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Unsupervised machine learning 
effectively clusters pediatric 
spastic cerebral palsy patients 
for determination of optimal 
responders to selective dorsal 
rhizotomy
Xiaobin Hou 1,3, Yanyun Yan 2,3, Qijia Zhan 1, Junlu Wang 1, Bo Xiao 1 & Wenbin Jiang 1*

Selective dorsal rhizotomy (SDR) can reduce the spasticity in patients with spastic cerebral palsy (SCP) 
and thus improve the motor function in these patients, but different levels of improvement in motor 
function were observed among patients after SDR. The aim of the present study was to subgroup 
patients and to predict the possible outcome of SDR based on the pre-operational parameters. A 
hundred and thirty-five pediatric patients diagnosed with SCP who underwent SDR from January 
2015 to January 2021 were retrospectively reviewed. Spasticity of lower limbs, the number of target 
muscles, motor functions, and other clinical parameters were used as input variables for unsupervised 
machine learning to cluster all included patients. The postoperative motor function change is used to 
assess the clinical significance of clustering. After the SDR procedure, the spasticity of muscles in all 
patients was reduced significantly, and the motor function was promoted significantly at the follow-up 
duration. All patients were categorized into three subgroups by both hierarchical and K-means 
clustering methods. The three subgroups showed significantly different clinical characteristics except 
for the age at surgery, and the post-operational motor function change at the last follow-up in these 
three clusters was different. Three subgroups clustered by two methods could be identified as “best 
responders”, “good responders” and “moderate responders” based on the increasement of motor 
function after SDR. Clustering results achieved by hierarchical and K-means algorithms showed high 
consistency in subgrouping the whole group of patients. These results indicated that SDR could relieve 
the spasticity and promote the motor function of patients with SCP. Unsupervised machine learning 
methods can effectively and accurately cluster patients into different subgroups suffering from SCP 
based on pre-operative characteristics. Machine learning can be used for the determination of optimal 
responders for SDR surgery.

Treatment approaches for children with spastic cerebral palsy (SCP) are aimed to promote the moving abilities 
of  them1. Several studies reported that selective dorsal rhizotomy (SDR) is a safe procedure for reducing spastic-
ity of lower extremities in pediatric  SCP2–4. The motor function of these children is significantly improved after 
SDR when supplemented with rehabilitation  therapy5. Patients who is about to accept SDR procedure should 
meet the surgical indications, which has been established for  decades6. Nonetheless, it is reported that different 
levels of increased motor function were observed among patients after undergoing SDR  procedure7. Predict-
ing the possible prognosis of SDR basing on certain pre-operational parameters is of great clinical importance.

Machine learning is used for analysis of real-life data using mathematical  models8. These mathematical 
methods can be used for analysis of data in different fields. Machine learning methods have been used in clinical 
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practice for diagnosis, classification and evaluation of heart failure patients with good  results9. Therefore, machine 
learning can also be used for classification of SCP patients before undergoing SDR surgery. Machine learning 
comprises supervised or unsupervised method, depending on the algorithm  used10. Unsupervised machine 
learning is used for sorting the entire dataset into several subsets based on the level of  similarity11. The data in 
this case has no target attributes, and the computer should determine the inherent structure and patterns of 
the dataset. The differences between several sorted subsets are clarified by evaluating the characteristics of the 
different subsets.

The present study sought to classify children suffering from SCP using the unsupervised machine learning 
method to identify subjects eligible for SDR surgery and improve the outcomes of patients who undergo the 
procedure.

Materials and methods
Research population, SDR procedure, post-operational rehabilitation program and follow 
up. A retrospective study was conducted in consecutive pediatric patients diagnosed with SCP who treated 
in our department from January 2015 to January 2021. Diagnosis of SCP was conducted by multi-disciplinary 
treatment experts. Patients who were met the SDR indications received single-level approach SDR at the lumbar 
segment. The relevant techniques of SDR surgery have been elaborated in detail in our previously published 
 articles2,7. In brief, the child was placed in a prone position with the head lowered, and the surgical incision 
was typically made at the L2–L3 interspace. After laminectomy, we made an incision of about 1.2 cm in the 
midline of the dura mater. With guidance from neurophysiological monitoring, we carefully test every nerve 
root/rootlet in the surgical area and to transect or protect nerve fibers according to the rhizotomy  protocol7. The 
post-operative rehabilitation program was applied to these children 3 days after SDR (Supplementary Fig. 1). 
In detail, strengthening program starts 3 days after the operation, and the balancing program starts 7 days after 
SDR. Ambulating program starts 3 months, 6 months, 12 months, 18 months after SDR in children classified as 
GMFCS I, II, III and IV, respectively. Children after SDR were suggested to have follow-up every 3–6 months for 
the assessment of spasticity and motor function, as well as adjusting rehabilitation program individually. Patients 
who had a follow-up duration longer than a year were included in this study.

Assessment of spasticity. Muscle tone of muscles in bilateral lower extremities in all patients was pre-
operatively and post-operatively assessed by one physiotherapist using the modified Ashworth Scale (MAS)12. 
The MAS score was used to determine the MAS grade, with a score 0 representing MAS grade 0 (no increase in 
muscle tone), a score of 1 indicating MAS grade 1 (slight increase in muscle tone, presented as a catch and release 
or by minimum resistance at the end of the range of motion when the affected part was moved in flexion or 
extension), a score of 2 represented a MAS grade  1+ (slight increase in muscle tone, exhibited as a catch, followed 
by minimal resistance throughout the remainder of the range of movement), a score of 3 represented MAS grade 
2 (moderate increase in muscle tone), a score of 4 indicating a MAS grade 3 (significant increase in muscle tone) 
and a score of 5 denoting a MAS grade 4 (affected part rigid in flexion or extension)13. Muscles assessed in this 
study included bilateral hip adductors, hamstrings, gastrocnemius, and soleus. Muscles evaluated as MAS score 
3 or higher before the SDR procedure were referred as target muscles.

Evaluation of motor function. The motor function of all patients was examined by one single physi-
otherapist who conducted muscle tone assessment. The gross motor function classification system (GMFCS) 
and gross motor function measure-66 (GMFM-66) were utilized to assess the motion ability of the participants. 
GMFCS is a five-grade classification system for determination of motor function of patients presenting with 
level I (walk without limitations) to level V (dependent on humans and equipment)  SCP14,15. GMFM-66 is an 
observational clinical tool for evaluation of motor function changes in cerebral  palsy16. GMFM-66 scoring sys-
tem is a four-point-scale comprising 66 items grouped into five dimensions of gross motor function. A 5-year-
old child without motor disabilities exhibits the maximum score (a score of 100). GMFM-66 score is highly cor-
related with the GMFCS grade, but the score is more accurate as a tool for motor function evaluation compared 
with use of the classification system.

Considering that the motor function of children with spastic cerebral palsy would be improved owing to the 
natural growth, we utilized the equation to calculate the expected natural evolution score over a definite period 
of time, which is accessible online (http:// www. gmfmer. ca)17. The expected natural evolution could serve as a 
historical control to measure and compare GMFM-66 score evolution in children with different GMFCS level, 
and thus normalizing the improvement achieved by SDR and the post-SDR rehabilitation program in the cohort. 
It has to be mentioned that the monthly expected natural evolution was calculated up to the age of 96 months, 
and the expected natural evolution of those older than 96 months were taken as zero in this study.

Clinical characteristics, data processing, and unsupervised machine learning. Variables includ-
ing age, pre-operational GMFCS level, GMFM-66 score, number of target muscles, and MAS scores of bilat-
eral hip adductors, hamstrings, gastrocnemius, and soleus, were used as input data for unsupervised machine 
learning calculations. Correlation analyses were conducted between the input variables before machine learning 
analysis. GMFCS level was eliminated from the input data as the correlation coefficient between GMFCS score 
and GMFM-66 was more than 0.8 (absolute value). The input variables were scaled before clustering. Subse-
quently, hierarchical clustering and K-means clustering were performed for the eleven  variables18–21. The elbow 
method was used to determine the “K” value of the variables before clustering. The elbow method comprises 
use of a metric for evaluation of reliability of the clustering outcome for various values of K and determining 
the elbow point. The elbow point refers to the iteration when there is no significant improvement in the cluster-
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ing outcome. The clustering results were visualized by dimensionality reduction through principal component 
 analysis22. Group sorting and principal component analysis were performed using “kmeans”, “hclust”, “psyc” and 
“clusterR” packages in R studio (version 4.1.3). After clustering, the post-operative GMFM-66 score change was 
taken as outcome measure to compare the effect of SDR among these three subgroups.

Statistical analysis. Continuous variables with normal distribution were presented as mean ± SD, whereas 
variables that with skewed distribution were reported as median (Q1, Q3). For data that follow normal distri-
bution, we used paired t test for statistical comparison, and for data that do not follow normal distribution, we 
employed Wilcoxon signed-rank test for comparison. For comparisons between subgroups, we use ANOVA 
with Tukey’s test or Kruskal–Wallis test with Dunn’s multiple comparison test as appropriate. A value of p < 0.05 
was considered statistically significant. Data were analyzed by SPSS software version 24.0 for Windows (SPSS 
Inc., Chicago, IL, USA).

Ethical approval. This study was conducted in accordance with the relevant guidelines and the Declaration 
of Helsinki. It is a retrospective study of clinical data and it has been approved by the Ethics Review Commit-
tee, Children’s Hospital of Shanghai, Shanghai Jiao Tong University (Approval No: 2020R069-E02). Because of 
the retrospective nature of the study, the informed consent for inclusion was waived by the ethics committee of 
Children’s Hospital of Shanghai.

Results
Demographic details of included patients. A total of 135 cases (99 boys and 36 girls) were included in 
the current study. The mean age of the participants was 6.0 ± 1.9 years old, with age of subjects at SDR ranging 
from 3 to 12 years. All cases were diagnosed with SCP, including 12 hemiplegias, 58 diplegias, and 65 quadriple-
gias, respectively. The median GMFCS level of the subjects before the operation was level 3, whereas the average 
GMFM-66 score was 55.8 ± 14.1. The pre-operative muscle tone of lower extremities of the patients was atypical. 
The median MAS score of bilateral adductors and hamstrings was 3.0, and the MAS score of distal muscles was 
markedly high with a score of 4.0 for bilateral gastrocnemius and bilateral soleus. Altogether, 6.5 ± 1.8 muscle 
groups were evaluated ≥ MAS score 3 during the physical assessment and were marked as target muscles.

Surgical outcome of SDR. All the subjects underwent SDR. A mean of 66.4 ± 7.5 roots (rootlets) was 
tested during the surgery using the intraoperative neurophysiological monitoring system, and 11.1 ± 5.6 sensory 
rootlets were partially incised based on the rhizotomy protocol. The mean follow-up duration for the partici-
pants was 568 days, and the anticipated expected natural evolution according to the algorithm increased 1.03 
in median value when compared with pre-operational status. During the post-operational assessment, the MAS 
score of muscles in lower extremities reduced significantly, which in detail, from 3 to 1 in right adductors, 3 to 
1 in left adductors, 3 to 2 in right hamstrings, 3 to 2 in left hamstrings, 4 to 2 in right Gastrocnemii, 4 to 2 in left 
Gastrocnemii, 4 to 1 in right Soleus and 4 to 1 in left Soleus (Table 1). The GMFM-66 score increased by 6.3 in 
average at the last follow-up physical evaluation, and the median level of GMFCS increased from level 3 to level 
2.

Clustering and visualization of patients. Eleven variables were used as input parameters for unsuper-
vised machine learning (hierarchical clustering and K-means clustering). Principal component analysis was per-
formed to reduce the data dimensionality to two principal components (PC1 and PC2) for visualization of the 
clustering results (Fig. 1A). The dendrogram generated by the hierarchical clustering (Supplementary Fig. 2A,B) 
and the result obtained by the elbow method (Supplementary Fig. 2C) both indicated that the whole dataset 

Table 1.  Clinical parameters of included cases before and after selective dorsal rhizotomy. GMFM-66 gross 
motor function measure-66, GMFCS gross motor function classification system, MAS modified Ashworth 
Scale, AddR right adductor, AddL left adductor, HamR right hamstring, HamL left hamstring, GasR right 
gastrocnemius, GasL left gastrocnemius, SolR right soleus, SolL left soleus.

Characteristics Pre-op status Post-op status p value

Pre-op GMFM-66 score 55.8 ± 14.1 62.1 ± 15.7 < 0.0001

Pre-op GMFCS level 3.0 (2.0, 3.0) 2.0 (2.0, 3.0) < 0.0001

Muscle tension (MAS score)

 AddR 3.0 (1.0, 4.0) 1.5 (0, 2.0) < 0.0001

 AddL 3.0 (1.0, 4.0) 1.0 (0, 2.0) < 0.0001

 HamR 3.0 (1.0, 3.0) 2.0 (0, 2.0) < 0.0001

 HamL 3.0 (1.0, 3.0) 2.0 (0, 2.0) < 0.0001

 GasR 4.0 (4.0, 5.0) 2.0 (2.0, 3.0) < 0.0001

 GasL 4.0 (3.0, 4.0) 2.0 (2.0, 3.0) < 0.0001

 SolR 4.0 (3.0, 4.0) 1.0 (1.0, 2.0) < 0.0001

 SolL 4.0 (3.0, 4.0) 1.0 (0, 1.0) < 0.0001
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should be clustered into three subgroups. Grouping of the variables conducted through hierarchical clustering 
was consistent with the K-means clustering results (Fig. 1B,C).

Three subgroups clustered by hierarchical clustering method showed no difference in age, with the mean value 
of age 5.8 in the first subgroup, 5.8 in the second subgroup and 6.7 in the third subgroup, respectively (Fig. 2). 
Significant difference existed in the pre-operational GMFM-66 score, with the highest score of 74.3 ± 10.2 in the 
first subgroup, lowest score of 46.2 ± 9.9 in the second subgroup and 60.0 ± 8.1 in the third subgroup. The median 

Figure 1.  Visualization of realized by the principal component analysis (A) of the whole dataset and the 
clustering done by hierarchical clustering (B) and K-means clustering (C).

Figure 2.  Clinical characteristics of subgroups clustered by hierarchical clustering method. (A) Comparison 
of age at SDR procedure among three clusters. The statistical comparison method used is the Kruskal–Wallis’s 
test with Dunn’s multiple comparison test. The p value of the Kruskal–Wallis’s test comparison is 0.11, and 
the Kruskal–Wallis’s statistic is 4.414. The adjusted p value of Dunn’s multiple comparison test is shown in the 
graph using symbols. (B) Comparison of GMFCS level at SDR procedure among three clusters. The statistical 
comparison method used is the Kruskal–Wallis’s test with Dunn’s multiple comparison test. The p value of the 
Kruskal–Wallis’s test comparison is less than 0.0001, and the Kruskal–Wallis’s statistic is 75.46. The adjusted p 
value of Dunn’s multiple comparison test is shown in the graph using symbols. (C) Comparison of GMFM-66 
score at SDR procedure among three clusters. The statistical comparison method is ANOVA, and Tukey’s test 
is used for multiple comparisons. The p value of the ANOVA comparison is less than 0.0001, and the F value is 
85.64. The adjusted p value of Tukey’s test is represented by symbols in the figure. (D) Comparison of MAS score 
at SDR procedure among three clusters with radar chart. GMFCS gross motor function classification system, 
GMFM-66 gross motor function measure-66, AddR right adductor, AddL left adductor, HamR right hamstring, 
HamL left hamstring, GasR right gastrocnemius, GasL left gastrocnemius, SolR right soleus, SolL left soleus. NS 
no statistical significance. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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GMFCS level was level 1, level 3, and level 2 in these three subgroups respectively. Patients in the first cluster 
had the lowest number of target muscles. The median MAS scores of gastrocnemius and soleus were 3 in both 
sides, and the median MAS scores of bilateral adductors and hamstrings were 0. Children in the second cluster 
had the highest number of target muscles, the median MAS scores of bilateral hamstrings was 3, and the median 
MAS scores of adductors, gastrocnemius and soleus were 4 in both sides. The median MAS scores of bilateral 
adductors and soleus were 3, the median scores of bilateral gastrocnemius were 4, and the median MAS scores 
of bilateral hamstrings were 1 in the third subgroup.

Similarly, three subgroups were clustered by K-means clustering method (Fig. 3). No difference was found in 
age, with an average of 5.8 in the first subgroup, 6.5 in the second subgroup and 5.8 in the third subgroup. The 
mean pre-operational GMFM-66 score was 45.8, 61.0 and 76.7 in the first, second and third cluster, respectively. 
The median MAS scores of bilateral hamstrings were 3, and the scores of adductors, gastrocnemius and soleus 
were 4 in both sides in the first cluster. The median MAS scores of bilateral hamstrings were 1, and the scores 
of adductors, gastrocnemius and soleus were 3 in both sides in the second cluster. In the third subgroup, the 
median MAS scores of adductors and hamstrings were 0, with the score elevated in both gastrocnemius (both 
sides: score 3) and soleus (left: 2.5, right: 3).

Change of motor function in different subgroups. The changes of GMFM-66 score in three subgroups 
clustered by both hierarchical and K-means clustering methods were compared at the last follow-up (Fig. 4). The 
results did not show any differences in post-operative follow-up duration between the three groups. The follow-
up durations for the three clusters grouped by hierarchical clustering method were 528 ± 158, 573 ± 181, and 
581 ± 170 days, respectively, whereas the follow-up durations for the three groups were 565 ± 171, 586 ± 178, and 
534 ± 156 days, respectively, under the K-means clustering method. Among subgroups clustered by the hierar-

Figure 3.  Clinical characteristics of subgroups clustered by K-means clustering method. (A) Comparison of 
age at SDR procedure among three clusters. The statistical comparison method used is the Kruskal–Wallis’s 
test with Dunn’s multiple comparison test. The p value of the Kruskal–Wallis test comparison is 0.28, and 
the Kruskal–Wallis statistic is 2.552. The adjusted p value of Dunn’s multiple comparison test is shown in the 
graph using symbols. (B) Comparison of GMFCS level at SDR procedure among three clusters. The statistical 
comparison method used is the Kruskal–Wallis’s test with Dunn’s multiple comparison test. The p value of the 
Kruskal–Wallis test comparison is less than 0.0001, and the Kruskal–Wallis statistic is 83.81. The adjusted p 
value of Dunn’s multiple comparison test is shown in the graph using symbols. (C) Comparison of GMFM-66 
score at SDR procedure among three clusters. The statistical comparison method is ANOVA, and Tukey’s test 
is used for multiple comparisons. The p value of the ANOVA comparison is less than 0.0001, and the F value is 
111.6. The adjusted p value of Tukey’s test is represented by symbols in the figure. (D) Comparison of MAS score 
at SDR procedure among three clusters with radar chart. GMFCS gross motor function classification system, 
GMFM-66 gross motor function measure-66, AddR right adductor, AddL left adductor, HamR right hamstring, 
HamL left hamstring, GasR right gastrocnemius, GasL left gastrocnemius, SolR right soleus, SolL left soleus. NS 
no statistical significance. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Figure 4.  GMFM-66 score change after SDR in three subgroups clustered by hierarchical and K-means clustering algorithms. (A) Pre-
operational GMFM-66 score, expected GMFM-66 score at follow up and post-operational GMFM-66 score at follow up in subgroups 
clustered by hierarchical clustering algorithm. Statistical comparison was performed using matched ANOVA and multiple comparison 
was conducted using Tukey’s test. The p values and F-values for ANOVA comparisons in Cluster1 were less than 0.0001 and 104.7, 
respectively; in Cluster2 were less than 0.0001 and 141.7, respectively; and in Cluster3 were less than 0.0001 and 92.04, respectively. 
The adjusted p values for Tukey’s test in the three group comparisons were represented by symbols in the figure. (B) Pre-operational 
GMFM-66 score, expected GMFM-66 score at follow up and post-operational GMFM-66 score at follow up in subgroups clustered 
by K-means clustering algorithm. Statistical comparison was performed using matched ANOVA with Tukey’s test for multiple 
comparison. In Cluster1, the p value for ANOVA comparison was less than 0.0001 with an F-value of 109.6; in Cluster2, the p value 
for ANOVA comparison was less than 0.0001 with an F-value of 116.5; in Cluster3, the p value for ANOVA comparison was less than 
0.0001 with an F-value of 114.7. The adjusted p values for Tukey’s test were represented by symbols in the figure for the three group 
comparisons. (C) Comparison of GMFM-66 score change in subgroups clustered by hierarchical clustering algorithm. The statistical 
comparison method used is the Kruskal–Wallis’s test with Dunn’s multiple comparison test. The p value of the Kruskal–Wallis test 
comparison is less than 0.0001, and the Kruskal–Wallis statistic is 22.54. The adjusted p value of Dunn’s multiple comparison test 
is shown in the graph using symbols. (D) Comparison of GMFM-66 score change in subgroups clustered by K-means clustering 
algorithm. The statistical comparison method used is the Kruskal–Wallis’s test with Dunn’s multiple comparison test. The p value 
of the Kruskal–Wallis test comparison is 0.0001, and the Kruskal–Wallis statistic is 25.35. The adjusted p value of Dunn’s multiple 
comparison test is shown in the graph using symbols. GMFM-66 gross motor function measure-66. NS no statistical significance. 
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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chical clustering method, the GMFM-66 scores at last follow-up (82.6 ± 10.8 in cluster 1, 51.2 ± 11.4 in cluster 2 
and 67.1 ± 8.1 in cluster 3, respectively) were significantly higher than the pre-operational status (74.3 ± 10.2 in 
cluster 1, 46.2 ± 9.9 in cluster 2 and 60.0 ± 8.1 in cluster 3, respectively) and the scores expected to be achieved at 
the follow-up time (75.7 ± 9.9 in cluster 1, 47.5 ± 10.1 in cluster 2 and 61.5 ± 8.4 in cluster 3, respectively) in all 
three clusters. The promotion is much higher in the first subgroup with median value of 9.2 and third subgroup 
with median value of 7.8 when compared with the elevation in the second subgroup with median value of 4.5. In 
all three subgroups clustered by K-means clustering method, the GMFM-66 score at last follow-up (51.0 ± 10.7 
in cluster 1, 67.8 ± 8.4 in cluster 2 and 85.8 ± 8.1 in cluster 3, respectively) was significantly higher than the pre-
operational status (45.8 ± 9.4 in cluster 1, 61.0 ± 7.6 in cluster 2 and 76.7 ± 8.5 in cluster 3, respectively) and the 
expected score in all three subgroups (47.1 ± 9.7 in cluster 1, 62.4 ± 7.9 in cluster 2 and 78.3 ± 7.9 in cluster 3, 
respectively). The elevation in GMFM-66 score is the lowest in the first cluster with median value of 4.5 and 
highest in the third cluster with median value of 9.6.

Consistency of two clustering methods. Three subgroups clustered by two methods were named 
as “best responders”, “good responders” and “moderate responders” in an order from highest to lowest bas-
ing on the post-operative GMFM-66 score promotion. Consistency of these two algorithms in clustering the 
dataset was evaluated by kappa test (Table 2). The kappa value of these two sorting methods was 0.915 with a 
p-value < 0.0001, indicating high consistency of the methods.

Discussion
Cerebral palsy is a group of disorders that affects the ability to move, maintain posture and  balance23,24. Patients 
diagnosed with SCP are commonly resulted from perinatal  hypoxia25. Brain magnetic resonance imaging tests of 
SCP patients mainly exhibit peri-ventricular leukomalacia, which was observed in most of the cases included in 
the present study. SCP clinical manifestations vary in different patients. SCP patients present with various topo-
graphical types (hemiplegic, diplegic and quadriplegic types) and exhibit different degrees of mobility restriction 
caused by elevated muscle tone. SDR is an effective neurosurgical procedure for alleviation of spasticity in lower 
limbs and is used for treatment of SCP  patients2,7. In this current study, it is observed that the spasticity of muscles 
in lower extremities reduced significantly after the surgery, confirming the surgical effect in relieving muscle tone.

Pre-operational assessment of patients is essential, and it is applied by neurosurgeons to determine patients 
eligible for SDR  surgery4. The findings of the current study showed that the patient’s motor function signifi-
cantly improved after SDR procedure with supplementation of the regular rehabilitation, which is consistent 
with results from previous studies. Differences were observed in post-operative improvement of patients during 
the follow-up, though all patients met the indications for the surgical procedure. The purpose of this study is to 
estimate the short-term motor function change by pre-operational physical assessment and other parameters. 
This might help to select best candidates for SDR. Machine learning is a recently emerging data analysis approach 
widely used for analysis of data collected in various fields, which was used in the current study for classification 
of the patients into different subgroups to identify optimal responders to  SDR26. Owing to the fact that there’s 
no standards defining “good” or “bad” surgical outcome, the patients could not be labeled, thus the supervised 
machine learning could not be used. Patients can only be categorized into various groups based on the similarity 
of pre-operational clinical characteristics by unsupervised machine learning, and then the surgeons might be able 
to predict the outcome of the subjects. Postoperative assessment was conducted to evaluate the effectiveness of 
the clustering method. This method differs from a previous data analysis approach as it compares patients with 
different outcomes, which is critical in clinical set-ups.

Pre-operational assessment scores of the cases were used as the parameters for the machine learning process in 
this study. The results showed that unsupervised machine learning through hierarchical and K-means clustering 
methods effectively and accurately categorized all patients into three subgroups. Principal component analysis 
dimensionality reduction was conducted to visualize the data and data were compared among the three clusters 
to validate the accuracy of the classification methods. Principal component analysis is mainly used to downscale 
data from high-dimensional space to low-dimensional space for utilization in subsequent  calculations22. The 
visualization by principal component analysis showed clear cluster boundaries among different clusters, dem-
onstrating the validity of the two clustering methods. After the clustering, the change of GMFM-66 after SDR 
showed that different surgical outcome existed among three subgroups clustered by both clustering algorithms. As 
the motor function promotion at post-operational follow up is much higher than the expected natural evolution 
of motor function, it is confirmed that SDR is helpful to all the patients with SCP who met surgical indications 
in this study. The different levels of improvement in three subgroups suggested that all the patients could be 
categorized into three subgroups, best SDR candidates, good SDR candidates and moderate SDR candidates, in 

Table 2.  Comparison of the consistency of hierarchical clustering and K-means clustering for patient 
grouping, kappa value equals 0.915, p value < 0.0001.

Hierarchical clustering

K-means clustering

Best responders Good responders Moderate responders

Best responders 20 4 0

Good responders 0 43 2

Moderate responders 0 1 65
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an order basing on the level of post-operative motor function promotion. Analysis of the clinical characteristics 
of the participants showed that the pre-operational GMFM-66 scores of patients defined as best SDR candidates 
were the highest relative to that of the other two clusters. They also had the lowest number of target muscle 
groups and relatively mild degree of spasticity, which in detail, the number of target muscle groups less than 4 
and the MAS score of target muscles less than 4. On the contrary, patients defined as moderate SDR candidates 
exhibited the most severe clinical manifestations, namely, the number of target muscle groups at 8 and the MAS 
score of target muscles mostly greater than 4.

Various machine learning methods use different algorithms and principles. Hierarchical clustering method 
was used for classification of patients in this study. Classification by hierarchical method is achieved by continu-
ous merging of clusters from the bottom to the top or sorting out clusters from top to  bottom27. The principle of 
the algorithm used in hierarchical method is relatively simple. Data are presented as clusters, and the two closest 
clusters are merged into one cluster until all clusters are combined into a single cluster. Hierarchical clustering 
results are presented as a dendrogram. In addition, K-means clustering method was used for grouping of subjects 
in this study. In the K-means clustering approach, a number K is determined by elbow method, and then the 
computer divides the dataset into K clusters. The algorithm achieves clustering by randomly assigning a number 
(1 to K) to each data. Subsequently, the cluster centroid for each cluster is computed and each dataset is assigned 
to the cluster with the closest  centroid21. These two clustering methods were utilized in classification of patients as 
they are relatively easy to understand and are widely used in scientific fields. The results indicated the feasibility 
of the two strategies. However, differences between the two methods were observed in some patients (7/135). 
Nonetheless, the two methods were effective in sorting the patients enrolled in this study as the consistency of 
these two clustering methods was high.

Other data clustering methods, such as DBSCAN have been  reported28. The DBSCAN was also used to classify 
the dataset in this study. However, the clustering results were not satisfying which were not fully discussed in 
this paper (Supplementary Fig. 3). Choosing the appropriate method for data analysis is essential for obtaining 
reliable results.

This study was a single center retrospective study. A relatively small sample size, short follow-up duration and 
the retrospective nature of the study limit application of the study findings. Moreover, post-operative rehabilita-
tion variables were not included as input variables when classifying the patients due to the challenges in quan-
tification of these variables. Exclusion of post-operative rehabilitation variables in classification may affect the 
accuracy of the classification results. However, all cases included in this study received standard post-operative 
rehabilitation therapy; therefore, exclusion of the variables may not have significantly affected the results. What’s 
more, owing to the nature of unsupervised machine learning, we didn’t split the whole dataset into a training 
and testing set. Instead, we used the change of GMFM-66 score after SDR to evaluate whether the clustering 
have clinical significance. Further research should be conducted with a larger population and longer follow-up 
duration with participants recruited from several centers to verify the validity of the study findings.

Conclusion
SDR could relieve the spasticity and promote motor function of patients with SCP. Unsupervised machine learn-
ing is a feasible and effective method for clustering SCP patients based on pre-operative characteristics. K-means 
and hierarchical methods effectively and accurately grouped the patients included in this study. Patients clustered 
by machine learning approach had different pre-operational clinical features and varying levels of improvement 
in post-SDR motor function, indicating that the clustering approach can be accurately used for prognosis of 
SCP patients. The results indicate that machine learning is an effective method for determining eligibility of SCP 
patients before undergoing SDR surgery.

Data availability
The datasets used and analyzed during this study are available from the corresponding author on reasonable 
request.
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