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Nonlinear and machine learning 
analyses on high‑density EEG data 
of math experts and novices
Hanna Poikonen 1*, Tomasz Zaluska 2, Xiaying Wang 2, Michele Magno 2 & Manu Kapur 1

Current trend in neurosciences is to use naturalistic stimuli, such as cinema, class-room biology 
or video gaming, aiming to understand the brain functions during ecologically valid conditions. 
Naturalistic stimuli recruit complex and overlapping cognitive, emotional and sensory brain processes. 
Brain oscillations form underlying mechanisms for such processes, and further, these processes can be 
modified by expertise. Human cortical functions are often analyzed with linear methods despite brain 
as a biological system is highly nonlinear. This study applies a relatively robust nonlinear method, 
Higuchi fractal dimension (HFD), to classify cortical functions of math experts and novices when 
they solve long and complex math demonstrations in an EEG laboratory. Brain imaging data, which 
is collected over a long time span during naturalistic stimuli, enables the application of data-driven 
analyses. Therefore, we also explore the neural signature of math expertise with machine learning 
algorithms. There is a need for novel methodologies in analyzing naturalistic data because formulation 
of theories of the brain functions in the real world based on reductionist and simplified study designs 
is both challenging and questionable. Data-driven intelligent approaches may be helpful in developing 
and testing new theories on complex brain functions. Our results clarify the different neural signature, 
analyzed by HFD, of math experts and novices during complex math and suggest machine learning as 
a promising data-driven approach to understand the brain processes in expertise and mathematical 
cognition.

Current trend in neurosciences is to use naturalistic stimuli which aims to understand the brain functions in 
the real world during which sensory, cognitive, emotional and motor brain processes overlap1–4. Naturalistic 
stimuli mean complex, dynamic and diverse stimuli which create a more ecologically relevant condition for 
brain research in comparison to the traditionally used reductionist stimuli2,4. Examples of naturalistic stimuli 
are cinema, classroom biology, video gaming, complex math or listening to a live orchestra5–9.

Continuous brain imaging data, which is collected over a long time span during naturalistic stimuli, enables 
the application of data-driven analyses2,4. Machine learning (ML) analyses may assist in generating new hypoth-
eses about the underlying task-relevant brain processes, especially in the naturalistic context. In such contexts, 
several low and high-level overlapping brain processes occur simultaneously3. Due to the overlapping nature of 
several brain processes, extension of the neuroscientific theories formulated based on reductionist and simpli-
fied study designs is both challenging and questionable2. Novel methodologies in analyzing naturalistic data are 
required and data-driven intelligent approaches form a good candidate for developing and testing new theories 
on the brain functions in the real world3.

In addition to the applications for prediction and diagnostics in healthcare10–14, ML for brain imaging has 
application possibilities in the contexts of learning and education7,2. For decades, scientists have studied the brain 
processes during cognitive tasks, like mathematics or language. These studies have brought valuable knowledge 
on the domain-general brain functions of working memory, attention, and solving strategies (e.g.15–17) and 
domain-specific brain functions on numeric and verbal processing (e.g.18,19). Some studies have focused to 
understand healthy development and expertise20,21, whereas others bring insights on disrupted development 
and learning deficits22,23. Neuroscientific studies made in learning sciences have not yet utilized ML in the data 
analysis. However, ML has potential to be used in data-driven hypothesis formation of the brain functions 
underlying expertise development or learning deficits, and for real-time adaptive feedback in learning and 
focused attention24,25.
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Brain imaging studies with short and simple arithmetic tasks suggest that learning of mathematical knowledge 
is accompanied by a shift from more frontal to more parietal regions26–29. Electroencephalography (EEG) studies 
suggest that brain processes measured with cortical oscillation and event-related potentials (ERPs) differences 
are associated with brain functions are modified through expertise, such as including processes related to rote 
learning and strategy selection for solving the tasks at hand (Hinault and Lemaire for a review30). However, a 
few second simple math tasks, which are used traditionally as stimuli in studies on math expertise, seldom cre-
ate enough of continuous brain imaging data for which to successfully apply the ML methods. In addition, the 
commonly used methods in EEG data analysis, cortical oscillation and ERPs, are linear methods which do not 
capture the nonlinear brain functions.

The brain, like many biological systems, behaves in a nonlinear manner. Nonlinear behavior of biological 
systems is characterized by a high degree of variability in the time domain (nonstationarity) and randomness 
that could be attributed to the interaction of internal and external factors influencing the organism31,32. Engage-
ment with complex math recruits several cognitive brain processes which overlap with sensory and emotional 
processes33,34. The EEG data collected during such cognitively challenging task is likely highly complex, and there-
fore, a potentially optimal way to process such data includes an analysis which is suitable for nonlinear systems.

Cognitively challenging tasks create brain states which are clearly different from those of relaxed states35. 
Fractal dimension is a highly sensitive measure in the detection of hidden information contained in physiological 
time series, has the ability for detection of transients in bio-signals and is shown to vary depending on the brain 
state36–38 functions39. An often-used nonlinear measure for signal analysis is Higuchi’s fractal dimension (HFD) 
which is a measure of signal complexity in the time domain40,41. Previous studies utilizing HFD classified success-
fully different sleep stages and detected the difference in the brain state during drowsiness and wakefulness42,43. 
HFD showed the most robust results and seems to be superior to other FD methods for EEG signals44,45.

Comparative studies with linear and nonlinear methods have found a correlation between HFD and alpha 
power showing an increase in HFD with a reduction of alpha activity46,47. Accardo and colleagues48 hypothesized 
that EEG signal can be considered as a fractal curve with decreasing power spectral density following a power law 
as 1/f (but see also49). They suggested that synchronization, corresponding to low signal complexity, could reflect 
a resting state of cortical networks. On the other hand, desynchronization, corresponding to high complexity, 
could correspond to active information processing in a certain cortical region48. In the comparative studies, 
several linear methods, including spectral power density, autoregressive model and statistical features in parallel 
to HFD are studied43,50. Radzi and colleagues51 showed that the hybrid of fractal dimension, and delta and alpha 
power have better classifications to the states of arousal than power spectrum alone. S̆usm̆áková and Krakovská43 
compared a huge number of parameters and found that the fractal dimension was the most promising classifier 
after the fractal exponent significantly discriminating between wake and slow-wave sleep.

A recent study on the disorders of consciousness suggested that differences between lower states of conscious-
ness were 11 times more likely to be detected using HFD than the best performing linear method tested52. They 
also tested machine learning for HFD, reaching an accuracy of 88.6 percent in discriminating among vegetative 
state, minimally conscious state and healthy controls52. In an older study, mental arithmetic task recognition was 
studied53. They reported that the complexity of the EEG signal recorded in the frontal lobe was higher when the 
subject was performing the mental arithmetic operations than that of the EEG signal recorded when the subject 
was relaxed. The usage of their HFD spectrum in combination with other features improved the task recognition 
accuracy in both multi-channel and one-channel subject-dependent algorithms up to 97.87 percent and 84.15 
percent, correspondingly34. Vega and Noel54 also reported HFD as a robust tool for cognitive task discrimination 
between five states: relaxed state, multiplication, imagining writing a letter, imagining rotation of an object, and 
erasing and redrawing figures.

This study investigated the neural signature of math expertise with a relatively robust nonlinear analysis, HFD, 
and explored a new paradigm by applying ML to EEG data collected from math experts and novices when they 
engaged with long and complex math demonstrations. Our study is the first one aiming to discriminate the corti-
cal functions of math experts from those of novices during long and complex math tasks. Since the pioneering 
nature of our study, we decided to focus only on one type of features, and based on the previous literature, we 
chose HFD as the most suitable in distinguishing different cognitive states43,52,54. The math demonstrations of this 
study with a duration of up to 1 min form a part of the current trend in investigating the brain with naturalistic 
stimuli. In addition, we used the high-density EEG to find the electrodes of interest over which the HFD differs 
the most and compare the classification accuracy of standard 32-channel electrode distribution to 32 electrodes 
with the largest HFD difference between experts and novices from the pool of 128 electrodes53. Our aim was to 
describe the EEG data during advanced mathematical cognition with a nonlinear method and evaluate whether 
the neural signature of math experts and novices differ in a way which is detectable with artificial intelligence. We 
hypothesized that the experts’ and novices’ brain functions during long math tasks differ in signal complexity over 
the frontal or parietal regions18,27,29 detectable with HFD43,52,54, which further, can be classified by a ML model53,54.

Materials and methods
Participants.  Thirty-four math experts (bachelor and master students in math or math-related disciplines, 
like physics or engineering) and thirty-five math novices (no university-level math studies) participated in the 
experiment. However, eleven participants from the group of math experts and twelve participants from the nov-
ice group were discarded from the data analysis because their EEG data was too noisy, or some of the relevant 
data was missing due to malfunctioning EEG amplifier. Therefore, in the group of math experts, there were 22 
participants (5 female and 17 male), and in the novice group, 22 participants (7 female and 15 male). The back-
ground of the participants was screened by a math questionnaire.
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The age of the participants ranged from 19 to 24 years (mean 21.0 years) among math experts and from 19 to 
35 years (mean 23.8 years) among novices. All participants in both groups were right-handed. No participants 
reported hearing loss nor history of neurological illnesses. The experiment protocol was conducted in accord-
ance with the Declaration of Helsinki and approved by the Executive Board of ETH Zurich after a review by the 
ETH Zurich Ethics Commission. All participants provided written informed consent.

Task design.  Participants watched 16 math demonstrations. After each demonstration they were asked three 
self-evaluation reflections to which they answered by pressing a button in a 4-button response box. Each set 
of trials consisted of four excerpts of the same presentation style (symbolic or geometric), and these sets were 
presented in a pseudo random order via a monitor. The pseudo randomization defined the presentation order 
(symbolic first or geometric first). However, each participant saw the same four math demonstrations presented 
in both symbolic and geometric form before seeing them in the other form.

Each math demonstration consisted of several slides, from 4 up to 12 slides (6.9 slides on average) depending 
on the complexity of each demonstration. The total duration of math demonstrations varied from 13 to 68 s (33.1 
s on average). The timing of each slide was the same for all the participants. The duration of each slide was defined 
according to an online screening in which 25 math experts and 25 math novices watched the math demonstra-
tions slides and auto-regulated the following slide with a button press. The participants who attended the online 
screening did not attend the actual EEG experiment. The duration of each slide in the EEG experiment was the 
average time the participants spent on each slide during the online screening. In the online screening, there was 
no statistically significant difference between experts and novices in the duration of time spent on each slide.

Data acquisition.  The stimuli were presented to the participants with the MATLAB via PsychToolbox. The 
experimenter launched the playback of the presentation program after which participant could navigate to the 
math demonstrations by a button press once they had read the instruction slides on the screen. The total length 
of the experiment material was approximately 15 min.

The data were recorded using Ant Neuro eego mylab electrode caps with active 128 EEG channels (https://​
www.​ant-​neuro.​com/​produ​cts/​eego_​mylab).

Four external electrodes placed below, above and on the left side of the left eye and on the right side of the 
right eye. The offsets of the active electrodes were kept below 30 mv at the beginning of the measurement, and 
the data were collected with a sampling rate of 2048 Hz. A timestamp (trigger) was marked into to EEG data at 
the beginning of each slide of the math presentations. The triggers were sent wirelessly via Lab Streaming Layer 
(https://​github.​com/​sccn/​labst​reami​nglay​er).

Data pre‑processing.  The EEG data of all the participants were first preprocessed with EEGLAB (ver-
sion 2019.155). The reference was set as the average of all the EEG electrodes. The data were high-pass filtered 
at 0.5 Hz and low-pass filtered at 40 Hz. In preprocessing, we used high-pass filtering over 0.5 Hz because it is 
a standard procedure and shown to improve the data quality the most56. The frequency bands over 40 Hz were 
filtered out because of the 50 Hz line noise. It is a common procedure to use a wide frequency spectrum for HFD 
analysis. High-pass filtering varying between 0.1 and 2 Hz and low-pass filtering between 30 and 70 Hz for HFD 
is used in previous studies39,46,47,51–53,57–59.

Finite impulse response (FIR) filtering, based on the firls (least square fitting of FIR coefficients) MATLAB 
function, was used as a filter for all the data. Then, the data were treated with independent component analysis 
(ICA) decomposition with the runica algorithm of EEGLAB55 to detect and remove artefacts related to eye move-
ments and blinks. ICA decomposition gives as many spatial signal source components as there are channels in 
the EEG data. Typically, one to four ICA components related to the eye artefacts were removed. Noisy EEG data 
channels for some participants were interpolated.

Feature extraction.  Higuchi fractial dimension (HFD).  The EEG time-series has a duration between 10 
and 20 min, resulting in a large data size per sample. Hence, feature extraction is necessary to capture relevant 
information. The extracted features are then used to draw conclusions regarding the relevance of each brain area 
for mathematical calculations. For this purpose, the fractal dimension (FD)60 for each sample is calculated and is 
used to measure the complexity of the signal. A simple pattern that is repeating continuously can become a very 
complex series which is the basis for the fractal constructs. A fractal is a shape that retains its structural detail 
despite scaling and is the reason why complex objects can be described with the help of fractal dimension. One 
variant of FD, the Higuchi’s fractal dimension40, has its roots in chaos theory and has been successfully applied 
as a complexity in various domains of signal processing. It has been shown to be a good numerical solution to 
nonlinear signals61. The speed, accuracy, and cost of applying the HFD method for research and medical diag-
nosis make it stand out from the widely used linear methods57. Among the different FD algorithms, Higuchi’s 
method61 demonstrates to be a more accurate option for EEG signals, since it is accurate for stationary and non-
stationary signals.

Say X is an EEG signal of length T and N is the length of a time window on which we calculate a HFD value. 
A new signal xkm is constructed from X , with window size N where m = (1, 2, ..., k) denotes the starting point 
and k = (1, 2, ..., kmax ) the interval size:

Lm(k) describes the length of the curve of xkm for every k given m:

(1)xkm =

{

x(m), x(m+ k), x(m+ 2k), ..., x

(

m+

⌊N −m

k

⌋

)}

https://www.ant-neuro.com/products/eego_mylab
https://www.ant-neuro.com/products/eego_mylab
https://github.com/sccn/labstreaminglayer
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where N−1
⌊

N−m
k

⌋ is the normalization factor. Length L(k) is defined by the average of the k lengths:

HFD is the slope of the best fitted curve between all the data points of time-series X for a given time window N 
for for k = (1, 2, ..., kmax ) between log(1/k) and log L(k):

It is possible to calculate HFD for the whole signal (T = N) . However, this is not recommended if the signal is 
nonstationary. In such cases the HFD value does not represent the true measure, and division into windows (or 
segments) is advised. In48, Accardo and colleagues have shown on synthetic fractal signals that Higuchi’s algo-
rithm is more efficient, faster, more accurate and able to estimate fractal dimension for short segments, compared 
to Maragos and Sun’s algorithm proposed in62.

Hyperparameter tuning.  An important hyperparameter that requires finetuning is kmax . There is no agreed 
methodology to optimize this parameter63. As per Eq. (3), HFD is summed up to kmax , therefore increasing kmax 
will lead to an increase in HFD. A poor choice of kmax will result in uninformative HFD, thus, it has to be care-
fully tuned.

We propose the following methodology to identify the best value for kmax : 

1.	 We compute the HFD values as per Eq. (4) for a wide range of kmax values, i.e., kmax ∈ 2, 5, 20, 100, 150, 200, 400 
over all subjects and presentations.

2.	 We identify the kmax at which the difference (Eq. 5) between HFD values of significant and non-significant 
channels is maximized. Significance/non-significance is assessed by taking the maximum/minimum HFD 
value across all electrodes for a subject. Here, the minimum value is understood as the baseline fractal dimen-
sion and is therefore subtracted from the maximum value, which is the complexity of the relevant channels. 
We base this requirement on the assumption that certain EEG regions are more relevant than others for 
the mathematical tasks. Hence, there will be a difference in HFD values and we want to select the kmax that 
maximizes this difference.

3.	 The kmax value that satisfies the above requirement is chosen to compute the HFD values for further analyses 
and for the machine learning classification.

HFD features analyses.  Estimating HFD values for each channel of each participant allows to investigate which 
brain areas are most active while performing mathematical tasks. Since HFD values have no physical interpreta-
tion, a relative comparison between two different groups is performed.

First, a comparison between experts and novices is investigated, by taking the average of all HFD values of 
the expert group and the novice group and subtracting them from each other:

where j ∈{1,...11} is the index of experts and novices, respectively, k ∈{1,...16} is the index of presentations and 
i ∈{1,...129} is the index of EEG channels.

A one-sided t-test is calculated, testing whether there is a significant difference between the two groups. A 
visual heatmap of the difference between experts and novices based on Eq. (5) is mapped onto the head for bet-
ter qualitative interpretation.

Subsequently a more fine grained analysis is performed by comparing the difference between expert and 
novice for algebraic and geometric separately:

where kA and kG ∈{1,...8} is the index of the algebraic and geometric presentations respectively.

Machine learning classification.  We posit the question if a prediction can be made whether a new subject is a 
novice or an expert based on EEG recordings while performing mathematical tasks. We frame this problem as 
a two-class classification task. To understand and interpret the outcome of the machine learning classifiers, care 
needs to be taken while generating the classification dataset and splitting it into training and testing sets.

We first define the classification-dataset as a collection of subject-presentation pairs (e.g. Expert1-Presenta-
tion1A etc.). Together with the 16 presentations, the full dataset include 704 samples, i.e., subject-presentation 
pairs. Subsequently, we calculate either a unique HFD value per EEG channel, meaning that each sample consists 
of 124 HFD features, or divide the EEG signals of total length T into non-overlapping windows of length N 

(2)Lm(k) =

∑

i=1 x(m+ ik)− x(m+ (i − 1)k)(N − 1)
⌊

N−m
k

⌋

k

(3)L(k) =
1

k

k
∑

m=1

Lm(k)

(4)HFD(N , kmax) : best fit of

{(

log

(

1

k

))

, log(k)

}

(5)�HFDchi = HFDexpertj ,presk chi
−HFDnovicej ,presk chi

,

(6)�AGHFDchi = HFDexpertj ,preskA chi
−HFDexpertj ,preskG chi

,



5

Vol.:(0123456789)

Scientific Reports |         (2023) 13:8012  | https://doi.org/10.1038/s41598-023-35032-8

www.nature.com/scientificreports/

and calculate a HFD value for each window leading to (T/N)*124 HFD features. To be noted that the channels 
“VEOGL”, “HEOGL”, “HEOGR”, “VEOGU”, “HEART” are discarded, since they do not record brain signals but 
eye movement and cardiac activity.

Since this work is the first in the literature to attempt an automatic classification of mathematical cognitive 
behavior, we propose three different cases of dataset splitting, illustrated in Fig. 1: 

1.	 Subject-presentation pairs: We randomly split all 704 samples without considering whether a sample is com-
ing from different subjects. This means that the samples from the same subject can either be entirely in the 
training set or in the validation set, or partially in the training and in the validation set.

2.	 Subject-specific: We split the dataset on the level of subjects, meaning that all subject-presentation pairs of 
the same subject are either in the training or validation set.

3.	 Presentation-specific: We deal with each presentation as a separate machine learning task. In other words, 
we divide the full dataset into sub-datasets, each of which consists in a single presentation, and perform the 
training and testing procedure on each of the sub-datasets.

With case 1, we verify if the machine learning (ML) classifier is able to discern between the 22 experts and 
novices present in the dataset based on a single mathematical presentation. With case 2, we validate the ML 
classifier on new subjects of which data it has never seen before. The former is a relatively easier classification 
task, but necessary as a first proof-of-concept, whereas the latter tackles the most challenging problem of inter-
subject variability common to all biomedical data. With case 3, we analyze whether a prediction can be made 
based on samples coming from a single presentation. By training a separate classifier for each presentation, we 
can compare the classification accuracy among the presentations and draw insights about which mathematical 
presentation is more suitable for discerning between math novices and experts.

For cases 1 and 2 we calculate a single HFD value per EEG channel throughout the whole duration of the 
presentations. This choice is motivated by the fact that all presentations, of different recording lengths, belong 
to the same dataset on which a machine learning classifier is trained on and, in general, the classifiers require a 
fixed numbers of features. This is no longer an issue for case 3, because each sub-dataset consists of data from a 
single presentation of fixed length. Hence, we can increase the granularity and use a non-overlapping moving 
window of length N to calculate the HFD value in Eq. (4) for each window. More precisely, a HFD value is cal-
culated every N seconds of the duration of the presentation HFD1:N , ...,HFDt:t+N with t being time steps. This 
allows to analyze the temporal evolution of the presentation and draw conclusions regarding the classification 
differences. We test several values of N, i.e., 5, 8, 11 s.

Once the datasets are prepared, we proceed with classifiers training using the scikit-learn Python package. 
We investigate several ML algorithms including Nearest Neigbours, Linear SVM, Decision Tree and Adaboost. 
We first optimize the classifiers by tuning the hyperparameters under case 1, i.e., subject-presentation level. Once 
the optimal parameters are found, we keep them for case 2 and 3.

The various ML algorithm tested are summarized in Table 1, with their corresponding parameters ranges. 
Once the best performing ML algorithm has been identified, we further optimize it with a grid-search algorithm. 
Given the small sample size, ten fold cross-validation (90 percent training/ 10 percent validation set) has been 
applied with a fixed seed.

Figure 1.   Classification-dataset split illustration. Case 1: Subject-presentation pairs split, Case 2: Subject-
specific split, Case 3: Presentation-specific split.
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Results
As described in the introduction, extracting the neural signature of math experts and novices requires careful 
features extraction via the HFD method. To calculate the HFD correctly, hyperparameter kmax requires finetun-
ing. Therefore, “Optimal kmax” section presents the optimization results of hyperparameter kmax . Based on the 
extracted HFD features, experts and novices are compared in “HFD feature analyses” section giving insights 
which brain region is relevant for performing mathematical tasks. Finally, based on the features, classification 
results between experts and novices are shown in “Expert/Novice classification” section.

Optimal k
max

.  Figure 2 shows the value of HFD for all subjects averaging over all channels for different 
values of kmax . HFD is steadily increasing but starts to plateau at a value of 100. Figure  3 shows the differ-
ence between the maximum and minimum HFD values for different kmax with accordance to Eq. (5). It can be 
observed that the difference in HFD value corresponding to kmax reaches a peak at 20 and 100 and progressively 
declines with increasing kmax . Based on the fact that HFD is plateauing at kmax equal to 100 and the largest dif-
ference between the maximum and minimum HFD values is also found at the same value, kmax = 100 is used 
for further analysis.

HFD feature analyses.  Figure 4 shows the difference between the average HFD values between experts 
and novices, for the top 10 channels that present the highest difference between expert and novices. All top 10 
channels are statistically significant under p = 0.05 constraint. All channels are depicted in form of a heatmap in 
Fig. 6. The dark blue shaded areas indicate the highest positive difference between expert and novices.

Table 1.   Machine Learning algorithms used for classification between experts and novices.

Algorithm Parameters

Nearest Neighbors Number neighbors: 3, 5, 7, 9, 11

Linear SVM Kernel: linear, C: 0.025, 0.5, 0.75

Decision Tree Maximum depth: 3, 5, 7

AdaBoost Number estimators: 25, 50, 100
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Figure 2.   HFD value, averaged across all channels all subjects and presentations for different values of kmax.
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To evaluate if these differences are pre-existing, independently from being a math novice or math expert, 
we calculate and compare the HFD values from the resting state EEG data with eyes open of the two groups of 
subjects. Figure 5 shows the HFD values of the channels with highest difference between experts and novices in 
resting state, where the subject do not perform any cognitive task. There is no statistically significant difference 
between experts and novices in this case. It suggests that the math presentations given as stimuli are effective 
in evoking different brain activations and that the HFD features are a valid method to extract such differences 
between the two groups.

The subsequent more finegrained analysis comparing the difference between expert and novice for algebraic 
and geometric is shown in Fig. 7 given Eq. (6). Although there are differences between algebraic and geometric 
presentations, none of them is statistically different under p-value 0.05 hypothesis.
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Expert/Novice classification.  Table 2 summarizes the classification results between expert and novices. 
With the subject-presentation split, the accuracy reaches 97% demonstrating that it is possible to automati-
cally classify between math experts and math novices based on their electroencephalogram (EEG) signals while 
watching math demonstrations because the ML model can successfully learn each subject’s brainwaves signa-
tures.

However, when we split the training and test sets on a subject level, meaning that we increase the difficulty of 
the task by introducing inter-subject variability that is well-known to be challenging in biosignals classification, 
i.e., the trained model is validated on new subjects whose data it has never seen before, the accuracy falls to 66%.

So far the results are shown by considering all presentations for each subject, i.e., the calculated HFD features 
for all presentations are concatenated for the final classification stage. We suspect that the poor classification 
accuracy could be partially caused by some of the presentations that might perform poorly. Hence, we perform 
presentation-specific classification on subject level and the classification accuracy improves up to 79% (pres-
entation 7A).

Figures 8 and 9 show the HFD values when window size of 8 s is applied for the presentation with the high-
est (presentation 7A) and the lowest (presentation 4G) classification accuracy. The difference in classification 
accuracy may be explained through a better separation between Experts and Novices in HFD features.

We further analyze if it is necessary to have high-density EEG data for the classification. We reduce the 
number of EEG channels from 124 to 32 according to the international 10/20 system. The results, reported in 
Table 2, demonstrate that reducing the number of channels yields decreased classification accuracy. Moreover, 
the channels with the highest difference in HFD values between the two groups, shown in Fig. 4 in brackets, are 
absent in the 32-channel standard configuration. Hence, as a pilot study, the usage of a high-density EEG setup 
has proven to be beneficial. In future work, we recommend to investigate the possibility to reduce the number 
of channels as it yields less obtrusiveness and more comfort for the participants.

Discussion
Advantages of ML for brain research include the data driven approach which enables generation of hypotheses 
about underlying brain processes in rest or in active engagement with a cognitive or emotional task. Such under-
lying processes are sometimes impossible to detect by experts’ observations. ML also enables explorations of new 
paradigms with respect to their neurophysiological signatures. One of such new paradigms is naturalistic study 
design which aims to understand the brain during real-life tasks, like when solving complex math.

Our novel approach on applying ML to EEG data recorded in math experts and novices during complex 
math encourages to expand the usage of data driven brain imaging methods from healthcare to education. Our 
approach utilizing nonlinear HFD, which measures signal complexity, was reliable in describing the data by 

Figure 6.   Heatmap of HFD difference between Expert and Novices, generated using MNE-Python package64. 
The darker blue and red colors respectively indicate the brain areas where the positive and negative differences 
between experts and novices are the largest.
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systematically detecting the difference in the neural signature of math experts and novices with a 98% cross-
validation accuracy. However, the results gained with ML discriminative algorithm were mixed and showed 
50–80 percent classification accuracy when tested with unseen subjects.

Nonlinear fractal dimension methods seem ideal for tracing fluctuations in biological systems, including 
the brain, which are nonlinear by nature. HFD is a measure of signal complexity in the time domain40,41 and has 

Table 2.   Classification results between experts and novices based on different classification algorithms for 
Subject-presentation pairs, Subject-specific and Presentation-specific split. All results are based on ten-fold 
cross validation and averaged over 3 random seeds. The classification results using 32 channels in the standard 
10/20 system are reported in parenthesis. The best accuracy values are in bold.

Subject-pres. pairs Subject specific

Presentation specific split

1A 1G 2A 2G 3A 3G 4A 4G 5A 5G 7A 7G 9A 9G

Nearest Neighbors 97% (94%) 48% 48% 61% 52% 51% 49% 45% 60% 47% 53% 66% 67% 57% 43% 55%

Linear SVM 87% (63%) 66% 56% 53% 53% 54% 46% 61% 49% 43% 63% 46% 63% 49% 39% 61%

Decision Tree 78% (66%) 50% 49% 47% 55% 59% 52% 53% 51% 41% 55% 50% 79% 49% 47% 42%

AdaBoost 93% (84%) 56% 53% 51% 45% 51% 49% 59% 52% 39% 66% 59% 61% 39% 47% 56%

Best 97% 66% 56% 61% 55% 59% 52% 61% 60% 47% 66% 66% 79% 57% 47% 61%

Figure 8.   HFD values (before averaging) for presentation 7A, channel FP2 for Experts (average) and Novices 
(average).

Figure 9.   HFD values (before averaging) for presentation 4G, channel FP2 for Experts (average) and Novices 
(average).
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been successfully applied for brain state analysis of EEG in sleep, drowsiness, wakefulness and different cogni-
tive states37,42,53,54. Our results gained with HFD show a difference in the neural signature between math experts 
and novices during long and complex math tasks with a high classification accuracy. These results encourage to 
use the HFD method in detecting subtle differences in the brain states, like those of math experts and novices, 
which go beyond the more drastic differences in the brain states during the levels of arousal, like sleep stages, 
or drowsiness and wakefulness.

Despite the successful classification to experts and novices based on HFD was relatively stable for the entire 
dataset, the ML model adapted poorly to unseen subjects, and we could not overcome the overfitting and high 
generalization error caused by inter-subject variability. The most important reason for such a poor generaliza-
tion is that our dataset is incorrigibly small to be divided into the training and test sets on a subject level. In 
healthcare, big data platforms are being formed increasingly (Eickhoff et al., 2016; Zbontar et al., 2019), and it is 
important to take similar steps to create large and clearly labeled open data pools for educational neurosciences.

Our small dataset may function reasonably well for method development of data-driven approaches, since 
the differences between math demonstrations are statistically significant especially over several frontal electrodes 
showing higher frontal signal complexity in math novices in comparison to experts. Cognitively, these results 
may indicate novices’ stronger recruitment of domain-general processes in comparison to experts, which is in 
line with previous literature18,17.

Some studies have investigated the connection between nonlinear FD methods and linear oscillation analyses 
over delta, theta and alpha bands. These studies show a dependence between the nonlinear and linear methods 
and suggest that the most reliable results are gained when combining nonlinear and linear methods to classify 
different brain states18,43,51, (Acharya et al., 2005). Since combination of nonlinear and linear methods seem to 
bring the most robust classification results, we could combine the HFD and oscillation analyses and feed the 
combined information to a machine learning model. Our novel analysis with machine learning utilized only 
fractal dimension; however, we report on other papers the brain oscillations for the same dataset (Formaz et al., 
unpublished data9.

Another interesting way to deepen the analysis of our dataset was to break the temporal data stream to 
segments. With a larger dataset and statistical power, time points during which the neural signatures of math 
experts and novices differ the most could potentially be found. This data-driven approach may have practical 
implications after detecting whether the cortical functions of experts and novices differ the most at the begin-
ning, at the end, or at some other time point during the math demonstrations. With our dataset, ML algorithm 
showed 50–80 percent classification accuracy for unseen subjects when breaking the data to a temporal stream. 
Such a high variation may be explained by a small dataset, or by a combination of several features related to the 
length, content, and difficulty level of the math demonstrations.

Understanding which parts of the math demonstrations to emphasize when teaching complex math may be 
helpful in supporting students’ development towards math expertise. Such time-dependent information may be 
hard to collect with questionnaires or other behavioral measures, and therefore, brain-originated data-driven 
methods may be the only way to access such information in the context of learning. Further, these ML models 
could be used to create learning contexts in which adaptive feedback is given to adjust to the individual needs of 
a learner or those of a specific group during collaborative learning, building on the previous examples like BCI 
applications for post-stroke motor rehabilitation, or relatively simple neurofeedback applications for focused 
attention or working memory11,24,25,53. Simple options for BCI interventions for the math demonstrations used 
in our study might be to adjust the velocity of presenting new information, or by scaffolding the learning process 
via instructions or remarks depending on the EEG signal of the learner.

Limitations
Our novel paradigm combining mathematical cognition, cortical activity and ML is exploratory in nature and we 
recognize the following limitations. First, the most drastic limitation is the small dataset in use. The straightfor-
ward way around it would be to increase significantly the amount of data, e.g., by at least doubling the number 
of participants. The more data the better we can estimate the real data distribution of the general population. 
The second limitation is related to the classes chosen for the ML classification. We chose to compare two groups 
of participants during the same cognitive task. Other strategy for a small dataset would be to explore individual 
differences, for example, by aiming to classify the data excerpts of resting state and cognitively active state for each 
participant. Earlier studies show that differentiation of brain states for an individual participant during simple 
sensory tasks is rather robust whereas the generalizations of the cortical activation patterns across a group of 
participants, and during complex cognitive tasks, is challenging. However, such individual brain state classifica-
tion would not give us hardly any insights for the expert-novice differences during mathematical cognition. As 
the third limitation to consider, when preprocessing, we chose to band-pass filter the data with a bandwidth 
of 0.5–40 Hz due to the contamination of the data with the 50 Hz line noise. HFD is associated with changes 
in delta, theta and alpha oscillations which all were included in our analysis. However, also gamma oscillation 
is known to be important during cognitive tasks, and it has been connected to HFD. Due to bandpass filtering 
chosen, gamma activity is not included in our analysis. Based on previous literature, HFD seems the most stable 
fractal dimension methods61. However, as the fourth limitation of our study, is the general criticism for the HFD 
that it has a short margin of scale which may give the same complexity number to signals with only subtle dif-
ferences. For detecting the possibly small differences in the cortical activity of math experts and novices, some 
other method with more detailed scale may be more suitable. Fifth, for the cross-validation, different models 
could be compared to find a model with ideal complexity which balances between overfitting of an unnecessarily 
complex model and simple model’s inability to adapt to the details of the complex cognitive data. Ideally for ML 
algorithms, each sample (e.g. EEG data collected during each math demonstration) would have the same number 
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of data points (e.g. the same duration). However, it is difficult to realize in practice due to different duration it 
takes to solve different naturalistic math tasks. In the future, research of brain processes during abstract cogni-
tion might be conducted, for example, within a video game context, in which the duration is easier to match 
to be the same over all the rounds played. The sixth limitation is in our study design, in which we did not have 
any cognitive task different to mathematics which makes it difficult to evaluate whether the differences in HFD 
between math experts and novices were related to the math tasks per se, or if we had noticed the same differ-
ence with any cognitive task, for example related to history or language. However, a previous study comparing 
math experts and novices, showed that the brain activation differed only during math tasks but not during other 
cognitive tasks on the same difficulty level18.

Conclusions
The present study used a unique paradigm to compare neural correlates of math experts and novices while solv-
ing naturalistic math demonstrations. Overcoming limitations of previous studies with reductionist stimuli and 
linear EEG analysis methods, the brain functions during abstract cognition were measured with a high-density 
EEG during long and complex math demonstrations and analyzed with a relatively rigor nonlinear method, 
HFD. Our results indicated that math novices have a higher signal complexity measure with HFD than experts 
over several frontal electrodes suggesting a stronger engagement of domain-general brain functions. Further, we 
explored ML algorithms for classifying math experts and novices based on their neural signature. These results 
were promising but we also acknowledge the inevitably small dataset we had in use for consistent results. We 
encourage taking example from brain imaging databases created in healthcare for a creation of a similar database 
for educational neuroscience. In the future, application possibilities for such a database and deep learning lay 
in data-driven theory formation for normal and disrupted learning and development, and adaptive feedback 
systems for learning contexts.

Data availability
The data will be openly published in autumn 2023, and until then, the data can be received by requesting them 
from the corresponding author.
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