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A reconfigurable graphene patch 
antenna inverse design at terahertz 
frequencies
Mohammad Mashayekhi , Pooria Kabiri , Amir Saman Nooramin * & Mohammad Soleimani 

This article investigates the inverse design of a reconfigurable multi-band patch antenna based on 
graphene for terahertz applications to operate frequency range (2–5THz). In the first step, this article 
evaluates the dependence of the antenna radiation characteristics on its geometric parameters and 
the graphene properties. The simulation results show that it is possible to achieve up to 8.8 dB gain, 13 
frequency bands, and 360◦ beam steering. Then and due to the complexity of the design of graphene 
antenna, a deep neural network (DNN) is used to predict the antenna parameters by given inputs like 
desired realized gain, main lobe direction, half power beam width, and return loss in each resonance 
frequency. The trained DNN model predicts almost with 93% accuracy and 3% mean square error in 
the shortest time. Then, this network was used to design five-band and three-band antennas, and it 
has been shown that the desired antenna parameters are achieved with negligible errors. Therefore, 
the proposed antenna finds many potential applications in the THz frequency band.

Nowadays, the terahertz band is used in wireless  telecommunications1, hyperthermia treatment of breast  cancer2, 
biomedical imaging, security screening, and material  identification3 due to its remarkable properties. In wireless 
communication, the need for multi-band antennas has increased due to a reduction in the number of antennas, 
a reduction in the complexity and cost of the system, and providing the possibility of integration with other 
circuits of the  structure4,5.

On the other hand, the use of graphene has been very impressive in recent years in the field of Nano-electronic 
and THz devices due to its high conductivity and the changeability of the conductivity by tuning the bias volt-
age. The use of graphene in THz  imaging6, patch  antennas7–9 ultra-broadband  absorbers10, and photoconductive 
 antennas11 has been reported.  In12, a dual-band antenna with an average gain of 2.45 dB is designed by creating 
two circle strips on the graphene.  In13, a three-band frequency reconfigurable antenna has been proposed for 
a slotted patch graphene antenna.  In14, a three-band antenna is implemented with a series feed circle graphene 
patch with a gain close to 10 dB.  In15, a four-band antenna has been reported for a four L-shaped stub graphene 
patch antenna. Generally, for graphene antennas, it is possible to change the number of operating frequency bands 
by the variation of graphene chemical potential, similar  to16,17 in which a four-band and three-band graphene 
antenna has been designed with the gain of 2.58 dB and 9.51 dB, respectively.

Making less computational time of resources with an acceptable result is of substantial importance in elec-
tromagnetic applications. In this regard, the machine learning approach has recently demonstrated outstanding 
performance compared to the computational and iterative methods in dealing with electromagnetic problems. 
Deep learning (DL) is a subset of machine learning (ML) with more robust computing capabilities, which 
is based on neural networks (NNs) and can learn the nexus between inputs and outputs. After learning, the 
designed model based on trained data can show a reasonable prediction as outputs for various given inputs in a 
fraction of a second. By taking advantage of this, DL was a suitable technique for inverse scattering  problems18,19, 
design of  metasurfaces20–22 and  metamaterials23–25, design of photonic  structures26,27,beamforming28,29, design 
of  antennas30–32.

The deep neural network (DNN) architecture has been evolving over the years with new techniques and 
advancements. We can mention some recent techniques that applied in electromagnetic  fields23,27,33. Usually, 
these DNN architectures include multiple networks to handle a specific part of the problem and have high struc-
tural complexity. Some of these techniques are used to solve the one-to-many issue. The one-to-many issue is a 
challenging problem in machine learning, which refers to a situation in which a single input is associated with 
multiple outputs. A tandem architecture is presented  in34 by bringing together forward modeling and inverse 
design. The approach demonstrated in this model overcomes the one-to-many issue better than the inverse design 
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model for the designing of nanophotonic structures. Then to overcome the limited generalization ability  of23, a 
probabilistic graphic model introduced as an all-inclusive explanation for metamaterial design.

We have classified using the neural networks in antenna design into three approaches. First, NNs and ML 
enhance some radiation properties by optimizing the antenna parameters and can not control antenna radiation 
patterns in real-time35. Second, by giving the antenna dimensions as input, the antenna radiation will be esti-
mated as output in real-time so DL and ML can speed up the antenna simulation  directly30,31. And third, the most 
widely used method is the inverse design of the antenna using DL. The required radiation pattern characteristics 
are provided as input, and the DNN’s output estimates the antenna parameters. In this case, depending on the 
circumstances, the antenna parameters may be fully adjustable or non-adjustable28,32. Although  in29 a VO2 is used 
as a reconfigurable component in the antenna, the proposed DNN outputs geometrical antenna parameters.

In this article, an inverse design of reconfigurable graphene circular patch antenna at THz frequencies is 
proposed and surveyed to the realization of an intelligent antenna for 6G wireless communication. Also, for 
the first time we apply a chemical potential of graphene as a reconfigurable component in the output of DNN 
to control the radiation properties in real-time. The antenna parameters are divided into two groups, graphene 
and antenna parameters. After the analysis, we generated a data set and filtered it with two specific conditions. 
Then, a DNN model is presented, that can accurately predict the values of the graphene properties and antenna 
parameters for the desired S-parameters and radiation pattern of the antenna.

For this, in Sect. “Deep learning”, the design and simulation of the antenna have been discussed. Then, the 
used deep learning method will be explained and the achieved results have been examined in Sect. “Evaluation 
of deep neural network”. Finally, some conclusions are remarked.

Antenna design and simulation
The flow chart of the activity steps is plotted in Fig. 1. At first, the behavior and dependency of the antenna char-
acteristics on its parameters are investigated by taking into account the antenna parameters are divided into two 
groups, graphene parameters and geometrical parameters. Then, the data needed for training the DNN model is 
generated by sweeping the graphene and geometrical parameters in antenna simulations (see Fig. 1a). Secondly, 
two filters are applied to extract features from S-parameters and E-field patterns, in order to gather proper data for 
use in the training data of the DNN model (see Fig. 1b). Finally, we present a DNN model, which can accurately 
estimate the values of the thickness of the substrate, τ , and µc for desired inputs. In this work, Desired inputs of 
DNN comprise resonance frequencies, realized gain, null level, main lobe direction, and half-power beam width 
(see Fig. 1c). Based on the mentioned procedure, each section will be explained below.

Antenna structure definition. The structure of the antenna along with its parameters is plotted in Fig. 2. 
As shown in this figure, the structure is comprised of three layers. At the top and bottom, a graphene layer with 
thickness Hg = 0.08mm and temperature Tk = 273K is deposited. For the middle layer, a silicon layer by the rela-
tive permeability ǫr = 11.9 and conductivity σ = (25 ∗ 10−5) is used. The other characteristics and dimensions 
of layers are given in Table 1. It is worth mentioning that during the simulations, a 50-ohm port impedance is 

Figure 1.  Flow chart of the main steps in the inverse design of graphene patch antenna.
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assumed for the excitation lumped port, and the antenna parameters are determined such that input matching 
is achieved.

Due to the use of graphene in the patch and ground of the structure, a reconfigurable radiation pattern or a 
reconfigurable operating bandwidth is the inherent property of the structure. As shown in Fig. 3 , if the graphene 
chemical potential changes from 0.1 eV to 0.8 eV, the operation frequencies of the antenna have been shifted 
while the radiation pattern at the 2.34 THz frequency remains relatively constant. In this simulation, Hs = 30 µ 
m , relaxation time = 0.1 ps, Wf  = 12 µ m , and Rp = 18 µ m . Similarly, it is possible to change the beam direction by 
making changes in chemical potential as shown in Fig. 4 . It is obvious in this figure; for the changes of chemical 
potential from 0.1 eV to 1.3 eV, the return loss of the antenna remains relatively constant while the beam direc-
tion has been tilted about 30 degrees at the 3.21 THz frequency. In this simulation, Hs = 20 µ m , relaxation time 
= 1 ps, Wf  = 6 µ m , and Rp = 18 µ m . Therefore, the proposed antenna can be used as a reconfigurable antenna.

Figure 2.  The structure of the patch antenna.

Table 1.  Range of initial values of the antenna parameters.

Parameters Range

µc [0–2] eV

τ [0.1–1] ps

Hs [10–30] µ m

Ws and Ls [50–90] µ m

Rp [15–25] µ m

Hg [0.01–0.1] µ m

Wf [4–12] µ m

Lf [8–20] µ m

Figure 3.  Changes in the return loss of the antenna due to variation of chemical potential (a) while the 
radiation pattern remains constant at the 2.34 THz frequency (b).
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Antenna parameter study and the generation of data sets. In this section, the effect of antenna 
parameters on the radiation properties is studied and the results are categorized to learn the neural network. For 
this, full-wave simulations are done in CST Microwave Studio. The study parameters include chemical potential 
( µc = [0-7] eV), relaxation time ( τ = [0.1-2] ps), substrate thickness ( Hs = [20,30] µ m ), the width of the substrate 
( Ws = [70,90] µ m ), the patch radius ( Rp = [18,25] µ m ), the feed length ( Lf  = 17 µ m ), and the graphene thickness 
( Hg = 0.08 µ m ) . Finally, the number of simulations is equal to 2880. It is worth mentioning that the simulations 
are done in the frequency range of [1–5] THz and S 11 , radiation pattern in E-plane, and realized gain is extracted 
in 101 equally spaced frequency points in the mentioned bandwidth. Then, the number and directions of main 
beams are extracted from the realized gain data based on the condition G realized > 1dB. Furthermore, the num-
ber of frequency bands is determined on the condition that |S11 | > 10dB. In the next step, the dependency of the 
antenna characteristics on the parameter values will be investigated.

Studying the dependence of antenna characteristics on the values of its parameters. In 
Fig. 5a,b, the number of frequency bands is studied as a function of the relaxation time and the chemical poten-
tial for Hs = 20 µ m and Hs = 30 µ m , respectively. As shown in this figure, higher chemical potential results 
into higher frequency bands. Also, more frequency band belongs to higher substrate thickness. Furthermore, 
changing the relaxation time will not affect the number of frequency bands for the zero chemical potential. It 
is worth mentioning that in Fig. 5, the color bar is devoted to relaxation time to make more clearance. Simi-
larly, in Fig. 5c,d the center of the frequency bands which is named here as the resonance frequency, has been 
studied. As shown in this figure, multi-band operation is achieved for lower values of relaxation time chemical 
potential. Likewise, high values of chemical potential and relaxation time will result in higher frequency bands. 
Resonance frequencies in the range of [2–3] THz are achieved if Hs=30 µ m . In the same manner, Fig. 5e,f are 
devoted to studying gain. As shown in these figures, the values of gain are distributed in the range of [1–8.8]dB. 
Furthermore, higher gain values are achieved for thicker substrates and lower chemical potentials. In Fig. 5g,h, 
the angles of the main lobe directions are plotted. Based on the presented results in this figure, the distribution 
of the main lobe angle is wider for higher values of relaxation time, chemical potentials, and substrate thickness 
and can cover all the range of [0–360] degrees.

Deep learning
Artificial neural networks are machine learning techniques inspired by the human nervous system. The neural 
network consists of interconnected neurons, and by changing the weight of the interconnected neurons, that 
can learn the relationship between inputs and outputs by adjusting the weights of these connections, allowing 
them to generalize based on empirical knowledge. Figure 6 shows the schematic of a neural network. In this 
figure, n is the number of inputs and xi denotes the value of each input. Each input is associated with a specific 
weight, wi , which is multiplied by the input and summed up. After summation, an activation function φ is applied 
to estimate the output, which can be biased with an initial value bi . In equation (1), the output and input of the 
neural network are presented. Neural networks typically consist of an input layer, one or more hidden layers 
and an output layer, with each layer containning a specific number of neurons. Also, the weights of each neuron 
will change during a back propagation process to learn the input and output relationship pattern. In general, as 
the number of neurons and hidden layers increases, the ANN network becomes more DNN, which will cause 
the complexity of the model.

In this research, the inputs of the deep neural network include the number of bands, the resonance frequen-
cies of the bands, the beam direction, the half-power beam width, the gain, and the depth value of S11 at each 

(1)Y = φ

(

n
∑

i=1

WiXi + bi

)

Figure 4.  Relatively constant return loss (a) and 30-degree deviation of the beam direction due to changes in 
the chemical potential at the 3.21 THz frequency (b).
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resonance frequency of the antenna. After the presented DNN has been learned, the required antenna parameters, 
such as the dimensions of the antenna and the properties of the required graphene, are estimated. As mentioned, 
the maximum number of bands achieved is 13, while the desired parameters total 5 in total. Therefore, each 

Figure 5.  The study of the radiation properties of the antenna as a function of relaxation time ( τ ), and chemical 
potential ( µc ). The number of frequency bands (a,b), resonance frequency [THz] (c,d), gain [dB] (e,f), and main 
beam direction [degree] (g, h) are plotted as a function of relaxation time ( τ ), and chemical potential ( µc). in 
this simulation, (a, c, e, and g) are plotted for Hs = 20 µ m and (b, d, f and h) are plotted for Hs = 30 µ m.
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input vector is a row matrix of order 65, including the vector for each of the 13 frequency bands. In the proposed 
learning procedure, 60% of the data has been used for learning while the others are used in the test sequence.

The output of the neural network includes a third-order vector comprises the thickness of the substrate, 
relaxation time, and chemical potential. Since the goal of this research is to accurately estimate the continuous 
values, the ReLU activation function has been used in each network layer. It should be noted that the number 
of layers and neurons was optimized to achieve the best performance in the proposed network. In the proposed 
model, the batch size and learning rate are 512 and 0.001, respectively, and the  number of epochs is set to 5000. 
Also, the Adam optimization algorithm has been employed to determine the values of the weights in the model. 
Furthermore, the utility cost function MSE (Mean Squared Error) has been used to calculate the difference 
between the real value and the value estimated by the model, as given in equation (2), where  yi and fi represents 
the real and estimated values, respectively.

To achieve the best performance of the DNN, we conducted several tests on the combination of layers and their 
output shape value. Table 2 displays the optimal structure of the DNN for learning the relationship between 
inputs and outputs.

The loss and accuracy diagrams of the proposed model have been sketched in Fig. 7a,b, respectively. As 
can be seen in this figure, the values of accuracy and loss achieve 91.5% and 0.03, respectively. Furthermore, it 
can be seen that the validation graph closely aligns with the training graph, indicating successful avoidance of 
overfitting in the model. In this procedure, the training time took about 262 seconds and the model can estimate 
the output in less than 0.05 seconds which was obtained on a system equipped with an Intel Core i7-10750H 
processor and 16GB RAM.

Evaluation of deep neural network
For evaluation of the proposed model, we have provided two arbitrary samples whose specifications are given in 
Figure 8. For this, the desired values are fed to the proposed network and the antenna parameters are estimated. 
Subsequentlly, a full wave analysis was conducted to simulate the performance of the antenna. As shown in 
Fig. 8a,b, the gain and return loss of a five-band and a three-band antenna are plotted versus frequency, respec-
tively. In these figures, the desired values are also shown using colored circles and are in good agreement with the 
simulation results. In the same way, the simulation results and the desired values of the half-power beam width 
and the main lobe direction for five-band and three-band antennas are plotted in Fig. 8c, d, respectively. The small 
differences between the simulated and expected values are also evident in these figures. The estimated values of 
the substrate thickness, chemical potential, and relaxation time are presented in Table 3. Furthermore, the MSE 
of the resonance frequencies, half-power beam width, gain and return loss are shown in table 3. According to 

(2)MSE =
1

N

N
∑

i=1

(fi − yi)
2

Figure 6.  Schematic of neural network.

Table 2.  The configuration of proposed DNN model.

Layers Activation Output shape Parameters number

Dense Relu (None, 65) 4290

Dense Relu (None, 200) 13200

Dropout – (None, 200) 0

Dense Relu (None, 200) 40200

Dropout – (None, 200) 0

Dense Relu (None, 200) 40200

Dropout – (None, 200) 0

Dense Relu (None, 3) 603
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Figure 7.  (a) accuracy and (b) loss of the proposed DNN.

Figure 8.  (a) and (b) simulation and expected values gain and S11 for a five-band and three-band antenna, 
respectively. (c) and (d) simulation and expected values of half-power beam width and main lobe direction for 
five-band and three-band antenna, respectively. In this figure, expected values have been specified by colored 
circles.

Table 3.  Estimated values and Mean Square Error (MSE) of predicted and real antenna properties. 
performance.

Examples

Estimated outputs MSE between fi andyi
Hs τ µc Fr Gr θr HPr Nullr

Five-band 30 µm 0.50 ps 3.13 eV 1.2e−5
1.92e−3 1.69e−5

2.3e−4
25e−4

Three-band 20 µm 0.94 ps 2.64 eV 4e−5
25.7e−3 3.59e−5

6e−4
2e−4
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these results, it can be claimed that negligble errors in achieving the desired antenna parameters are obtained 
through the estimation of antenna thickness and graphene properties.

Discussion
In this article, a planar graphene antenna was investigated and its radiation characteristics for different substrate 
thicknesses and graphene characteristics including chemical potential and relaxation time have been extracted 
by full-wave FEM simulations. Then, these parameters were examined as the design inputs and it was shown 
that in the proposed structure, by choosing the appropriate values for the input, the number of bands and their 
resonance frequencies, antenna gain and main lobe directions can be set. The simulations have been performed 
in the [2–5] THz frequency band and it has been shown that the maximum gain of 8.8dB and up to 13 frequency 
bands can be achieved. Due to the complexity of the design and in the following, a deep neural network has 
been used to provide a design solution. This network is trained based on the categorized simulation results and 
the network parameters are determined in such a way that the most accurate matching between the estimated 
and simulated parameters has been achieved for minimum input data. In the end, it has been shown that the 
optimal radiation parameters can be estimated with an error of less than 3%. This feature can be used to design 
antennas in various applications. In the simulations, we encountered one-to-many issues. In fact, the analysis 
of the simulation results shows that for the antenna parameters of [ Ws , Ls , Rp ], relatively the same results for S11 
and E-fields may be generated. Furthermore, if all the structural antenna parameters are assumed as the outputs, 
errors would arise in estimating the input parameters. However, we considered this category of samples in order 
to maintain the number of neural network training dataset samples and improve the accuracy of the model, three 
parameters of [ µc , τ , Hs ] are estimated as the output.

Data availibility
The data that support the findings of this study are available from A.N. but restrictions apply to the availability 
of these data, which were used under license for the current study, and so are not publicly available. Data are 
however available from the authors upon reasonable request and with permission of A.N. (email: a_nooramin@
iust.ac.ir).
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