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Accurate prognosis for localized 
prostate cancer through coherent 
voting networks with multi‑omic 
and clinical data
Marco Pellegrini 

Localized prostate cancer is a very heterogeneous disease, from both a clinical and a biological/
biochemical point of view, which makes the task of producing stratifications of patients into risk 
classes remarkably challenging. In particular, it is important an early detection and discrimination of 
the indolent forms of the disease, from the aggressive ones, requiring post‑surgery closer surveillance 
and timely treatment decisions. This work extends a recently developed supervised machine learning 
(ML) technique, called coherent voting networks (CVN) by incorporating a novel model‑selection 
technique to counter the danger of model overfitting. For the challenging problem of discriminating 
between indolent and aggressive types of localized prostate cancer, accurate prognostic prediction 
of post‑surgery progression‑free survival with a granularity within a year is attained, improving 
accuracy with respect to the current state of the art. The development of novel ML techniques tailored 
to the problem of combining multi‑omics and clinical prognostic biomarkers is a promising new line 
of attack for sharpening the capability to diversify and personalize cancer patient treatments. The 
proposed approach allows a finer post‑surgery stratification of patients within the clinical high‑risk 
category, with a potential impact on the surveillance regime and the timing of treatment decisions, 
complementing existing prognostic methods.

According to the World Cancer Research Fund International web site (https:// www. wcrf. org/ cancer- trends/ prost 
ate- cancer- stati stics/), prostate cancer (PRC) is forecast as the second most commonly diagnosed cancer type 
in men (with 1.4 million cases worldwide) for the year 2022, and the 4th most commonly diagnosed cancer in 
the overall population (male and female). The ECIS—European Cancer Information System (https:// ecis. jrc. 
ec. europa. eu) predicts an incidence of 363,000 new diagnosed PRC for the EU27 + EFTA area in the year 2025 
and estimates a mortality of about 78,000 due to PRC (representing about 10% of the deaths due to cancer in 
the male population, ranking third as cause of death by cancer type in the EU27+EFTA male population). Siegel 
et al.1 report an estimate of 268,490 new cases of diagnosed prostate cancer for the year 2022 in the USA, and 
an estimate of 34,500 deaths due to prostate cancer (ranking second as cause of death by cancer type in the USA 
male population). About 15% of the localized prostate cancer diagnoses are clinically classified as high  risk2 and 
thus require timely management decisions. This work concentrates on this fraction of the PRC patient population.

Prostate cancer is a very heterogeneous disease, from both a clinical and a biological/biochemical point of 
view, which makes the task of producing a stratification of patients into risk classes particularly challenging. In 
particular, it is important an early detection and discrimination of the indolent forms of the disease, from the 
aggressive ones, requiring closer  surveillance3, 4. This report describes the application of a recently developed 
machine learning (ML) technique, called coherent voting networks to the problem of predicting an accurate 
prognosis for patients affected by prostate cancer (PRC).

Coherent voting networks (CVN) have been developed for the task of predicting the overall survival (OS) 
of breast cancer (BC) patients at 5 years after surgery, based on tissue transcriptomic fingerprints (mRNA), and 
depending on the specific adjuvant therapy  adopted5. Since CVN is a general ML technique it is natural to extend 
such a technique to handling further cancer types (in this report, prostate cancer), further data type (including 
miRNA, CNA, microbiome, methylation, proteomics, etc.), different time points and different events of inter-
est. Moreover, in this report, the CVN technique is further developed in order to provide additional theoretical 
grounding to some of the algorithmic phases involved. Specifically, the hyper-parameter optimization and feature 
selection phases (collectively indicated as model selection) are re-examined and a variation of the method by 
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Andrew  Ng6 to cope with model overfitting is shown to be both well grounded from a theoretical point of view 
and effective on PRC data. To the best of my knowledge, the application of Ng’s theory for prognostic purposes 
is new.

The improved CVN is used to develop multi-gene fingerprints for predicting the risk of Progress-free survival 
(PFS) of patients over several time points. The molecular data sets for the fingerprint discovery are provided by 
the TCGA consortium and consist of assays of prostate biopsies and tissue removed via radical prostatectomy 
in patients diagnosed with prostate adenocarcinoma, who had not received prior treatment for their disease 
(https:// www. cancer. gov/ about- nci/ organ izati on/ ccg/ resea rch/ struc tural- genom ics/ tcga).

Current diagnostic tests based on prostate-specific antigenes (PSA), Gleason score, Tumor stage, and other 
clinical measures often fail to distinguish between indolent and aggressive tumors, thus leading to over-diagnosis 
and over-treatment7–10. This adverse phenomenon has been the driving force behind much recent research aim-
ing at integrating PSA with molecular profiling or finding new alternative prognostic features leading to a more 
accurate PRC prognosis.

As of 2021, Manjang et al.11 list at least 32 prognostic genic signatures for PRC, however only a handful have 
been thoroughly validated, and made into commercially available kits (including Oncotype  Dx12,  Prolaris13, 
 Decipher14, Decipher  PORTOS15, and  ProMark16). Such commercial kits are increasingly included in clinical 
protocols and  practice17.

This report contributes to the search for effective multi-gene prognostic fingerprinting by applying the CVN to 
several omic data sets from prostate cancer patients with the aim of learning a pool of effective fingerprints. Next, 
such fingerprints are applied to independent cohorts data sets to assess how performant these fingerprints can be 
(via a leave-one-out parameter optimization and bootstrapping performance evaluation). The reported results 
show remarkable promising performances in terms of Odds Ratio, Cohen’s kappa, and AUC, with good statisti-
cal significance, and a fine time resolution of 1 year. Moreover it is shown that standard clinical-pathological 
biomarkers can be combined with genomic biomarkers to improve predictive performance.

This paper is organized as follows. Section “Results” reports the main computational result on the per-
formance of the proposed fingerprints. Section “Discussion” comments on the weak and strong points of the 
proposed methodology and places this work in the wider context of clinically useful prognostic tests for PRC. 
Section “Methods” recalls the main steps of the CVN construction and usage, and describes more in detail the 
novel model-selection techniques introduced in this report.

Results
Clinical features of the discovery population. The TCGA-PRAD dataset is used for training, validat-
ing, and testing the prognostic CVN in the discovery phase and determining the best performing multi-gene 
fingerprints. In Supplementary Table S9 it is reported the distributions of categorical attributes over the train, 
validate and test sets: progression-free survival status, tumor t-stage, tumor lymph node stage, radiation therapy, 
and reviewed Gleason sum.

In Supplementary Table S10 it is reported the distributions of numerical attributes: progression-free survival 
timing, age at diagnosis, tumor mutation burden index, duration of follow-up, and PSA level before surgery.

Overall, due to the randomized split of the patients, these features have similar distributions (mean, standard 
deviation) over the patient groups.

Performance on TCGA‑PRAD data. In Supplementary Table S2 seven fingerprints are reported giving 
the best performance for different input data types (mRNA, proteomics, and methylation) and different time 
frames (years defining thresholds for high-risk and low-risk patients: 2–3, 3–4, and 4–5. See “Methods”). For 
each of the seven fingerprints, the main measures of performance reported in Table 1 are odds ratio (OR), odds-
ratio p-value and confidence intervals, Cohen’s kappa, AUC, AUC p-value and Confidence Interval, and the log-
rank test p-value. The odds ratios range from a minimum of 12.0 to a maximum of 21.0, with an average 16.8, 
and all with significant p-values (except for fp14), geometric mean p-value 0.01. Cohen’s kappa ranges from a 
minimum of 0.29 to a maximum of 0.59, with an average 0.47. AUC ranges from a minimum of 0.62 to a maxi-
mum 0.79, with an average 0.72, with significant p-values (except for fp12) and geometric mean p-value 0.01. 
The log-rank p-values are all significant (except for fp14 which is borderline) and have a geometric mean p-value 
0.0006. Fingerprint fp14 has a significant AUC p-value, while fp12 has significant OR p-value and log-rank 
p-value. Overall each fingerprint in Table 1 is statistically significant for at least one of the key measures. The 
Kaplan-Meier plots for these seven fingerprints on the TCGA Test dataset are in Figs. 1 and 2 giving a graphical 
display of the good separation properties of the selected fingerprints. Additional performance measures includ-
ing PPV/NPV and Sensitivity/Specificity are reported in the GitHub project repository.

Independent cohorts. In order to validate the selected fingerprints, their prognostic performance is meas-
ured on seven independent cohorts of PRC patients (listed in Supplementary Table S7) with a raw total of 744 
patients. These independent data sets have been produced with several platforms and include as event endpoints: 
Overall survival (OS), Biochemical recurrence (BCR), Disease-free survival (DFS), or a category-based High-
risk/Low-risk assessment. On these independent cohorts, the gene fingerprints are fixed and predictors are gen-
erated for leave-one-out (LOO) assays on the full range of hyperparameters for CVN, finally selecting the best 
performing configuration in terms of OR (or Cohen’s kappa), subject to a limit on the number of no answers 
below 15%. Since it is known that leave-one-out cross-validation has a low bias but a high variance in perfor-
mance estimation of the generalization error, a bootstrap performance estimation of the selected configuration 
(fingerprint plus hyperparameters) is performed using the theory of Efron and  Tibshirani18 (more details in the 
“Methods” section). Table 2 reports the combinations of data sets and fingerprints for which OR at least 8.0, and 

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
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no answers below 20% of the number of patients in the bootstrapping assay is obtained. All results reported are 
statistically significant (below 0.05) in p-value for at least one key measure (OR or AUC). The Odds ratio ranges 
from a minimum of 8.33 to a maximum of 40.0 with average 17.09 and (geometric) mean p-value 0.003. Cohen’s 
kappa ranges from a minimum of 0.18 to a maximum of 0.65 with an average 0.4, while AUC values range from 
0.61 to 0.88, with average 0.76 and (geometric) mean p-value 0.001. Interestingly, the best performance in terms 
of OR and kappa is attained for fp1 on data set GSE46602 which is the most balanced data set among the cohorts 
used in this study, having about 50% of high-risk and 50% low-risk patients. The selected fingerprint appears to 

Table 1.  Performance measures of seven fingerprints (Fp) on TCGA-PRAD discovery data. The performance 
is measured on the test data after training (on train data) and model selection (on validation data). We report 
the whether the fingerprint has bee selected via Pareto-based or Ng-based model selection. The table reports 
the fingerprint identifier (Fp), the reference year (year), the number of patients in the test set (n. pats), the 
number of no answers (n.a.), the odds ratio (OR), the OR 95% confidence interval, and its p-value, the Cohen’s 
kappa value, the area under the curve (AUC), its p-value (AUC-pval), the p-value of the log-rank test, and the 
lookahead number. For Ng-based model selection that does not use lookahead, the lookahead number is set to 
0 by default. For averaging p-values the geometric mean is used , for other values the arithmetic mean. Results 
in this table are obtained with sw pipeline (a).

Fp Year n. pats n.a. OR OR 95%CI pval Kappa AUC AUC pval logrank pval Lookahead

Fp_0_pareto 2–3 53 1 13 [1.2, 139.9] 0.03 0.29 0.72 0.005 1.60E−005 2

Fp_1_Ng 3–4 37 3 20 [2.0, 192.6] 0.01 0.54 0.7 0.01 1.50E−005 0

Fp_12_pareto 2–3 39 3 21 [1.7, 254.2] 0.01 0.47 0.62 0.16 0.004 1

Fp_14_pareto 4–5 19 2 12 [0.93, 153.8] 0.1 0.49 0.71 0.05 0.08 1

Fp_30_Ng 3–4 25 0 18.75 [1.6, 209.5] 0.01 0.53 0.72 0.03 0.01 0

Fp_20_Ng 2–3 39 2 17.14 [1.7, 172.0] 0.008 0.43 0.79 0.01 0.0009 0

Fp_37_pareto 3–4 31 0 16 [2.6, 96.4] 0.001 0.59 0.78 0.004 7.07E−005 1

Averages 16.8 0.01 0.47 0.72 0.01 0.0006

Figure 1.  Kaplan-Meier plots for the stratifications of patients in the TCGA test cohort according to the 
optimal CVN obtained with different fingerprints. For each plot we note in the captions of the sub-figures: 
the label of the fingerprint, the type of data used in its derivation, the time frame (in years), where the first 
number refers to the threshold for high risk, the second number refers to the threshold for low-risk, and the 
model-selection procedure (Ng-based or Pareto-based). The timeline is in months. The acronym rppa stands 
for Reverse Phase Protein Array. (a) fp0, data mRNA, time frame 2–3, Pareto-based; (b) fp1, data mRNA, time 
frame 3–4, Ng-based; (c) fp12, data rppa, time frame 2–3, Pareto-based; (d) fp14, data rppa, time frame 4–5, 
Pareto-based.
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have good prognostic performance across a wide choice of molecular measurement platforms, event end-points, 
and patients’ clinical conditions.

Of the seven independent cohorts used in this study, five are obtained via surgically removed tumor tissues 
(through either biopsies or radical prostatectomy), thus consistent with the specimens used in the discovery 
cohort. Two independent cohorts (GSE37199 and GSE53922) are based instead on blood samples of PRC patients. 
Unexpectedly, fingerprint Fp20 has significant discriminative power also on both of these test cases, however 
the number of no answers increases to 30–40% of the patient cohort.

Additional performance measures including confidence intervals, PPV/NPV, and Sensitivity/Specificity are 
in the GitHub project repository.

Mixed clinical and genomic fingerprints. From the TCGA PRAD clinical data file 24 clinical/pathologi-
cal features known to have prognostic power in prostate cancer were selected. These features were then appended 
to the omic molecular expression matrices and the fingerprint discovery pipeline was iterated. The fingerprint 
fp160 composed of three clinical parameters: Gleason primary score, tumor stage, psa, and two molecular pro-
tein expression levels for CDKN1B and NF2 has emerged as very concise and performant. Performance measures 
are reported in Table 3 both for the discovery pipeline and for the validation pipeline on independent cohorts. 
Figure 2d is the corresponding Kaplan-Meier plot. The AUC measure is 0.87 at p-value 0.001 on TCGA test data 
and is consistently confirmed in three independent cohorts bootstrap evaluations as well as in bootstrapping on 
the complete TCGA cohort. This mixed fingerprint attains better performance (in terms of AUC) with respect 
to the predictors obtained using the same discovery procedure starting from the 24 clinical/pathological features 
alone (data not shown), or from the genomic data alone (data in Table 1). The mixed fingerprint has also better 
performance than a fingerprint composed only of Gleason total score, tumor stage, psa, and age in terms of its 
stability in bootstrapping experiments (data not shown).

Additional experimental results. A series of complementary tests and searches have been performed in 
order to support the novelty, relevance, and robustness of the proposed prognostic fingerprints and algorithms 
in the context of prostate cancer. In Supplementary Materials Section 1 and Supplementary Table S1, the genes in 
the selected fingerprints are analyzed for their functional associations with cancer in general (and prostate can-
cer in particular), finding that the selected biomarkers have often an experimentally demonstrated deep impact 

Figure 2.  Kaplan-Meier plots for the stratifications of patients in the TCGA test cohort according to the 
optimal CVN obtained with different fingerprints. For each plot we note in the captions of the sub-figures: 
the label of the fingerprint, the type of data used in its derivation, the time frame (in years), where the first 
number refers to the threshold for high risk, the second number refers to the threshold for low-risk, and the 
model-selection procedure (Ng-based or Pareto-based). The timeline is in months. The acronym rppa stands 
for Reverse Phase Protein Array. (a) fp30, data rppa, time frame 3–4, Ng-based ; (b) fp20, data mRNA and rppa, 
time frame 2–3, Ng-based ; (c) fp37, data methylation, time frame 3–4, Pareto-based; (d) fp160, data mixed 
clinical and rppa, time frame 3–4, Pareto-based.
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on cancer insurgence and progression. In Supplementary Materials Section 2 and Supplementary Table S3, it is 
shown that the performance of CVN is not achieved by a single state-of-the-art ML method, and that CVN has 
a consistent uniform good performance across a variety of data. In Supplementary Materials Section 3 and Sup-
plementary Table S4, the analysis is restricted to patients classified as high risk or intermediate risk according to 
two established clinical staging systems, thus showing the capability of refining such classifications using CVN 
and the selected fingerprints. In Supplementary Materials Section 4 and Supplementary Table S5, it is explored 
the issue whether CVN would work as well when biomarker candidates are obtained by randomly probing the 
pool of differentially expressed genes, concluding that that the selected fingerprints do perform better than 
those obtained via a random process (for the fixed CVN algorithm). In Supplementary Materials Section 5 and 

Table 2.  Performance of the seven CVN selected fingerprints over seven independent cohorts of PRC patients 
using loo model selection and bootstrap performance evaluation. We report 21 combinations of cohort vs 
fingerprints attaining OR above 8.0. The table lists the independent cohort id (Dataset), the reference year 
(year) or the risk class for GSE37199, the fingerprint ID (Fp), the number of patients (n. pats), the average 
number of no answers (n.a.), the estimation of the Odds ratio (OR), the OR 95% confidence interval, its 
p-value (pval), and the estimation of Cohen’s kappa (kappa), based on the expected values of true/false 
positives and true/false negatives by the bootstrapping. The area under the curve (AUC) value and its p-value 
(AUC-pval) are measured for the consensus predictor obtained by the bootstrapping. GSE84042 is the 
only independent data set among those considered with methylation data fit for validating fp37. Proteomic 
fingerprints have been validated on mRNA data of independent cohorts. For averaging p-values the geometric 
mean is used, for other values the arithmetic mean. Results in this table are obtained with sw pipeline (b).

Dataset year Fp n. pats n.a. OR OR 95% CI pval kappa AUC AUC-pval

MSKCC 2-3 Fp_0 110 1.7 15.4 [4.05, 58.71] 0.0001 0.4 0.68 0.003

MSKCC 3-4 Fp_0 93 3.77 13.11 [2.71, 63.26] 0.0007 0.32 0.7 0.0006

GSE70769 2-3 Fp_0 39 10.1 12 [1.68, 85.70] 0.02 0.42 0.77 0.007

GSE46602 2-3 Fp_0 30 1.2 9.2 [1.38, 62.36] 0.06 0.33 0.72 0.01

GSE53922 2-3 Fp_0 89 14.32 8.33 [1.65, 41.90] 0.01 0.26 0.64 0.02

GSE46602 3-4 Fp_14 30 5.06 9 [1.50, 53.96] 0.03 0.43 0.78 0.005

GSE53922 3-4 Fp_14 90 26.08 20 [3.68, 108.53] 0.003 0.43 0.82 0.0001

MSKCC 2-3 Fp_1 110 3.9 8.66 [2.64, 28.40] 0.0007 0.37 0.69 9.70E-005

GSE46602 2-3 Fp_1 30 4.05 30 [4.22, 213.15] 0.002 0.59 0.86 0.0003

GSE46602 3-4 Fp_1 30 1.69 40 [4.48, 356.46] 0.0005 0.65 0.83 0.0009

GSE46602 2-3 Fp_12 30 3.7 25 [3.76, 166.22] 0.003 0.59 0.86 0.0006

GSE84042 2-3 Fp_12 65 7.3 18.33 [1.38, 242.77] 0.12 0.37 0.88 0.002

MSKCC 2-3 Fp_30 110 2.36 13.83 [1.82, 105.08] 0.02 0.18 0.61 0.04

GSE54460 3-4 Fp_30 31 1.47 20 [0.99, 401.64] 0.16 0.48 0.79 0.05

GSE46602 2-3 Fp_30 30 5.3 13.5 [2.21, 82.28] 0.01 0.47 0.82 0.002

GSE53922 2-3 Fp_30 89 7.66 12 [1.75, 82.08] 0.004 0.21 0.7 0.001

MSKCC 2-3 Fp_20 110 4.6 8.5 [2.43, 29.77] 0.001 0.34 0.67 0.006

MSKCC 3-4 Fp_20 93 2.2 22.47 [3.58, 140.98] 0.0006 0.32 0.7 0.001

GSE46602 3-4 Fp_20 30 0.5 30 [4.53, 198.56] 0.001 0.55 0.83 0.001

GSE53922 2-3 Fp_20 89 40 16 [3.16, 80.95] 0.002 0.43 0.79 0.0007

GSE37199 HR-LR Fp_20 107 28.2 10.88 [2.26, 52.33] 0.001 0.33 0.69 0.001

GSE84042 4-5 Fp_37 145 20.4 19.9 [4.03, 98.86] 0.000017 0.46 0.87 1.90E-006

Averages 17.5 0.003 0.4 0.76 0.001

Table 3.  Performance of the mixed clinical and molecular fingerprint fp160 on the TCGA PRAD (Reverse 
Phase Protein Array) rppa data set and on independent cohorts. In the notes, it is reported the software 
pipeline used, and whether the input data set has been equalized with a size ratio of the two labels up to 3-to-1 
or 2-to-1. n.a. is the number of no answers. The time frame (years) is (3,4).

Dataset fp type n. pat n.a. OR OR 95% CI or pval Kappa AUC AUC pval Notes

TCGA-rppa fp160 25 1 22.75 [2.6, 198.1] 0.002 0.64 0.87 0.001 sw (a), Pareto, lh = 1

TCGA-rppa fp160 126 22 18.8 [6.9, 51.3] 2.1E-10 0.61 0.83 4.8E−9 sw (b)

GSE46602 fp160 30 0 28.8 [2.9, 284.7] 0.0007 0.6 0.85 0.0006 sw (b)

GSE70769 fp160 20 2 39.0 [1.8, 817.6] 0.01 0.67 0.88 0.01 sw (b), eq 3-1

GSE84042 fp160 36 6 22.0 [2.3, 204.7] 0.007 0.58 0.87 0.002 sw (b), eq 2-1
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Supplementary Table S6, the selected fingerprints are compared with several prognostic and predictive gene 
fingerprints in literature, finding minimal overlaps, thus confirming their novelty.

Discussion
As research in prognostic predictions, in general, and for prostate cancer, in particular, is a vast subject with 
implications from several areas of biology and medicine, here comments on the relationship of this work with 
some issues arising in the relevant literature are given. Each issue is introduced by a short heading.

Role of AI and ML in biomarker discovery. Alarcón-Zendejas et al.19 and Goldenberg et al.20 review 
recent advances in biomarker discovery for prostate cancer, indicating ML-based and AI-based approaches as 
opening a new dimension to research and opportunities for transferring new computational techniques in clini-
cal practice in this area. This work pushes this view by extending the novel ML paradigm of the Coherent Voting 
Networks (CVN) with improved model selection techniques, and by applying it to the challenging problem of 
the prognosis of prostate cancer at a fine time granularity (year-to-year).

Prognosis based on gene expression and proteomic data. This study uses mainly mRNA gene 
expression data sets obtained via high throughput assays as the primary source for prognostic biomarker discov-
ery and validation. This technology is now mature and, over time, data on many cohorts of patients have become 
publicly available. The results on mRNA-based fingerprints appear to be robust w.r.t the specific technology used 
for measuring mRNA levels of expression. Interestingly, some of the best reported results are obtained from pro-
teomic data obtained with Reverse-Phase Protein microArrays (rppa)  assays21. Such proteomic data, although 
less abundant than mRNA expression data may have the advantage of representing a more accurate snapshot of 
the cell’s biological processes. This study has derived two fingerprints from mRNA data, three from proteomic 
data, one mixed with mRNA and proteomic data, and one from methylation data.

Role of methylation in cancer. Many studies indicate that changes in DNA methylation contribute to 
cancer development and regulation. Cancers characteristically display extensive hypomethylation of DNA 
repeats as well as frequent focal DNA  hypermethylation22, 23. Toth et al.24 attain good prognostic performance 
with a Random Forest algorithm, to discriminate patients according to eventual recurrence-free survival as 
an outcome, measured by PSA levels. However, the model they describe requires input from a large number 
of methylation sites (402 differentially methylated sites). The methylation-based fingerprint comprises just six 
methylation loci with performance validated in the independent GSE84042 methylation data set.

MicroRNA, microbiome, and copy number alterations. MicroRNAs have been investigated as 
potential biomarkers for PRC prognosis as they can be derived also from liquid  biopsies25, although the major-
ity of studies still uses tissue-derived  microRNA26. Experiments with microRNA data from the TCGA-PRAD 
cohort did produce fingerprints with statistically significant but suboptimal performance (data not shown) vs. 
those obtained via mRNA, rppa (Reverse Phase Protein Array), and methylation data. Similarly, statistically sig-
nificant but suboptimal results were obtained with TCGA-PRAD CNA and microbiome data (data not shown). 
Smith and  Sheltzer27 study the prognostic power of CNA in several cancer types, including prostate cancer, 
focusing on alterations of known driver genes. They used Cox proportional hazards analysis, concluding that 
very few mutations were significantly associated with patient outcomes. Their analyses suggested that, in gen-
eral, cancer driver gene mutations lacked significant patient stratification power. The results in this study on the 
TCGA-PRAD CNA are consistent with these findings.

Prognostic signatures through tissue classification. This study aims at predicting individual prog-
nostic high-risk/low-risk stratification of patients along yearly time-frames in the first 5  years post-surgery/
biopsy. Another form of prognostic study aims at a classification of the tumor tissues into sub-types, and then 
at using this information to derive broad prognostic indications. For example, Dhanasekaran et al.28 study the 
patterns of differentially expressed genes in normal adjacent prostate tissue (NAP), benign prostatic hyperlasia 
(BPH), localized prostate cancer, and metastatic, hormone-refractory prostate cancer, using unsupervised hier-
archical clustering. Among the genes  cited28 as strongly correlated with the above classification, two genes (MYC 
and CDH1) are also present in the selected fingerprints. Rhodes et al.29 produced a list of genes consistently 
up-regulated or down-regulated in several cohorts of prostate cancer patients with clinically localized prostate 
cancer versus benign prostate tissue. In this list, MYC is found but no other gene in the selected fingerprints. 
The inference is that, in all likelihood, the fingerprints in this study do not target the known PRC subtypes per 
se, but, instead, aim directly at the tracking the relevant biological process in tumor’s development (see also Sup-
plementary Materials Section 1 and Supplementary Table S1).

Prognosis based on clinical and histological data. Historically, histological and clinical parameters 
have been extensively studied in order to provide effective prognostic stratification of PRC patients. This line 
of research is now being supplemented with AI-based techniques. For example, Guinney et al.30 recently used 
crowdsourced challenges to improve prostate cancer prognostic models based on open clinical trial data, includ-
ing 150 curated clinical variables, within the DREAM initiatives (Dialogue for Reverse Engineering Assessments 
and Methods). A hybrid approach is using genomic profiling to reduce the technical and subjective variability 
in the estimation of well-known clinical/histological parameters. For example, Wang et al.31 initially identify the 
candidate genes related to the Gleason score, then these genes are used to construct a LASSO Cox regression 
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prognostic analysis model based on a 3 genes fingerprint (CDC45, ESPL1, and RAD54L). Predictors composed 
of mixed clinical and omic features were also considered, finding good and performance, confirmed in inde-
pendent cohorts, for a fingerprint composed of three well known clinical parameters (PSA, Gleason primary 
score, and tumor stage) and expression levels for NF2 and CDKN1B. Interestingly these three clinical param-
eters were not pre-determined, but emerged from a pool of 24 clinical features. Moreover, the fact that these 
three clinical features are already routinely collected in practice, implies that just two additional ’omic’ expres-
sion measurements need to be collected (possibly by RT-PCR). Integration of clinical and genomic fingerprints 
has been shown to be beneficial also for the Decipher  fingerprint32.

Role of therapies. In the discovery cohort TCGA-PRAD, no patient received neo-adjuvant therapies prior 
to surgery/biopsy. About a quarter of the patients has a record of some treatment after surgery (radiation or 
pharmacological), which may have been administered after monitoring revealed the progress of the disease. 
Since the aim of this study is at predicting the duration of progression-free survival (PFS), and treatment data 
was not complete, no stratification of patients into treatment classes has been done. Moreover, note that this 
study is retrospective and the effect of personalized therapeutic choices can be detected more reliably within 
randomized clinical trials specifically designed for this objective.

Multi‑gene prognostic tests in clinical practice and guidelines. Beyer et al.33 recently compiled a 
systematic review of diagnostic and prognostic biomarkers in prostate cancer, with emphasis on those likely to 
progress towards clinical practice. The proposed multi-gene biomarker fingerprints may be useful within the 
prostate cancer management work-flow as a PRC risk stratification decision point, following a prostate biopsy/
surgery, thus it can be hypothesized a potential future use akin to that of the current kits such as Promark, 
Oncotype Dx, Prolaris, and Decipher.

Multi‑omic signatures. Fraser et al.34 study in-depth the class of localized, non-indolent prostate cancer 
and propose a multi-modal pool of biomarkers to predict disease relapse as indicated by BCR (this signature 
includes clinical, gene expression, methylation sites, SNV, and CNA). Interestingly, their method was effective 
in predicting eventual relapse with AUC 0.83 (See Fig. 10(h)34). However, when it was applied to detect early 
relapse (relapse by month 18) it did not perform well (log-rank test p = 0.14) (See Fig. 10(g)34). In contrast, the 
proposed signatures are effective within the first 2–5 years since surgery/biopsy, with 1-year resolution. Most of 
the proposed fingerprints are composed of one molecular type, except fp20 which is composed of two, and fp160 
composed of clinical and genomic (Reverse Phase Protein Array) markers. Several recent studies have focused 
their attention on providing refined risk stratifications in the early years after primary treatment. Fu et  al.35 
propose an 18-genes genomic fingerprint for prediction of recurrence with AUC performance values of 0.747, 
0.827, and 0.851 respectively after 1-, 3-, and 5-years from surgery in the GSE46602 independent cohort. Zhou 
et al.36 report prognostic accuracies for 3- and 5-year BCR-free survival of AUC 0.68 and 0.713, respectively, for 
a 26-patient independent cohort. Results reported in Tables 2 and 3 show that some of the fingerprints reported 
in this study may attain higher AUC values with shorter fingerprints.

Tumor tissue vs liquid biopsies. Blood samples have several advantages with respect to tumor tissue 
samples as biospecimen of choice for prognostic purposes, and several blood-based prognostic signatures have 
been proposed for prostate  cancer37, 38. In particular issues relative to PRC multiclonality and inter-tumor het-
erogeneity may limit the use of tissue biopsies as a source of reliable prognostic  tests39. These issues may be miti-
gated in blood samples. Testing the selected fingerprints on independent cohorts with data from blood samples 
(GSEGSE53922 and GSE3719), it was found that one fingerprint (fp20) retains prognostic power also in both of 
these cohorts, although with a higher percentage of no answers. As the biological and transcriptional interplay 
of primary prostate adenocarcinoma with eventual bone metastasis affecting several components of blood is 
complex and not well-understood37, 38, I expect that better results may be obtained by using blood samples (and/
or its components, e.g. extracellular vescicles, serum, PBMC, and CTC) directly as the target for the biomarkers 
discovery phase.

Castration‑resistant prostate cancer. One independent cohort (GSE53922) is composed mainly of 
patients at the stage of Castration-Resistant Prostate Cancer (CRPC). It was found that fingerprints fp14, fp20, 
and fp30 are prognostic with good performance also for this sub-class of PRC patients, although, in this case, 
further data is likely needed to confirm this finding. For fp20 also partial support comes from the result on 
cohort GSE37199 where fp20 can discriminate CRPC from the indolent form of local PRC.

Role of the pool of selected genes in cancer progression. Many of the genes in the eight fingerprints 
been studied individually for their role in cancer (of any type), and they affect functionally important cancer 
biological processes, as determined via knock-out experiments in cell lines and/or animal models of cancer. 
In some cases, their gene expression is directly modulated by a microRNA with an important role in cancer 
progression. Although this is not yet sufficient to establish causal relationships between the expression of these 
genes and tumor development, it is a good stepping stone towards a more complex type of analysis that integrates 
bio-networks and causality relationships more explicitly in the model.

Limitations of the current CVN approach. The main limitation in the current state of the CVN meth-
odology is that the biomarker discovery phase is based on the trisection of the discovery cohort into training, 
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validation, and testing sets (roughly half, one quarter, and one quarter, respectively), while the performance of 
the selected model can be measured reliably only on the testing set. Thus the size of the discovery cohort needs 
to be rather large in order for the testing set to be sufficient to attain statistical significance. It is an open line of 
research to extend the model-selection phase to reach statistical robustness with fewer initial samples.

Comparative evaluation of fingerprints. One natural question is whether, among methylation, mRNA, 
proteomic, and mixed fingerprints, one data type outperforms the others in the context of prostate cancer prog-
nosis. The answer to this question is mostly dependent on trade-offs across different concerns. For example, 
data from Table 1 and Supplementary Table S2 on the discovery cohort TCGA-PRAD indicates that fingerprints 
based on data from proteomic assays (rppa) might have a greater dynamic range, covering predictions of PFS 
for all time frames from year 2 to year 5, while the methylation-based fingerprint fp37 is performant in only one 
specific time frame. Thus, in case the dynamic range of the prediction is considered a key feature of a prospec-
tive clinical test, rppa data might be the optimal choice, with an assay aiming at measuring several rppa-based 
fingerprints at once. A second concern is the practicality of handling the bio-specimens and extracting the 
molecular species to be analyzed. Here the advantage of adopting a mixed mRNA and rppa fingerprint fp20, 
attaining AUC value 0.79, which is marginally higher than AUC values for the pure mRNA or rppa finger-
prints on TCGA-PRAD data, should be weighed against the disadvantage of handling pipelines for two parallel 
molecular assays. The mixed clinical and rppa-based fingerprint fp160 has a special status since the three clinical 
parameters (Gleason primary score, tumor stage, psa) are routinely collected in the current clinical protocols, 
thus the marginal cost of setting up an assay for fp160 is associated with measuring the levels of CDKN1B and 
NF2. The performance levels for fp160 measured in AUC are very high and consistent across the discovery and 
independent cohorts.

Methods
Overview. Supplementary Fig. S2 shows a schematic depiction of the two main software pipelines used to 
derive the results reported in this work. In this section, it is given a summary of the main principles of the 
Coherent Voting Network paradigm while more algorithmic details are in  Pellegrini5. Novel algorithmic features 
described below include a model selection module based on a theory by Andrew Ng for avoiding model overfit-
ting, and the implementation of a bootstrapping module in a train-test setting according to the work by Efron 
and  Tibshirani18.

Discovery cohort and independent validation cohorts. The discovery cohort is the TCGA-PRAD 
(2018) data set downloaded from cbioportal (https:// www. cbiop ortal. org) (additional clinical data has been 
obtained from UCSC Xena repository (https:// xena. ucsc. edu)). The procedures for sample selection and pro-
cessing are described in detail in the paper by Abeshouse et al.3 and its Supplementary files. Briefly, surgical 
resection biospecimens were collected from patients at the participating institutions diagnosed with prostate 
adenocarcinoma, who had not received prior treatment for their disease (chemotherapy, radiotherapy, or hor-
monal ablation therapy). The specimens comprise primary tumor tissue, normal solid tissue, and blood-derived 
normal. Pathology quality control was performed on each tumor and normal tissue specimen from a frozen 
section slide. Hematoxylin and eosin (H &E) stained sections from each sample were subjected to independent 
pathology review to confirm that the tumor specimen was histologically consistent with the allowable prostate 
adenocarcinoma subtypes and the adjacent normal specimen contained no tumor cells. Computational pipe-
lines include batch effect analysis and correction. Note that this study uses only the primary tumor-tissue data 
and clinical data. Some technical details of the data acquisition technologies are summarized in Supplementary 
Table S7. Although TCGA data was not originally collected for survival analysis, ex-post quality control studies 
by Liu et al.40 show that TCGA PRAD data for PFS is of high quality and can be safely used for prognostic pur-
poses. A synopsis of independent cohort’s patient features is in the “Supplementary Materials” (Sections 6 and 7).

Extending the methodology in  Pellegrini5, each patient is annotated with a risk class, taking censoring into 
consideration, setting progression-free survival below 12t months (year t and below) as high-risk, and progres-
sion-free survival above 12(t + 1) months (year t + 1 and above) as low-risk. For convenience, in this study t 
takes consecutive integer values 2, 3, 4 and 5; and each specific time frame is denoted with the pair (t, t + 1).

Coherent voting networks. The Coherent Voting Network (CVN) is a supervised learning algorithm 
introduced by  Pellegrini5 and applied to the classification of breast cancer patients into prognostic survival cat-
egories (low risk/high risk of overall survival above/below 5 years) after surgical removal of the  tumor5. The 
Coherent Voting Network is designed explicitly to uncover non-linear, combinatorial patterns in complex data, 
within a statistically robust framework. Moreover, the coherent voting communities mechanism can be seen as a 
’post hoc’ result explanation approach, providing a certificate justifying the survival prediction for an individual 
patient, thus facilitating its acceptability in practice, in the vein of explainable Artificial Intelligence (See discus-
sion in “Supplementary Materials”).

In a nutshell, CVN can be seen as a generalization of the notion of guilt by association (GbA) in biological 
networks, where an unlabeled patient node receives a predicted label by collecting the vote of many dense com-
munities of labeled patients and genes to which the unlabeled patient node belongs. The CVN algorithm also 
seeks a minimal number of genes with the property of allowing a coherent vote of high accuracy on the labeled 
nodes, and thus such a minimal set represents arguably a good candidate fingerprint to be performing well also 
on predictions for the unlabeled nodes. A schematic depiction of the workflow for the main CVN algorithm is 
in Supplementary Fig. S1. Further details can be found in Ref.5 [Supplementary Materials].

https://www.cbioportal.org
https://xena.ucsc.edu
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As in many complex ML paradigms, the CVN depends on a number of inner parameters, and thus it is 
important to do properly both feature selection (i.e. the selection of the fingerprint genes) and hyper-parameter 
optimization. These two tasks are called together the model-selection phase.

The input cohort of patients is split randomly into a training set, a validation set, and a test set (of size roughly 
1/2, 1/4 and 1/4). Then the algorithm proceeds in three phases. In Phase I the CVN is applied to the training set 
(with full knowledge of the training patient survival labeling) in order to produce a list of candidate gene finger-
prints (typically a number between 30 and 60 candidates in this paper). In phase II, the candidate fingerprints, 
the training set, and the validation set (with partial knowledge of the patient survival labeling for the validating 
set) are used together to do model-selection and fix both the fingerprint and the hyper-parameter configuration 
that minimizes the generalization error (or other performance target measures). Finally, in Phase III the single 
selected CVN is applied to the test set to measure the effective generalization error. The test set is a set of patients 
not used in phases I and II, thus unlikely to suffer from overfitting.

Pellegrini5 noticed that the standard model selection method suffers from a particular type of overfitting 
discovered by  Ng6 as an effect of having a large number of hypotheses to choose from. This issue was solved by 
introducing a Pareto  stratification5 of the models, and by using the notion of a limited and controlled lookup 
of test data during the model-selection phase (phase II). The lookahead number 1 corresponds to the standard 
model selection, while it was considered acceptable also lookahead numbers less or equal to 4, thus overfitting 
is prevented by using a controlled information leak.

The fingerprints so selected were next further validated in independent cohorts of cancer patients, thus show-
ing that the Pareto-based model selection did perform well empirically.

The main technical contribution of this paper is a new look at the problem of model selection by generalizing 
and expanding the approach proposed by  Ng6, as described in the next section. In practice, both the Pareto-based 
model selection and the Ng-based model selection are used to attain the results shown in this paper.

Missing data and censored patients are handled as described in detail in  Pellegrini5.

Ng‑based model selection. In  Ng6 it is described the following phenomenon. One has many predictive 
models (hypotheses) to choose from and uses cross-validation on a pool of validation data in order to select the 
hypothesis minimizing the cross-validation error, as a representing a hypothesis hopefully minimizing also the 
generalization error (to be evaluated on a different independent testing set drawn from the same distribution). 
Ng shows that when the number of hypotheses to choose from is large a form of over-fitting occurs so that the 
hypothesis minimizing the cross-validation error is a poor predictor of the generalization error. Next, an algo-
rithm called LOOCVCV is proposed to cope with this  phenomenon6. LOOCVCV is based on estimating the 
number n̂ so that choosing the hypothesis with the smallest cross-validation error in a random subset H ′ of size 
n̂ of the initial set H of hypotheses has the minimum expected misclassification error. Having the estimate of n̂ , 
this value is then used in an index-scaling approach to select one of the hypotheses in a ranked list (by cross-
validation error) of the initial H hypotheses.

The LOOCVCV method is modified and generalized in four aspects. 

(1) Optimization of the expected generalization value of functions different from the generalization error, in 
particular Cohen’s kappa measure (and variations of it).

(2) Simplification of the handling of ties in the ranking of H by using lexicographic sorting of the value of a 
function paired with the index of the hypothesis.

(3) Skipping the index-scaling approach to the hypothesis selection by recording in the computation process 
of the estimate of n̂ , the hypothesis having the largest (smallest) contribution/effect when the aim is at 
maximizing (minimizing) a target function.

(4) probabilities of events are computed exactly via binomial coefficients, not in a quick but approximate 
 fashion6.

The presence of possible no-predictions introduces some complications, as the Cohen kappa can be changed 
in several different ways. Four versions of the kappa function differing in the way they handle the no answers 
are computed. The first solution is to apply the standard Cohen’s kappa functional just ignoring the no answers. 
The second solution is to scale the first solution by the fraction of predictions. The third solution is to apply 
Gwet’s version of  kappa41. Finally, a mixed version is considered that uses the second function for a number of 
no answers below 15% and the third version when the number of no answers is above 15%. These four measures 
are all in the range [−1,+1] . In order to select dynamically one of the four measures, each of them is normalized 
with respect to its own empirical distribution via a z-score. Among these four functions the function realizing 
the largest z-score (i.e. scaled displacement from the respective mean) is chosen.

Pareto‑based model selection. In Ref.5 [Suppl. Materials, page 25] the Pareto-based model selection pro-
cess is described in detail. Here we give a summary to compare it with the Ng-based selection procedure. Each 
configuration of CVN on the Validating set is mapped to a point in 3D space representing its performance profile 
(number of hits, quality score, fraction of answers), where the quality score is either Cohen’s kappa or the Odds 
Ratio. Duplicated points are removed. For this set of points, the optimal (maximal) Pareto front is computed, and 
then the computation is iterated on the residual set. This process produces a Pareto stratification of the points. 
Within each stratum, the points are sorted by the quality score. This produces a total ordering of the points. Next, 
using this order, we compare the quality score obtained on the Validation set and the Test set for corresponding 
configurations. This comparison stops when either the Test quality score is better than the Validation quality 
score, or it is within a relative displacement of 0.2. The number of such comparisons is the lookahead number (lh) 
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and it measures the controlled information leakage we allow to balance the performances of the validation and 
test sets. Not that lh = 1 corresponds to the classical selection without information leakage. Low lh numbers ≤ 2 
have been found for the fingerprints in Table 1.

Bootstrapping. The independent cohorts used to validate the chosen fingerprints are smaller than the 
TCGA-PRAD cohort used to discover them. Therefore splitting these data into three sets risks producing results 
lacking statistical significance just due to the small numbers involved. For this reason, a different common 
machine learning paradigm is applied: the leave-one-out (LOO) approach to hyper-parameter optimization 
(now the features—genes—are fixed), and bootstrapping to evaluate the quality of the chosen  configuration42.

Bootstrapping is a very general technique with deep theoretical support and extensive practical applications. 
In the context of cross-validation, the formalism by Efron and  Tibshirani18 can be adopted. In particular, notice 
that the formula for the leave-one-out bootstrap error estimation (which is the smoothed version of the standard 
cross-validation estimation of the prediction error) can be applied to obtain smoothed estimates of any function 
that is a sum (linear combination) of the single error indicator functions for the elements of the testing set. There-
fore bootstrap estimates of the relevant quantities: TP (True Positive), FP (False Positive), TN (True Negative), 
FN (False Negative), and NA (No Answers) can be made with this approach. From these values, estimates of the 
bootstrapped odds ratio and kappa are computed. Note that the area under the curve (AUC) does not have the 
required functional form for the application of the  theory18. All the prediction maps produced in the bootstrap 
process are collected and for each patient in the input set a consensus prediction is produced that is the major-
ity of the predictions in the collections of bootstrap maps. Finally, the AUC of the consensus prediction map is 
computed using the equivalence to the Wilcoxon-Mann-Whitney U-Statistic.

In standard bootstrapping the sampling in a set of n items is done by sampling uniformly at random with 
replacement m = n times. Most of the bootstrap theories would carry on using a number of samples m  = n (see 
e.g. Bickel et al.43 for the correction to the theories need in this case). Note that the only practical effect of sam-
pling in the context of this study is to partition the input set into an in-set and an out-set For the bootstrapping 
experiments, the value m = 3n is set, which ensures sufficient variability in the size of the out-sets (used for test-
ing) while ensuring that the in-sets (used for training) are sufficiently stable. For the mixed clinical and genomic 
fingerprint on TCGA data, the value m = 1.38n is used ensuring that the expected size of the test subset of 
patients is 1/4 of the total in each bootstrap round, thus with a split close to the initial train-validate-test setting. 
The results in Table 2 are obtained for B = 200 and are stable with respect to the number B of bootstrap iterations.

Ethics approval and consent to participate. Patients were not directly involved in the study. All data 
used in this study is in the public domain and was obtained with the appropriate consent.

Conclusions
This report has two main contributions. From the methodological point of view, the CVN (Coherent Voting 
Network) paradigm is extended by providing a novel robust model selection technique to overcome the danger 
of overfitting, inspired by a method of Andrew Ng. Next, the improved CVN methodology is applied to tackle the 
problem of stratifying prostate cancer patients in risk classes (for adverse events within 2–5 years from surgery/
biopsy). Several candidate genomic fingerprints are produced to cover different time-frames at a 1-year resolu-
tion using of different omic data (mRNA, Reverse Phase Protein Array, and methylation) and clinical data. These 
multi-gene fingerprints can help in deciding the monitoring regime to be applied to prostate cancer patients, 
within an established clinical decision process. Many of the biomarkers in the proposed pool of genes are known 
individually as cancer hallmark genes or they are shown functionally involved in cancer using animal models 
or cell lines. The proposed fingerprints appear to be robust in tests with several independent cohorts. However, 
the task of measuring the proposed biomarkers in an accurate, reproducible, and cost-effective way for a clinical 
setting (e.g. via RT-PCR) is left as future research.

Data availability
Data supporting the findings of this study are available from the GitHub repository https:// github. com/ Marco 
Pelle grini CNR/ Coher ent- Voting- Netwo rk- for- PRC- progn osis.

Code availability
Custom software and code availability is to be agreed via licensing contracts with the National Research Council 
of Italy.
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