The third term includes 
those who were tested while susceptible but are currently infected and receive a true negative test result or receive 
a false positive test result but do not comply with the guidelines to isolate. The fourth term includes those who 
were tested while infected and are still infected and receive a false negative test result or receive a true positive test 
result but do not comply. The fifth and final term includes those who are exiting isolation but are still infected.

The equation of motion for superspreading infected individuals is directly analogous to that for non-super-
spreading infected individuals:

The first term on the right hand side of Eq. (3) includes the k proportion of newly infected individuals who 
become superspreaders. The second term includes superspreaders who are tested, or recover, or die. The third 
term includes those who were tested while susceptible but are currently superspreaders and receive a true negative 
test result or a false positive test result but do not comply with the guidelines to isolate. The fourth term includes 
those who were tested while superspreaders and are still superspreaders and receive a false negative test result 
or receive a true positive test result but do not comply. The fifth and final term includes those who are exiting 
quarantine but are still superspreaders.

The equation of motion for recovered individuals is

The first term on the right-hand side of Eq. (4) includes recovered, infected, and superspreading individuals. The 
second term includes recovered individuals who exit isolation. The third and fourth terms include individuals 
who were tested while infected or superspreaders but are now recovered and receive a false negative test result 
or a true positive test result but do not comply with the isolation guidelines. The fifth and sixth terms include 
individuals who were tested while susceptible then became infected or superspreaders but are now recovered 
and receive a true negative test result or a false positive test result but do not comply. The seventh and final term 
includes recovered individuals who are tested.

The remaining equations of motion use elements that are common or analogous to one or more of those 
described above, so we list them below for completeness but we refrain from explaining each one in turn.
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Equations (1)–(18) comprise the epidemiological model, accounting for superspreaders (k), physical distanc-
ing (x), random testing ( τ ), the error rates of the tests ( ε1 , ε2I , and ε2Z ), the duration of self-isolation ( δ ), and 
the self-isolation compliance rate ( �).

To calibrate the transmission coefficients, we used previously published estimates for COVID-19 of the 
basic reproductive number, R0 , the fraction of infected individuals who are superspreaders, k, and the fraction 
of infections attributable to superspreaders, which we denote as α . To see how these quantities relate to βZ and 
βI , consider a version of the compartment model that includes superspreaders but excludes physical distancing 
and testing. The relevant equations of motion are

The number of infections will grow when Ż + İ > 0 , i.e., when

The fraction of infected individuals who are superspreaders is k = Z/(Z + I) . From this, we can substitute 
Z = kI/(1− k) into Eq. (22) to get

Next, substituting S=1 into Eq. (23) and rearranging, we find that when a small number of infected individu-
als are introduced into a completely susceptible population an outbreak will occur (the number of infected and 
superspreading individuals will grow) only if

The ratio on the left-hand side of expression (24) corresponds to R0 in the superspreader model. Next, note 
that the fraction of infections caused by superspreaders is

Substituting Z=kI/(1− k) into Eq. (25) gives a second equation that relates our calibration statistics to the 
two unknown transmission coefficients,
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(19)Ṡ = −(βZZ + βI I)S
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Finally, combining Eqs. (24) and (26) and solving for the transmission coefficients gives

and

We chose numerical values for most of the epidemiological parameters based on a review of recent empirical 
studies of COVID-19 transmission in the United States, which are cited in Table 3. The primary values represent 
our summary judgments of reasonable central estimates for each parameter, and the lower and higher values in 
the final column of the table, which we use for sensitivity and Monte Carlo analyses, are meant to span most of 
the plausible range for each parameter.

A few model parameters are incidental and were chosen for practical reasons. In particular, Tv , the time until 
a vaccine is available, is now moot for COVID-19 because effective vaccines have since been widely distributed. 
So we set Tv to represent a scenario like the early months of the COVID-19 pandemic when vaccines were still 
on the horizon and physical distancing and testing were two of the main policy levers at that time. We also set 
i0 = I0/N , the initial fraction of the population infected, at an arbitrarily small value, with no intention to peg 
the initial period of our model to any specific day early in the pandemic. The particular set of primary parameter 
values used here is not meant to be definitive, but we do intend them to fall well within the ballpark of realistic 
estimates for COVID-19, and we intend our sensitivity analyses to cover a wide range of plausible alternative 
scenarios that could emerge in future waves of COVID-19 or in future unrelated respiratory epidemics.

Economics. To estimate the economic benefits and costs of epidemiological outcomes simulated by the 
extended S-I-R model, we used four key elements that generalize those in our previous  work45,46. First, we used 
an estimate of the “value per statistical life” (VSL) to calibrate a willingness-to-pay function for reduced COVID-
19 mortality risks for a representative individual. The VSL is the marginal rate of substitution between income 
and mortality risk and is the proper accounting value to use in benefit-cost analyses of public health policies that 
will reduce mortality risks and increase longevity in the general  population47. However, being a marginal rate of 
substitution, the VSL is not applicable for valuing non-marginal changes in mortality risks without some adjust-
ment. In our model, mortality risks can change by amounts approaching 0.01 in a single year in our primary sce-
nario, and surpassing that level in some sensitivity analyses, which is several orders of magnitude larger than the 
risk changes typically considered in benefit-cost analyses of U.S. federal regulations where the VSL is routinely 
applied. Several recent articles provide a range of perspectives on using the VSL to evaluate COVID-19 policies, 
including comparisons to other contexts with smaller changes in mortality  risks30,48–50.

Here we account for the diminishing marginal value of mortality risk reductions by adjusting the VSL for 
large risk changes. To do so, we use a life-cycle utility model to derive a willingness-to-pay (WTP) function for 
mortality risk reductions that can be easily calibrated using estimates of the VSL and employed in the coupled 
model. Our compartment model does not account for age differences, so we develop a WTP function for an age-
less representative individual with a flow utility function including a base level of utility κ and constant relative 
risk aversion η , constant annual income Y [$ yr−1 ], constant annual background risk of mortality b [yr−1 ], and 
utility discount rate ω [yr−1 ]. Similar utility functions including the constant base level of flow utility have been 
used by previous researchers to study diverse phenomena, from changes in the demand for health care over time 
to the value of reducing the risks of catastrophic climate  change51–53. Since we examine epidemic durations up to 
2 years, we write the representative individual’s discounted expected utility to explicitly accommodate changes 
in first and second period mortality rates as follows:

where m0 and m1 are the uncontrolled disease fatality risks in the first and second periods. Note that as η → 1 , 
the flow utility function (Y1−η)/(1− η) → ln (Y).

Setting baseline utility (with no controls and no payment) equal to policy utility (with controls imposed and 
WTP subtracted from income in the first period only) and then solving for WTP gives the following explicit 
expression for willingness-to-pay:

where
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and where the VSL is defined as the marginal rate of substitution between mortality risk and first-period income,

We used a background mortality rate equal to the inverse of expected lifespan at birth in the U.S., b = 1/77 
per year. For the VSL, we used a primary value of $10 million, which is consistent with U.S. federal government 
recommendations, and in a sensitivity analysis we examined values as low as $1  million54,55. For η , we used a 
primary value of 1, and in sensitivity analyses we examined values from 0 to  351,56–58. Applying a constant VSL 
of $10 million (assuming η = 0 ) to a 1-year mortality risk reduction of 0.01 gives a predicted WTP of $100,000, 
which is nearly 1.5 times average annual income in the United States. Using η > 0 constrains WTP to be no 
larger than annual income, and for a representative individual with annual income Y = $70,000, at η = 1 and 3 
the predicted WTP is 0.76 and 0.49 times annual income.

We linked the opportunity cost per day of physical distancing and self-isolation to average daily earnings, 
similar to several previous optimal control studies of COVID-19  policies59–61. To specify the cost function, we 
assumed that the marginal costs of distancing increases linearly with the fractional reduction of labor supplied 
to the workforce. The overall reduction in labor supply depends on both the distancing fraction, x, and the test-
ing rate, τ , where the effect of the latter is determined by the number of individuals who are in isolation. The 
fractional reduction of labor supply on day t is

We use y to denote average earnings per day prior to the outbreak, and we use θ to denote the variation in 
marginal costs over the full range of x′t from 0 to 1. The marginal cost of the first unit of withdrawn labor (when 
x′t = 0 ) is y − θy/2 and the marginal cost of the last unit (when x′t = 1 ) is y + θy/2 . Therefore, the average cost 
per unit of withdrawn labor on day t for an arbitrary fractional reduction in labor supply x′t is

For θ , we used 0.5 as our primary value, and in a sensitivity analysis we examined a range from 0, which 
implies constant marginal costs, to 1, which means the marginal cost of the first and last units of withdrawn labor 
are 0.5y and 1.5y. If physical distancing can be accomplished by some people working remotely, traveling less, 
minimizing face-to-face meetings, and so on, without being furloughed or losing their jobs for the duration of 
the lockdown period, then θ would be positive. Considering that some fraction of the workforce can physically 
distance at moderate levels with relatively little loss of productivity, we view θ = 0.5 as a middle-of-the-road 
primary value.

Given the above cost function specification, on day t the value of lost output due to physical distancing is

and due to isolation after testing is

where the suppressed state variables in  Eq. (35) include all compartments subject to distancing, and the sup-
pressed state variables in Eq. (36) include all compartments representing individuals who are currently in isola-
tion after receiving a positive test result.

Using analogous assumptions, we specified the cost of administering diagnostic tests on day t as

where p is the marginal cost of testing when τ = 0.5 . Our primary estimate of p = is $50, which is a generous 
price for rapid antigen tests. Paul Romer has suggested that the true marginal cost of rapid antigen tests is around 
$10, and high nominal prices are due to a monopoly  markup62. In a sensitivity analysis we examined a range 
from $25 to $150, the upper end of which is a common price for PCR  tests26,63.

Finally, we assumed that the economy will not immediately recover from the additional shock caused by the 
disruption to labor supply from physical distancing and isolation and the resources diverted to support a large-
scale diagnostic testing program. We represent the output gap induced by the controls as the time averaged per 
capita output lost during the period of controls,

where y′H is the counterfactual per capita economic output on day H = max (Tx ,Tτ ) , when the controls are ended 
(i.e., per capita output on day H along the original growth path), and yH is actual (reduced) per capita output 
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on day H. We assumed that the output gap will close at an exponential rate, ϕ . To specify this rate, we assumed 
that closing the gap by 95% will take tR years, so ϕ = − 1

tR
ln (0.05) . In our primary scenario tR = 5 years, and in 

a sensitivity analysis we examined recovery times between 0 and 10 years.

Policy comparisons. We used the model to compare an optimized physical distancing policy to an opti-
mized random testing and self-isolation policy, and to investigate whether a combined policy can perform better 
than either one alone. The objective of each policy is to maximize net benefits, which is the difference between 
the value of lives saved and the sum of lost economic output and the cost of testing: 

where WTP(�m0,�m1) represents the monetized value of the reduced mortality risks computed as described 
above, and r and ϕ are the discount rate and the economic recovery rate [day−1].

The assumption that vaccine arrival in period Tv will halt the epidemic is an important modeling choice. It is 
clearly unrealistic with respect to the current COVID-19 pandemic, yet we maintain this assumption as a con-
venient means of focusing on what may be the only feasible mitigation measures early in an emerging epidemic 
when vaccines or effective treatments are unlikely to be available for some time. In future work, it would be use-
ful to conduct an expanded analysis including additional control measures such as vaccines and treatments to 
gain a better understanding of how these might be best deployed in place of or alongside the control measures 
we examine here.

To streamline the policy scenarios while maintaining comparability among them, we considered policies with 
a fixed distancing fraction (x) imposed for a limited number of days ( Tx ), policies with a fixed testing rate ( τ ) 
implemented for a limited number of days ( Tτ ), or policies that combine the two control strategies. Therefore, we 
solved optimization problems with at most four control variables: [x,Tx , τ ,Tτ ] . To minimize the risk of mistaking 
a local for a global optimum, for the physical distancing policy we computed net benefits for all combinations of 
x ∈ [0.025, 0.05, ..., 1] and Tx ∈ [5, 10, ...,Tv] , and for the testing policy we computed net benefits for all combina-
tions of τ ∈ [0.025, 0.05, ..., 1] and Tτ ∈ [5, 10, ...,Tv] . To find the optimal (or a nearly optimal) combined policy, 
we first conducted a coarse grid search over the entire control space where the grid was constructed from 7 evenly 
spaced values along the full ranges of the four control variables. Then, from the best starting value among those 
74 = 2, 401 combinations, we used a stochastic gradient search algorithm to improve the solution and reduce the 
risk that we remained trapped in a local but not global maximum of the net benefit function.

An alternative treatment of the optimization problem could allow continuous adjustment of x and τ over the 
course of the epidemic, in which case we could apply a dynamic optimization approach similar to that in our 
previous  work46. The approach we used here is easier to work with and is arguably as or more realistic. Setting 
x or τ to a precisely desired level for a precisely targeted length of time is an idealization, but we can imagine a 
public policy that would attempt to implement such a program. Precisely adjusting x or τ on a continuous basis 
in response to the day-to-day evolution of the epidemic seems even less realistic. The quantitative details would 
surely differ, but we would expect to find a broadly similar overall pattern of comparative performance of the 
control strategies in a continuously optimized model.

The objective function in Eq. (39) is defined by comparison to a scenario with no controls, either “top-down” 
controls by the government or “bottom-up” controls due to voluntary distancing or other self-protective meas-
ures. A completely uncontrolled scenario seems unlikely because we would expect people to modify their behav-
iors in response to elevated health risks even in the absence of top-down policy  interventions64,65. Nevertheless, 
we expect the net benefits of each policy relative to an uncontrolled scenario to accurately rank the economic 
efficiency of the policies as long as any crowding-in or crowding-out of self protective behaviors is neutral with 
respect to the controls, x and τ.

Data availability
Replication code that supports the findings of this study can be found at https:// bitbu cket. org/ steve newbo ld/ 
covid- testi ng- public/.
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