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Experimental hierarchy 
of two‑qubit quantum correlations 
without state tomography
Shilan Abo 1, Jan Soubusta 2*, Kateřina Jiráková 2, Karol Bartkiewicz 1,2, Antonín Černoch 3, 
Karel Lemr 2 & Adam Miranowicz 1*

A Werner state, which is the singlet Bell state affected by white noise, is a prototype example of 
states, which can reveal a hierarchy of quantum entanglement, steering, and Bell nonlocality by 
controlling the amount of noise. However, experimental demonstrations of this hierarchy in a 
sufficient and necessary way (i.e., by applying measures or universal witnesses of these quantum 
correlations) have been mainly based on full quantum state tomography, corresponding to measuring 
at least 15 real parameters of two‑qubit states. Here we report an experimental demonstration of this 
hierarchy by measuring only six elements of a correlation matrix depending on linear combinations 
of two‑qubit Stokes parameters. We show that our experimental setup can also reveal the hierarchy 
of these quantum correlations of generalized Werner states, which are any two‑qubit pure states 
affected by white noise.

Quantum correlations reveal not only the strangeness of quantum mechanics, but are the main resources for 
quantum technologies, including quantum sensing and quantum information  processing1. Thus, the detection, 
control, and quantification of these resources are of paramount importance.

Among different types of quantum correlations, a special interest has been paid to quantum  entanglement2, 
Einstein–Podolsky–Rosen (EPR) steering (also called quantum steering)3,4, and Bell nonlocality that can be 
revealed by testing the violation of a Bell  inequality5. These types of correlations coincide for two-qubit pure 
states, but can be different for mixed states. Probably, the most intuitive distinction between these three types of 
quantum correlations for two systems (parties) can be given from a cryptographic perspective with the use of 
trusted and untrusted detectors. Specifically, according to Refs.6,7: (i) quantum entanglement can be revealed if 
both parties use only trusted detectors, (ii) EPR steering can be tested if one party uses trusted detectors and the 
other untrusted ones, and (iii) Bell nonlocality can be demonstrated if both parties use untrusted detectors. We 
experimentally determined and compared measures of these correlations for Werner states.

It is theoretically well known that by gradually adding noise to a pure state, one can reveal a hierarchy of 
different types of quantum correlations, including quantum entanglement, EPR steering, and Bell nonlocality. 
These effects are equivalent for two-qubit pure states, however they are in general different for mixed states. 
 Werner8 found in 1989 that the singlet Bell state affected by white noise can be entangled without exhibiting 
Bell nonlocality, i.e., without violating any Bell inequality. It was further found that Werner states with a proper 
amount of white noise can be entangled but unsteerable, or steerable without exhibiting Bell nonlocality, in 
addition to the trivial cases when a given state is Bell nonlocal (so also steerable and entangled) or separable 
(so also unsteerable and Bell local). Even a more refined hierarchy can be revealed by considering generalized 
Werner states, defined as mixtures of an arbitrary two-qubit pure states and white  noise9. Thus, the Werner and 
Werner-like states can be considered prototype examples of states indicating such a hierarchy. Their generation 
and the detection of their quantum correlations are a central topic of this paper.

Here we study a hierarchy of quantum correlations via their measures. We note that various other hierarchies 
of non-universal witnesses of quantum correlations have been investigated in detail. These include studies of 
sufficient conditions (i.e., nonuniversal witnesses) for observing specific types of correlations via matrices 
of moments of, e.g., the annihilation, creation, position, momentum, or Pauli operators. For example: (i) 
hierarchies of various witnesses of  spatial10 and  spatiotemporal11,12 correlations of bosonic systems revealing their 
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nonclassicality via a nonpositive Glauber–Sudarshan P function; (ii) a hierarchy of entanglement  witnesses13,14 
based on the Peres–Horodecki partial transposition criterion or their  generalizations15 using contraction maps 
(e.g., realignment) and positive maps (e.g., those of Kossakowski, Choi, and Breuer); (iii) a hierarchy of necessary 
conditions for the correlations that arise when performing local measurements on separate quantum systems, 
which enabled finding a hierarchy of upper bounds on Bell  nonlocality16,17 (iv) a hierarchy of EPR steering 
 witnesses18 based on entanglement criteria with the constraint that measurement devices of one party cannot be 
trusted. Especially powerful methods for finding infinite hierarchies of quantum-correlation criteria are those 
formulated as semidefinite  programs16–20. Note that semidefinite programming has been found very effective in 
calculating not only nonuniversal witnesses but also measures (or universal witnesses) of quantum  steering3,21,22, 
 Bellnonlocality5, and  entanglement2. It could also be noted that a hierarchy of quantum nonbreaking channels, 
which is closely related to a hierarchy of  temporal23 and spatial quantum correlations, has been studied very 
recently both theoretically and experimentally in Ref.24, where the effects of white noise (or, equivalently, of a 
qubit-depolarizing channel) on quantum memory, temporal  steerability25,26, and nonmacrorealism were revealed 
by applying a full quantum process tomography.

The use of measures or universal witnesses of these quantum correlations, however, is required to demonstrate 
experimentally such hierarchies in a sufficient and necessary manner. For example, to our knowledge, no 
experiment has been performed to determine standard entanglement measures of a general two-qubit mixed state 
without full quantum state tomography (QST). These measures include the  concurrence27, which is a measure of 
the entanglement of formation, the  negativity28 related to the Peres–Horodecki entanglement criterion, and the 
relative entropy of  entanglement29. Thus, a QST-based approach to study a hierarchy of quantum correlations 
was applied in our former related  study9, which was based on measuring 16 real parameters for two-qubit 
Werner states.

A hierarchy of quantum-correlation measures enables efficient estimations of one measure for a given value of 
another. More specifically, the estimations of a measure of a given type of quantum correlation for a certain value 
of a measure (or bounds) of another type of quantum correlations were reported for arbitrary or specific classes 
of two-qubit states. These estimations include various comparisons of: (i) entanglement and Bell  nonlocality30–33, 
(ii) steering and Bell  nonlocality34, as well as (iii) entanglement and  steering35. Note that such estimations can 
also be applied to compare non-equivalent measures describing the same type of correlations, including two-
qubit  entanglement36,37 or single-qubit  nonclassicality38. Explorations of the relationships between measures 
of entanglement, steering, and Bell nonlocality for specific types of two-qubit states have also been attracting 
a considerable interest. Recent studies include, e.g., theoretical analyses of two-qubit X-states39 and two-mode 
Gaussian  states40. Experimental QST-based hierarchies of quantum entanglement, steering, and Bell nonlocality 
for specific classes of two-qubit states in relation to the above-mentioned estimations were also reported, which 
include experiments with mixtures of partially entangled two-qubit pure  states41 and GWSs based on full  QST9 
or full quantum process  tomography24. Such a hierarchy for the Werner states is also experimentally studied 
here but without applying a full QST.

We note that an experimental method for testing polarization entanglement without QST of general two 
qubit states was proposed in Ref.42 based on measuring a collective universal witness of Ref.43. However, the 
method, to our knowledge, has not been implemented experimentally yet. Another experimental approach to 
determine entanglement of a given state without QST can be based on measuring a bipartite Schmidt number, 
which satisfies various conditions of a good entanglement  measure44,45 and can be determined experimentally 
via a witnessing  approach46. However, it is not clear how the same method can also be used to experimentally 
determine steering and nonlocality measures. Note that we want to apply a versatile experimental setup, which 
can be used to determine various measures of all the three types of quantum correlations.

Multiple indicators of quantum steering have been demonstrated experimentally (for a review see Ref.4). We 
note a very recent Ref.47, where it was shown experimentally that a critical steering radius is the most powerful 
among practical steering indicators. Its scaling property allows classifying as steerable or non-steerable various 
families of quantum states. This approach is useful in testing theoretical concepts of the critical radius in real 
experiments prone to unavoidable noise. The authors used a setup introducing losses and measured elements 
of a correlation matrix to determine the steering indicators. Similar quantifiers, but describing nonlocality and 
entanglement, were measured in Ref.48 using the parameters M and F, which are also applied in this paper.

Here, we report the first (to our knowledge) experimental demonstration of the hierarchy of measures of 
entanglement, steering, and Bell nonlocality without applying full QST, i.e., by measuring only six elements of 
a correlation matrix R (corresponding to linear combinations of two-qubit Stokes parameters) for the Werner 
states. Moreover, we show that the generalized Werner states (GWSs), which are mixtures of an arbitrary two-
qubit pure state and white noise, can reveal a more refined hierarchy of the quantum-correlation measures using 
our experimental setup.

We note that the setup applied in this work was also used earlier in Refs.48–51, but for conceptually different 
tasks, e.g., measuring collective nonlinear witnesses of  entanglement52,53, Bell nonlocality  measure54, or 
diagnosing an entanglement-swapping protocol. Moreover, the setup enables entanglement swapping and 
measuring multicopy entanglement witnesses as inspired by Refs.55,56.

The setup also bears some similarities with a previously proposed and implemented scheme by Bovino et al.56. 
Our experimental method of measuring R for general two qubit states is conceptually similar to that reported 
in Ref.56 for measuring a nonlinear entropic witness. We find that the witness, defined in the next section, can 
actually be interpreted as the three-measurement steering measure S. However, the advantage of our method is 
that it is more versatile. As shown in Ref.48, one can perform a full tomography of all the elements of the R matrix 
rather than only determining its trace. Thus, from the set of six numbers (determining a correlation matrix R) we 
can learn much more about quantum correlations compared to the original method of Ref.56. In addition to that, 
our design provides several practical benefits with respect to Ref.56. Namely from the experimental point of view, 
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it only requires a single Hong–Ou–Mandel interferometer instead of two. Moreover, our design shares the same 
geometry with the entanglement-swapping  protocol48. As a result, it can be deployed in future teleportation-based 
quantum networks to acquire various entanglement measures of distributed quantum states.

This experimental method of measuring the R matrix enables us a complete determination of not only steering 
measures, but also a fully entangled fraction (FEF)57 and Bell nonlocality  measures58. We note that for the GWSs, 
the FEF is exactly equal to the two most popular measures of entanglement, i.e., the negativity and  concurrence2. 
Thus, the hierarchy of the three measures can be experimentally determined from the R matrix for the Werner 
states, which is the main goal of this paper.

Correlation matrix R for Werner and Werner‑like states
We study quantum effects in two qubits by means of the 3× 3 correlation matrix R = TTT , which is defined 
by the matrix T composed of the two-qubit Stokes parameters Tij = Tr[ρ(σi ⊗ σj)] , which are the mean values 
of the Pauli matrices σi ( i = 1, 2, 3 ). Superscript T denotes transposition. The standard Bloch representation of 
a general two-qubit state ρ can be given by the elements Tij together with the single-qubit Stokes parameters 
ui = Tr[ρ(σi ⊗ I2)] and vi = Tr[ρ(I2 ⊗ σi)] as

where u = [u1, u2, u3] and v = [v1, v2, v3] denote the Bloch vectors of the first and second qubits, respectively. 
Moreover, σ = [σ1, σ2, σ3] ≡ [X,Y ,Z] , and In is the n-dimensional identity operator.

We analyze in detail a special type of the general states given in Eq. (1). Specifically, we have experimentally 
generated the polarization Werner states by mixing the singlet Bell state, |ψ−� = (|HV� − |VH�)/

√
2 , with white 

noise (i.e., the maximally mixed state)8:

assuming various values of the mixing (noise) parameter p ∈ [0, 1] . Here, |H� and |V� denote horizontal and verti-
cal polarization states, respectively. The correlation matrix R for the Werner states simplifies to R(ρW) = p2I3.

We also theoretically analyze GWSs, which can be defined by replacing the singlet state |ψ−� in Eq. (2) by a 
pure state |ψq� =

√
q|HV� − √

1− q|VH� with a superposition parameter q ∈ [0, 1] , i.e.,

The state can also be obtained by transmitting a photon in the state |ψq� through a depolarizing chan-
nel. Note that GWSs is often defined slightly differently, i.e., ρ′

GW(p, q) = p|φq��φq| + (1− p)I4/4, where 
|φq� =

√
q|HH� + √

1− q|VV� instead of |ψq� in Eq. (3), as experimentally studied in, e.g., Ref.9. A special case 
of such states, i.e., a modified Werner state, when |ψ−� is replaced by |φq=1/2� , is referred to as an isotropic state. 
Such modifications of the Werner states or the GWSs do not affect their quantum correlation measures.

The correlation matrix R for the GWSs, given in Eq. (3), is diagonal and reads

We note that the correlation matrices T and R are in general nondiagonal (including the non-perfect Werner state 
measured by us experimentally), although they are diagonal for the perfect GWSs states given in Eq. (3). Anyway, 
as shown in Ref.59, an arbitrary state ρ described by a nondiagonal T, can be transformed (via a singular-value 
decomposition) into a state with a diagonal T by local unitary operations, thus, without changing its quantum 
correlations, including those studied below.

Measures of quantum correlations for Werner and Werner‑like states
Fully entangled fraction and entanglement measures. The  FEF57 for an arbitrary two-qubit state ρ 
in Eq. (1) can be defined  as48:

given in terms the function θ(x) = max(x, 0) . In general, the FEF is only a witness of entanglement; however, for 
some special classes of two-qubit states, including the GWSs, the FEF becomes a good entanglement measure, 
and it reduces to the concurrence and negativity:

For completeness, we recall that the concurrence C(ρ) of an arbitrary two-qubit state ρ is defined  as27: 
C(ρ) = θ(

√
�1 −

√
�2 −

√
�3 −

√
�4) , where �1 � �2 � �3 � �4 are the eigenvalues of ρ(σ2 ⊗ σ2)ρ

∗(σ2 ⊗ σ2) , 
the superscript ∗ denotes complex conjugation, and σ2 is the second Pauli matrix. Moreover, we recall the defini-
tion of the negativity N of a two-qubit state ρ , which  reads28: N(ρ) = θ(−2µmin) with µmin denoting the smallest 

(1)ρ = 1

4

(

I4 + u · σ ⊗ I2 + I2 ⊗ v · σ +
3

∑

i,j=1

Tij σi ⊗ σj

)

,

(2)ρW =p|ψ−��ψ−| + 1− p

4
I4,

(3)ρGW(p, q) =p|ψq��ψq| +
1− p

4
I4.

(4)R[ρGW(p, q)] =





4p2q(1− q) 0 0
0 4p2q(1− q) 0
0 0 p2



 .

(5)FEF(ρ) = 1
2 θ(Tr

√
R − 1),

(6)FEF[ρGW(p, q)] = N(ρGW) = C(ρGW) = 1
2 θ

{

p[1+ 4
√

q(1− q)] − 1
}

.
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eigenvalue of ρŴ , i.e., min[eig(ρŴ)] , where the superscript Ŵ indicates partial transposition. It is seen that the 
negativity, concurrence, and FEF reduce to the same function for the GWSs.

Let pE(q) denote the largest value of the mixing parameter p as a function of the superposition parameter q 
for which ρGW(p, q) is separable. This can be obtained by solving FEF(ρGW) = 0 resulting in:

which means that ρGW(p, q) is entangled iff p ∈ (pE(q), 1] . In the special case of the standard Werner states, 
Eq. (6) simplifies to

which implies the well known  fact8 that a given Werner state is separable iff its mixing parameter is p ∈ [0, 1/3].
It should be noted that entanglement measures for general states, given in Eq. (1), depend not only on the 

correlation matrix R, but also on the single-qubit Stokes parameters 〈σ i
n〉 for n = 1, 2, 3 and i = 1, 2 . It is seen 

that the FEF is not a universal witness of two-qubit entanglement, because it solely depends on the R matrix. 
Nevertheless, the FEF is a good measure of the entanglement of the GWSs.

Quantum steering measures. The effect of quantum steering of a two-qubit state refers to the possibility 
to affect at a distance one qubit (say subsystem B of Bob) via local measurements performed on the other qubit 
(say subsystem A of Alice). The quantum steerability of a given two-qubit state ρ can be experimentally tested, 
assuming that each party is allowed to measure n observables in their sites (qubit), by the inequality derived by 
Cavalcanti, Jones, Wiseman, and Reid (CJWR), which  reads60:

where r = {r̂A1 , . . . , r̂An , r̂B1 , . . . , r̂Bn } is the set of measurement directions with r̂Ai , r̂
B
i ∈ R

3 (for i = 1, . . . , n ) denot-
ing unit and orthonormal vectors, respectively. According to Ref.61, the orthogonality of the vectors r̂Ai  is not 
required, which allows for non-orthogonal measurements to be carried out on the subsystem A. Moreover, 
Ai = r̂Ai · σ , Bi = r̂Bi · σ , and �Ai ⊗ Bi� = Tr(ρAi ⊗ Bi) . A measure of steering can be obtained by maximizing 
Fn(ρ, r) over the set of measurement directions, i.e., Fn(ρ) = maxr Fn(ρ, r) . More specifically, Costa and  Angelo61 
suggested the following steering measures depending on the number n of measurements per qubit:

where Nn = [maxρ Fn(ρ)− 1]−1 is the normalization constant such that Sn(ρ) ∈ [0, 1] for any two-qubit ρ . 
Hereafter, we focus on analyzing the steering measures S2 and S3 (and related quantifiers) in the two- and three- 
measurement scenarios, denoted as 2MS and 3MS, which correspond respectfully to measuring two and three 
Pauli operators on qubits of both parties. Costa and Angelo found that these two-qubit steering measures can 
be compactly written  as61:

respectively, given in terms of c =
√

c21 + c22 + c23  and cmin = min |ci| , where {ci} = svd(T) are singular values 
of T. Note that the original formulas for S2 and S3 in Ref.61 were given assuming the diagonal form of the matrix 
T, so ci were simply given by Tii . The steering measures given in (11) can be rewritten in terms of the correlation 
matrix R as follows:

The Costa–Angelo measure S3 of steering in the 3MS is sometimes modified as (see, e.g., Refs.35,41):

and we also apply this measure in the following, because of a useful property that S reduces to the negativity and 
concurrence for any two-qubit pure states. Note that S, S3 ∈ [0, 1] and they are monotonically related to each 
other for any two-qubit states:

(7)pE(q) = 1/
[

1+ 4
√

q(1− q)
]

,

(8)FEF[ρW(p)] = N[ρW(p)] = C[ρW(p)] = θ(3p− 1)/2,

(9)Fn(ρ, r) =
1√
n

∣

∣

∣

∣

∣

n
∑

i=1

�Ai ⊗ Bi�
∣

∣

∣

∣

∣

� 1,

(10)Sn(ρ) = Nnθ [Fn(ρ)− 1],

(11)
S3(ρ) =

θ(c − 1)√
3− 1

, S2(ρ) =
θ

(

√

c2 − c2min − 1

)

√
2− 1

,

(12)S3(ρ) =
θ(
√
TrR − 1)√
3− 1

,

(13)S2(ρ) =
θ
{√

TrR −min[eig(R)] − 1
}

√
2− 1

.

(14)S(ρ) =
√

1
2 θ(TrR − 1),

(15)S3(ρ) =
√

2S2(ρ)+ 1− 1√
3− 1

≤ S(ρ).
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For the GWSs, described by the correlation matrix R given in Eq. (4), we find

Let pS(q) denote the largest value of the mixing parameter p for a given value of the superposition parameter q 
for which ρGW(p, q) is unsteerable. Thus, by solving S(ρGW) = 0 , we have:

which means that a given GWS, ρGW(p) , is steerable assuming three measurements per qubit iff the mixing 
parameter p ∈ (pS(q), 1] . In the special case of the Werner states, Eq. (16) simplifies to the formulas:

which imply that ρW(p) is unsteerable in the 3MS iff p ∈ [0, 1/
√
3].

Quantum steerability in the 2MS, as based on S2 or related measures, corresponds to Bell nonlocality and it 
is discussed in detail in the next section.

We note that to quantify steering, assuming three measurements on both Alice’ and Bob’s qubits, we can 
interchangeably use: S3 , defined in Eq. (12), S, given in Eq. (14), as well the steerable  weight21 (as applied in our 
closely related  paper9), or the steering  robustness22 in the 3MS. Indeed, if one of the steering measures vanishes, 
then all the other measures vanish too. However, the steering measure S2 , as defined in Eq. (13) in the 2MS, 
although it is equivalent to the Bell nonlocality measure B, but it is fundamentally different from another steering 
measure S2 (for clarity denoted here as S′2 ) studied by us in Ref.9, because it corresponds to the case when Alice 
(Bob) performs two (three) measurements on her (his) qubit. Thus, S2(ρ) = 0 (corresponding to vanishing Bell 
nonlocality of a given state ρ ) does not imply that also S′2(ρ) = 0 , which was shown experimentally in Ref.9). This 
is possible because an extra measurement performed by Bob on his qubit, which is allowed in the S′2 scenario, 
can reveal the steerability of ρ.

Finally, it is important to stress that the applied Costa–Angelo measures, because of their invariance under 
qubit swapping, cannot reflect the directional property of EPR steering that one qubit might be steerable by 
another, but not vice versa. Specifically, the steering measures S2 and S3 are the functions of some eigenvalues 
of the correlation matrix R = TTT . By swapping qubits A and B, one obtains a modified correlation matrix 
R′ = TTT , which, however, has the same eigenvalues as those of R. This means that the steering measures are 
invariant under the qubit-swapping operation, and, thus, describe only two-way-symmetric steering for arbitrary 
two-qubit states.

However, two-way steering with an asymmetry in the steering  strengths62 and one-way  steering63 can be 
revealed, by some strengthened criteria or measures, including the steering measure SLUR based on local uncer-
tainty relations (LUR), as introduced in Ref.64. Note that SLUR cannot be determined from R, because its defini-
tion requires, in general, the knowledge of not only the correlation matrix T (or R), but also the vectors u and v 
for a given density state ρ.

The ideal Werner states ρW(p) and the GWSs ρ′
GW(p, q) , for any p, q ∈ [0, 1] , are unchanged under qubit 

swapping operation (say USWAP ). Although, the GWSs ρGW(p, q) , given in Eq. (3), change under qubit swap-
ping, but still can be transformed into a swapping-invariant ρ′

GW(p, q) by local unitary operations. Thus, any 
steering measures are symmetric (including those based on the LUR) for ρW(p) , ρ′

GW(p, q) , and ρGW(p, q) with 
arbitrary p, q. Of course, this steering-strength symmetry can be slightly broken for experimental states, as we 
have revealed for the experimental Werner states ρexp

W  reported in Ref.9. Note that those states were generated in 
a setup fundamentally different from that applied in the present paper and reconstructed by a full state tomog-
raphy. Thus, one can calculate the steering difference �Sj = |SLUR(ρexp

j,W)− SLUR(USWAPρ
exp
j,WUSWAP)| to reveal a 

potential asymmetry in the LUR-based steering measure from qubit A to B compared to that from qubit B to A, 
where j labels the generated eleven states. Thus, the maximum steering difference for the experimental states of 
Ref.9 can be found to be maxj �Sj = 0.0016 , which is practically negligible and much less than the corresponding 
error bars. More importantly, none of those experimental states exhibited one-way steering. As explained above, 
SLUR cannot be calculated, in general, from R, so one cannot calculate �Sj for the experimental data reported here, 
but one can reasonably assume that �Sj would be negligible as those for the experimental states reported in Ref.9.

Bell nonlocality measures. The Bell nonlocality of a given two-qubit state ρ can be tested by the violation 
of the Bell inequality in the Clauser–Horne–Shimony–Holt (CHSH)  form65

where a, a′, b, b′ ∈ R
3 are unit vectors describing measurement settings, and B is referred to as the Bell-CHSH 

operator. Bell nonlocality can be quantified by the maximum possible violation of the CHSH inequality in 
Eq. (20) over all measurement settings, which lead Horodecki et al. to the following analytical  formula58

(16)S[ρGW(p, q)] =
√

1
2θ[8p2q(1− q)+ p2 − 1],

(17)S3[ρGW(p, q)] = θ [p
√

1+ 8q(1− q)− 1]√
3− 1

.

(18)pS(q) = [1+ 8q(1− q)]−1/2,

(19)S[ρW(p)] =
√

1
2 θ(3p

2 − 1), S3[ρW(p)] = θ(
√
3p− 1)√
3− 1

,

(20)|�B �ρ | ≡
∣

∣

〈

a · σ ⊗ (b + b
′) · σ + a

′ · σ ⊗ (b − b
′) · σ

〉

ρ

∣

∣ ≤ 2,
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where the nonnegative quantity M(ρ) is the sum of the two largest eigenvalues of R(ρ) . The CHSH inequality in 
(20) is satisfied iff M(σ ) ≤ 1 . For a better comparison with other measures of quantum correlations defined in 
the range [0,1], the Bell nonlocality measure of Horodecki et al.58 can be given by (see, e.g.,41,48,66)

or, equivalently,  as61

which guarantee that B,B′ ∈ [0, 1] . It is seen that B′ is exactly equal to the steering measure S2 , given in Eq. (13), 
in the 2MS.

Hereafter, we apply both nonlocality measures because their specific advantages. In particular, as shown 
explicitly below, B′ depends linearly on the mixing parameter p of the Werner states and GWSs, thus its experi-
mental estimation results in smaller error bars compared to those of B. On the other hand, B is equal to the 
negativity and  concurrence37,66, but also to the steering measure S and the FEF:

for an arbitrary two-qubit pure state |ψ� = a|HH� + b|HV� + c|VH� + d|VV� , where a, b, c, d are the normalized 
complex amplitudes. This useful property of B is not satisfied for B′ . We also study B to enable a more explicit 
comparison of our present experimental results with those in our former closely related  papers9,48. Anyway, B 
and B′ are monotonically related to each other:

The Bell nonlocality measures B and B′ for the Werner states read

which explicitly shows that the states are nonlocal iff p > 1/
√
2 . By comparing Eq. (26) with Eq. (8), it is clearly 

seen that the Werner states for the mixing parameter p ∈ (1/3, 1/
√
2) are entangled, although they do not violate 

the CHSH inequality, as was first predicted in Ref.8. For the GWSs, formulas in Eq. (26) generalize to:

Let pB(q) denote the largest value of the mixing parameter p for a given value the superposition parameter q for 
which ρGW(p, q) is Bell local. Thus, by solving B(ρGW) = 0 one finds:

which means that ρGW(p, q) is Bell nonlocal if p ∈ (pB(q), 1] . This function reduces for q = 1/2 to the well-known 
result that the Werner state violates the CHSH inequality iff the mixing parameter p ∈ (1/

√
2, 1]8.

Hierarchy of quantum correlations. The following hierarchy of the discussed quantum correlation 
measures hold for a general two-qubit state ρ:

or, equivalently,

We also note that S2(ρ) ≤ B(ρ) and S3(ρ) ≤ S(ρ) . The inequalities in (30) for the GWSs reduce to

To visualize this hierarchy, we define the following hierarchy parameter of quantum correlations for the GWSs,

(21)max
ν

�B �ρ = 2
√

M(ρ),

(22)B(ρ) =
√

θ[M − 1] =
√

θ
{

TrR −min[eig(R)] − 1
}

,

(23)B′(ρ) = θ [
√
M − 1]√
2− 1

=
θ
(√

TrR −min[eig(R)] − 1
)

√
2− 1

= S2(ρ),

(24)B(|ψ�) = S(|ψ�) = FEF(|ψ�) = C(|ψ�) = N(|ψ�) = 2|ad − bc|,

(25)B′(ρ) =
√

B2(ρ)+ 1− 1√
2− 1

≤ B(ρ).

(26)B[ρW(p)] =
√

θ(2p2 − 1), B′[ρW(p)] = θ(
√
2p− 1)√
2− 1

,

(27)B[ρGW(p, q)] =
√

θ
{

p2[1+ 4q(1− q)] − 1
}

,

(28)B′[ρGW(p, q)] = θ [p
√

1+ 4q(1− q)− 1]√
2− 1

,

(29)pB(q) = [1+ 4q(1− q)]−1/2,

(30)B(ρ) ≤ S(ρ) ≤ FEF(ρ) ≤ N(ρ) ≤ C(ρ),

(31)S2(ρ) ≤ S3(ρ) ≤ FEF(ρ) ≤ N(ρ) ≤ C(ρ),

(32)B(ρGW) ≤ S(ρGW) ≤ FEF(ρGW) = N(ρGW) = C(ρGW).

(33)
H(ρGW) = χ [B(ρGW)] + χ[S(ρGW)] + χ [FEF(ρGW)] = χ [S2(ρGW)] + χ [S3(ρGW)] + χ [FEF(ρGW)],
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which is given in terms of the Heaviside function χ(x) equal to 1 for x > 0 and zero for x ≤ 0 . This parameter 
is plotted in Fig. 1 as a function of the parameters p and q uniquely specifying ρGW(p, q).

Methods
The experiment is implemented on the platform of linear optics with qubits encoded into polarization states 
of discrete photons. These photons are generated in the process of spontaneous parametric down-conversion 
occurring in a cascade of two Type-I BBO crystals in the Kwiat et al.  configuration67. A femtosecond fundamental 
laser pulse is frequency doubled to 413 nm and pumps the crystal cascade on its way there and back (as depicted 
in Fig. 2). Each time the pulse impinges on the crystals, a pair of photons can be generated in the polarization 
singlet Bell state. To achieve a high degree of entanglement, the pumping pulse is diagonally polarized (by 
the half-wave plate HWPA ) and subject to a polarization dispersion  line68. In our case, this dispersion line 
is implemented by two beam displacers (BDs) enveloping HWPB . The photons generated, while the pulse 
propagates forward are labelled 1 and 2 while the photons generated in the pulses second-time travel through 
the crystals are denoted 3 and 4.

The investigated state is encoded both into photons 1 and 2 (the first copy) and into photons 3 and 4 (the 
second copy). A collective measurement on both copies is then performed by projecting photons 2 and 4 onto 
the singlet Bell state using a fiber beam splitter (FBS) followed by post-selection onto coincidence detection on 

q

p

H

Figure 1.  Hierarchy of quantum correlations of the generalized Werner states: The hierarchy parameter 
H[ρGW(p, q)] , defined in Eq. (33), versus the superposition (q) and mixing (p) parameters. A given GWS, 
ρGW(p, q) , is separable if H(ρGW) = 0 , entangled if H(ρGW) ≥ 1 , steerable in the 3MS if H(ρGW) ≥ 2 , and Bell 
nonlocal (and steerable in the 2MS) if H(ρGW) = 3.

HWPA
HWPBBD BD

2xBBO QWP

HWP F5 M
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HWPF5

QWPHWPPBSF10
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D

D
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local projections

singlet state
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Figure 2.  Schematic depiction of the experimental setup. Individual components are labelled as follows: HWP 
half-wave plate, QWP quarter-wave plate, D detector, BD beam displacer, PBS polarizing beam splitter, BBO β
-barium-borate crystals, M motorized translation, F5,10 5, 10 nm-wide bandpass filters, FBS fiber beam splitter, 
PC polarization controller. Photons generated during the forward (backward) propagation of pump photons 
through the BBO crystals are labelled as 1 and 2 (3 and 4).
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its output ports. The remaining photons 1 and 3 are projected locally by means of the sets of quarter and half-
wave plates (QWPs and HWPs) and polarizing beam splitters (PBSs). We recorded the number of four-fold 
coincidence detections for various settings of the wave plates; namely, for all combinations of the projections 
onto the horizontal, vertical, diagonal, anti-diagonal, and both circular polarization states. We have subsequently 
calculated the expectation values of the Pauli matrices, that is Aij = Tr[ρ1ρ2�σiσj] , where � = −4|ψ−��ψ−| . 
Note that this formula is almost identical to the one in our previous  paper48, except that in the paper instead of 
the � projection, the 1−� projection was applied there.

When adjusting the setup to generate the requested Bell state (or the maximally mixed state), we have 
tuned the polarization of the pump beam, so that locally the generated photons have equal probabilities to 
be horizontally and vertically polarized. (The probability for a single photon being horizontally polarized is 
pH = 0.50± 0.03 .) Balancing these probabilities for the horizontal and vertical polarizations implies also bal-
ancing in any single-photon polarization basis. Note that the single-photon state is fully incoherent, because 
the other photon from a pair is ignored and, hence, mathematically one traces over its state. As a consequence, 
we can consider Bij = Tr[ρ1ρ2I4σiσj] ≈ 0 . With respect to that we conclude that the prepared two copies of 
the Bell state are balanced enough to warrant the replacement of 1−� by � . This is also supported by the fact 
that the numerically closest Bell state producing the observed values for the three measures has its parameter 
q = 0.474 – see Eq. (38) and comments in the surrounding paragraph.

Despite narrow frequency filtering on all photons (see the parameters of the bandpass filters in Fig. 2) and 
a relatively thin crystal cascade of twice 1 mm, there is a generation-time jitter, which causes the visibility of 
two-photon interference on the FBS to decrease. We have performed a calibration measurement that reveals 
that 56.7% of the photons do not interfere on FBS. Moreover, the laser power fluctuates over time yielding 
variable rates of photon-pairs generation. In order to compensate for these two effects, we have performed all 
the measurements in the two regimes with a temporal delay between photons 2 and 4: (a) tuned for interfer-
ence and (b) detuned (controlled by the motorized translation M). These two measurements together with the 
calibration measurement allow us to estimate the net probability of the two copies of the investigated state to 
pass simultaneously the Bell-state projection on the FBS, as well as the local polarization projections resulting 
in a four-fold detection event. With the repetition rate of the laser pulse of 80 MHz, we achieve about 1 such an 
event per 5 minutes.

While the crystals generate two copies of the singlet Bell state, we can readily modify the detection electron-
ics to effectively perform the measurement on the two copies of a maximally mixed state. So far the coincidence 
window, i.e., the time within all photons must be detected to be considered a coincidence event, had to be very 
narrow (5 ns) to assure detection of photon pairs originating from a single laser pulse. By considerably widening 
that window by several orders of magnitude, we effectively aggregate also detections that are completely unrelated 
and mutually random. This way, the observed state becomes effectively white noise.

Having all the measurements performed on a pure entangled state (two copies of the singlet Bell states) as 
well as on the maximally mixed state (i.e., the two copies of the maximally mixed state), we can easily interpolate 
the results for any Werner state with mixing parameter p. In order to do so, we make use of the fact that when 
two polarization states of single photons interact on a beam splitter and one of them is being a maximally mixed 
state, the resulting probability of coincidence detection is independent of the state of the other photon. As a 
result, we interpolate the measurement for any Werner state by combining with probability p2 the outcomes 
observed on two copies of maximally entangled states and with probability of 1− p2 the results observed on a 
maximally mixed state.

Note that, contrary to reconstructing the R matrix, there is no experimental advantage of reconstructing the 
3× 3 matrix T ≡ T3 compared to a full QST of a two qubit state ρ , which corresponds to reconstructing the 
4× 4 matrix T4 = [�σn ⊗ σm�] for n,m = 0, . . . , 3 , where σ0 = I2 is the qubit identity operator. It might look 
that reconstructing all the 9 elements of T3 is much simpler than reconstructing 16 (or 15) elements of T4 . But 
this is not the case, because the required types of measurements are the same in both reconstructions. Note that 
the optical reconstruction T3 for a given two-qubit polarization state ρ is usually based on projecting ρ on all 
the eigenstates of the three Pauli operators for each qubit, i.e., projections onto the six polarization single-qubit 
states (so 36 two-qubit states): diagonal ( |D� ), antidiagonal ( |A� ), right- ( |R� ) and left-circular ( |L� ), horizontal 
( |H� ), and vertical ( |V� ). Analogously, a standard QST of ρ also corresponds to reconstructing T4 via the same 
36 projections as those for T3 , and the single-qubit identity operator is given by I2 = |H��H| + |V��V | . So, the 
required measurements for reconstructing T3 and T4 are the same, but only their numerical reconstructions are 
different, although can be based on exactly the same measured data.

Results
In this section we test the experimental Werner states generated in the setup described in the former section 
and compare experimental results with theoretical predictions for ideal Werner states. One can calculate the 
correlation matrix elements Rij following the  derivations48:

noting that Aij and Bij can be experimentally determined. As a result, the physical correlation matrices Rij of the 
singlet Bell state and the maximally mixed state were obtained using a maximum likelihood method. First we 
derive the correlation matrix R|ψ−� for the singlet Bell state.

(34)Rij = Aij + Bij = Tr(ρ1ρ2�σiσj)+ Tr(ρ1ρ2I4σiσj),
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Then we evaluated also the correlation matrix for the maximally mixed state corresponding to white noise,

Using definition (2) we can derive the correlation matrix RW(p) of the Werner states for selected values of the 
mixing parameter p as follows,

Now we apply the above-described definitions of the quantifiers of quantum correlations including the defined 
measures of Bell nonlocality (B and B′ = S2 ), steering in the 3MS (S and S3 ), and entanglement (FEF) based on 
this correlation matrix.

Our experimental results are summarized in Tables 1 and 2 and marked by symbols in Figs. 3 and 4. The 
error bars were derived using a Monte Carlo method following the normal distribution of the correlation matrix 
components with variance corresponding to the number of detected photocounts. The asymmetry of estimated 
error bars results from presence of the θ function in the formulas for the estimated quantities as well as from 

(35)R|ψ−� =
(

0.971 0.073 0.010
0.073 0.966 − 0.009
0.010 − 0.009 0.941

)

.

(36)RI =
(

0.017 0.006 − 0.007
0.006 0.013 0.016
−0.007 0.016 0.006

)

.

(37)RW(p) = p2R|ψ−� + (1− p2)RI .

p

S
B

p

S
S B’

Figure 3.  Experimental demonstration of the hierarchy of quantum correlations of the Werner states without 
full QST: the Bell nonlocality measures (a) B and (b) B′ = S2 (solid blue lines and curves), the 3MS steering 
measures (a) S and (b) S3 (dashed red), and (a,b) the FEF (dot-dashed black lines) shown versus the mixing 
parameter p. Symbols depict experimental results and curves represent theoretical predictions.

Table 1.  Quantum correlation measures for the experimental and theoretical Werner states plotted in Fig. 3a, 
including measures of Bell nonlocality (B) and steering (S) in the 3MS, and the FEF. Experimental values are 
listed together with their asymmetric errors in square brackets.

p

B S FEF

Theory Experiment Theory Experiment Theory Experiment

0.3 0.000 0.000 0.000 0.000 0.000 0.000

0.4 0.000 0.000 0.000 0.000 0.100 0.106[−0.030,+0.031]
0.5 0.000 0.000 0.000 0.000 0.250 0.248[−0.022,+0.034]
0.6 0.000 0.000 0.200 0.172[−0.168,+0.078] 0.400 0.391[−0.028,+0.027]
0.7 0.000 0.000[−0.000,+0.145] 0.485 0.463[−0.064,+0.046] 0.550 0.534[−0.041,+0.032]
0.8 0.529 0.528[−0.098,+0.068] 0.678 0.654[−0.043,+0.047] 0.700 0.679[−0.038,+0.038]
0.9 0.787 0.783[−0.057,+0.064] 0.846 0.818[−0.041,+0.045] 0.850 0.824[−0.038,+0.042]
1.0 1.000 0.993[−0.133,+0.007] 1.000 0.969[−0.092,+0.030] 1.000 0.969[−0.098,+0.031]
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the requirement on the physicality of the R matrices. Figure 3 shows also the theoretically predicted correlation 
measures plotted with solid curves, which were calculated for the ideal Werner states.

In the theoretical section we considered the Costa–Angelo steering measures S2 and S3 that can be calculated 
also from the R matrix. We evaluated these steering measures using Eqs. (12) and (13). The results are plotted 
in Fig. 3b. It is clear that these measures linearly depend on the mixing parameter p. The nonzero regions of the 
correlation measures, shown in both panels of Fig. 3, are the same. Experimental results shown in Fig. 3b are 
also summarized in Table 2.

The original correlation matrices R were derived from measured coincidences using two methods of maxi-
mum likelihood estimation of Ref.69. Both methods lead to the R matrices that are essentially the same. Our 
experimental results shown in Fig. 3 demonstrate a very good agreement with our theoretical predictions. It is 
clear that S2 , S3 , and FEF are the most stable measures at least for the Werner states and GWSs by exhibiting the 
smallest errors because of their linear dependence on the mixing parameter p. By contrast to those quantifiers, 
the measures of steering S in the 3MS and of Bell nonlocality (B) are much steeper functions and that is why 
they are much more sensitive to unavoidable fluctuations of measured coincidence counts, as reflected in all the 
derived quantities. A comparison of the steering measures S3 and S and the Bell nonlocality measures S2 and B 
for arbitrary theoretical states and the experimental Werner states are shown in Fig. 4.

In the experiment all imperfections of individual components decrease the resulting correlation measures. 
Together with the instability and a natural Poisson randomness of the measured coincidences, these effects result 
in measurement uncertainties. Also our experimentally generated singlet Bell state is not perfect. We tried to 
simulate all these mentioned imperfections by degrading the input Bell-like state assuming the rest of the meas-
urement to be nearly perfect. These expected imperfections result in a class of generalized states in the form of

S

S

B
’

B

Figure 4.  Experimental and theoretical predictions of different measures: (a) S3 vs S quantifying steering in 
the 3MS and (b) S2 = B′ vs B describing Bell nonlocality and, equivalently, steering in the 2MS. Symbols depict 
the measures calculated for the experimental Werner states for the indicated values of the mixing parameter p. 
The error bars are marked by solid red curves that follow the dotted curves. Arbitrary two-qubit states lie on the 
dotted curves. The dashed diagonal lines are added just to show the curvature of the solid curves more clearly.

Table 2.  The Costa–Angelo measures S3 and S2 = B
′ of steering in the 3MS and 2MS, respectively, for the 

experimental and theoretical Werner states plotted in Fig. 3b.

p

S2 S3

Theory Experiment Theory Experiment

0.3 0.000 0.000 0.000 0.000

0.4 0.000 0.000 0.000 0.000

0.5 0.000 0.000 0.000 0.000

0.6 0.000 0.000 0.054 0.040[−0.040,+0.044]
0.7 0.000 0.000 0.290 0.267[−0.064,+0.050]
0.8 0.317 0.316[−0.112,+0.086] 0.527 0.494[−0.055,+0.062]
0.9 0.659 0.652[−0.085,+0.101] 0.763 0.723[−0.058,+0.066]
1.0 1.000 0.989[−0.233,+0.011] 1.000 0.952[−0.141,+0.048]
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where |ψ±
q � = √

q|HV� ± √
1− q|VH� . The correlation measures for our most entangled experimental Bell-like 

state read: B = 0.9933 , S = 0.9691 , and FEF = 0.9685. We found that these results are the most consistent with 
ρ(p, q) for the parameters q ≈ 0.474 and p ≈ 0.994 . This implies the purity of this Bell-like state of about 98.9%.

Conclusions
We reported the detection of quantum correlation measures of two optical polarization qubits without QST. 
Specifically, we have measured all the elements of the correlation matrix R (which is symmetric by definition) 
for the Werner states with different amount of white noise. These elements correspond to linear combinations 
of two-qubit Stokes parameters. With the matrix R, we were able to determine various measures of quantum 
entanglement, steerability, and Bell nonlocality of the Werner and Werner-like states.

Most notably, our experiment allows us to show the hierarchy of the tested quantum correlation meas-
ures. This means that a given Werner state is separable iff its mixing parameter is p ≤ 1/3 . A Werner state 
for p ∈ (1/3, 1/

√
3] is entangled (as revealed by a nonzero FEF), but it is unsteerable and Bell local. Subse-

quently, a Werner state for p ∈ (1/
√
3, 1/

√
2] is entangled and steerable in the 3MS, but unsteerable in the 

2MS, which means that it does not exhibit Bell nonlocality. Finally, a Werner state for p > 1/
√
2 is also Bell 

nonlocal, so steerable even in the 2MS. It is clear that a specific threshold for steerability depends on the 
number of measurement settings which in our case equal 2 and 3. Different thresholds have been found for 
different number of measurement settings, see e.g. Refs.6,9,70. These regions, separated by the three values of 
p = {1/3, 1/

√
3, 1/

√
2} ≈ {0.333, 0.577, 0.707} , are depicted with different background colors in Fig. 3. We have 

also analyzed theoretically a hierarchy (shown in Fig. 1) of some measures of quantum correlations for general-
ized Werner states, which are defined as arbitrary superpositions of a two-qubit partially-entangled pure state 
and white noise.

The problem of detecting measures of quantum correlations is essential to assess their suitability for quantum-
information protocols especially for quantum communication and cryptography when considering not only 
trusted but also untrusted devices. We believe that experimental determination of various measures of entan-
glement, steering, and Bell nonlocality without full QST, as reported in this work, clearly shows its advantage 
compared to standard methods based on a complete QST. Specifically, our method relies on measuring only 6 
real elements instead of 15 (or even 16) elements in a complete two-qubit QST.

Moreover, experimental studies of a hierarchy of quantum-correlation measures might be useful for, e.g.: (i) 
testing complementarity relations between various measures, (ii) effective estimations of one measure for a spe-
cific value of another measure without full QST, or even (iii) quantifying nonclassicality of single-qubit systems 
via potentials of quantum correlations.

Data availability
All the data necessary to reproduce the results are included in this published article and its digital supplement. 
We note that all the raw experimental data used in this work were obtained in our experiment reported in Ref.48. 
Of course, their usage and interpretation are very different here compared to the previous work.
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