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Machine learning predictive 
model for aspiration screening 
in hospitalized patients with acute 
stroke
Dougho Park 1,2*, Seok Il Son 3, Min Sol Kim 3, Tae Yeon Kim 4, Jun Hwa Choi 5, Sang‑Eok Lee 2, 
Daeyoung Hong 6 & Mun‑Chul Kim 6

Dysphagia is a fatal condition after acute stroke. We established machine learning (ML) models for 
screening aspiration in patients with acute stroke. This retrospective study enrolled patients with 
acute stroke admitted to a cerebrovascular specialty hospital between January 2016 and June 2022. 
A videofluoroscopic swallowing study (VFSS) confirmed aspiration. We evaluated the Gugging 
Swallowing Screen (GUSS), an early assessment tool for dysphagia, in all patients and compared 
its predictive value with ML models. Following ML algorithms were applied: regularized logistic 
regressions (ridge, lasso, and elastic net), random forest, extreme gradient boosting, support vector 
machines, k‑nearest neighbors, and naïve Bayes. We finally analyzed data from 3408 patients, 
and 448 of them had aspiration on VFSS. The GUSS showed an area under the receiver operating 
characteristics curve (AUROC) of 0.79 (0.77–0.81). The ridge regression model was the best model 
among all ML models, with an AUROC of 0.81 (0.76–0.86), an F1 measure of 0.45. Regularized logistic 
regression models exhibited higher sensitivity (0.66–0.72) than the GUSS (0.64). Feature importance 
analyses revealed that the modified Rankin scale was the most important feature of ML performance. 
The proposed ML prediction models are valid and practical for screening aspiration in patients with 
acute stroke.

Dysphagia is a common comorbidity after acute  stroke1, occurring in more than half of the stroke  survivors2. 
Moreover, dysphagia associated with acute stroke causes aspiration in many cases, which can result in severe 
complications such as aspiration pneumonia, dehydration, and  malnutrition3. Post-stroke pneumonia occurs 
in about 15% of patients with acute stroke and is a fatal conditions with a 30-day mortality rate of up to 30%4,5. 
Furthermore, it has been reported that up to 40% of patients with acute stroke are at risk of malnutrition, which 
is linked to pressure ulcers, increased dependency, prolonged institutionalization, and high mortality  rates6,7. 
Moreover, aspiration increases the burden of the initial medical treatment, and active rehabilitation and return to 
society are inevitably delayed. As a result, the patient’s long-term prognosis is adversely affected due to dysphagia 
and aspiration, which in turn causes a vicious cycle that deteriorates the patient’s quality of  life8.

Therefore, early screening for dysphagia and aspiration develops an appropriate feeding  strategy9. The Gug-
ging Swallowing Screen (GUSS), introduced by Trapl et al.10, is one of the most widely used dysphagia screening 
tools in the clinical field and has undergone the most validation  testing11,12. The GUSS comprises direct and 
indirect evaluations. The indirect test assesses dry saliva swallowing, level of consciousness, and the ability to 
cough. The direct test evaluates signs of swallowing difficulties, such as delayed swallowing, coughing, drooling, 
and voice changes after food  intake13. Although the GUSS has the advantage of being relatively easy to perform at 
the bedside, its direct evaluation is invasive and carries aspiration pneumonia risk in patients with acute stroke. 
In addition, the examiner should be sufficiently trained to ensure the reliability of the results. Further, the direct 
swallowing test sometimes has a high false-positive rate, leading to unnecessary referrals for further  testing14. 
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Finally, accurate evaluation is limited in patients with cognitive impairment or communication  difficulties15. 
There are questionnaires such as the dysphagia handicap index and eating assessment tool-10 to screen dysphagia 
early in  hospitalization16,17; they are widely used because of their easy-to-perform and non-invasive advantages 
and have been translated into various languages and passed through many validation tests. However, they also 
have a fundamental disadvantage because they can be applied only to a limited patient group. Moreover, some 
screening tools not only lack standardization in terms of the timing and frequency of examination but also have 
not been adequately validated in diverse patient populations or  settings18. For these reasons, studies reporting 
on the predictive power of dysphagia screening tools were often heterogenous and did not provide precisely 
estimated  results19.

The videofluoroscopic swallowing study (VFSS) has been widely used as a confirmatory test to diagnose 
 aspiration20; despite the advantage of accurately determining whether aspiration is achieved through visualization 
of all stages of swallowing, it is still invasive and has the disadvantage of being exposed to  radiation21. In addition, 
the examination C-arm device is required, and the test is possible in a state where the patient can maintain an 
appropriate  posture22. VFSS also needs suitable space and schedule for these two limitations. Therefore, it can 
be considered that the VFSS is inappropriate for screening patients with acute stroke.

Machine learning (ML) algorithms are good at performing regression and classification by learning from 
tubular  data23. Some parts can be a bit confusing when you come across the term “learning,” but it would be cor-
rect to say that ML algorithms perform calculations rather than learning. The generally used method in current 
ML-related medical research has been supervised learning, which compares the real-world output that comes out 
through a human expert’s decision with the result calculated by ML algorithms based on the same input  data24,25. 
Based on electrical health records (EHRs), ML models have been widely proposed for the diagnosis, treatment, 
and prognosis of  diseases26,27. In particular, ML models for the early detection of diseases have been presented 
in various fields, such as coronary heart  disease28, aortic  dissections29,  depression30, and Alzheimer’s  disease31, 
and the results have demonstrated that ML prediction models are comparable to existing screening tools. In 
addition, ML algorithms have the advantage of using EHR to develop predictive models relatively readily and 
efficiently, even using a dataset consisting of a large sample with numerous variables. However, despite the rapid 
expansion of medical research applying ML algorithms, to the best of our knowledge, no reports have presented 
an ML-based model for screening aspiration in patients with acute stroke. Although Jauk et al.32 introduced the 
ML-based dysphagia prediction model, which showed acceptable prediction performance in the geriatric cohort, 
no study targeted patients with acute stroke using ML-based aspiration prediction models.

This study aimed to establish ML prediction models to screen for aspiration, confirmed by VFSS, particu-
larly applicable for patients with acute stroke. According to the screening tool’s purpose, the initial information 
obtained before the VFSS was used as potential predictors and compared the performance of ML models with 
the predictive power of the GUSS as a traditional screening tool. To explain the causality of variables, we used 
both the stepwise logistic regression model and the feature importance analysis of ML models. Ultimately, this 
study investigated whether ML prediction models enabled early and accurate aspiration screening after acute 
stroke and could be a reliable alternative to traditional aspiration screening.

Methods
Study population and ethical statements. This retrospective study utilized EHRs of patients hospi-
talized with acute stroke between January 2016 and June 2022 at a single cerebrovascular specialty hospital. 
Acute stroke was defined as hospitalization within seven days of new-onset stroke, and patients hospitalized with 
International Classification of Diseases-10 codes of I60–I63 were selected. The following exclusion criteria were 
applied in this study: (1) discharged before completion of the VFSS, (2) VFSS failed because of poor cooperation, 
(3) unspecified stroke type or unclear diagnosis, (4) missing values or lack of clinical information (more than 
20%), (5) mortality during the hospitalization period, (6) head and neck cancers, (7) neuromuscular diseases, 
and (8) underwent prior radiation therapy (Fig. 1). The institutional review board of Pohang Stroke and Spine 
Hospital reviewed and approved the study design (PSSH0475-202201-HR-001-01). All data was anonymized, 
excluding patients’ resident and hospital registration numbers and detailed home addresses. Then the dataset 
was exported to the authorized researcher for this study. Informed consent was waived owing to the study’s 
retrospective nature by the institutional review board of Pohang Stroke and Spine Hospital. This study was 
conducted in compliance with the Declaration of Helsinki and the International Conference on Harmoniza-
tion–Good Clinical Practice Guidelines.

The rationale for selecting the potential predictors. We applied the following criteria in extracting 
potential predictors. First, personal and clinical information available within a short time after admission was 
defined as potential predictors to develop an ML prediction model for screening purposes. Second, as much as 
possible, the variables identified as risk factors for post-stroke dysphagia or pneumonia reported in previous 
studies were included. Thirdly, the variable had to be reliably evaluated and readily extracted from EHR, and the 
missing value should not exceed 20% of the total.

Age and sex have been known risk factors for stroke and stroke-related  pneumonia33. Meanwhile, smoking, 
obesity, and comorbidities such as hypertension, diabetes, dyslipidemia, and previous cerebrovascular lesions, 
which act as vascular risk factors, are also significant variables that increase the risk of aspiration after  stroke34,35. 
Symptoms related to motor impairment, such as impaired physical morbidity and dysarthria, are also known 
to increase the risk of stroke-related  aspiration36. Among stroke-related factors, it has been known that the 
higher frequency of dysphagia was associated with brain stem lesions, hemorrhagic stroke, and stroke  severity37. 
Additionally, malnutrition is a complication of dysphagia and increases the risk of stroke-related  aspiration38.
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Basic patient information, including age, sex, and socioeconomic status, was identified first based on these 
previous reports. Then, to confirm the nutritional state and general condition of the patient with acute stroke, 
mental status, vital signs, and laboratory findings at admission were investigated. In addition, patient or guard-
ian interviews, medical records, and medication history were used to identify the patient’s comorbidities. As 
stroke-related factors, stroke type and territories were identified. Further, the modified Rankin scale, Morse Fall 
scale, facial asymmetry, and aphasia were checked to identify the motor and functional impairments. Detailed 
definitions of each variable are presented in Supplementary Table S1.

Patients with acute stroke underwent GUSS examinations when consultation with early rehabilitation was 
received; this mainly occurred before the VFSS. Skilled occupational therapists performed the GUSS. The highest 
score on the GUSS is 20; the higher score means less severe swallowing difficulties.

Videofluoroscopic swallowing study and outcome definition. We used a ZEN-5000 C-arm fluoro-
scope for the VFSS (Genoray Inc., Seongnam, Korea). The patient maintained an upright sitting posture in a 
chair or wheelchair, and postural support was provided if the patient could not sit upright. As a contrast agent, 
230% barium liquid was diluted to approximately 35% in free water. Food forms consisted of solid, semi-solid, 
and liquid (2 ml, 5 ml, and 90 ml, respectively). Three examiners from a multidisciplinary team performed the 
VFSS and on-site interpretations. The team consisted of rehabilitation medicine specialists, occupational thera-
pists, and a speech-language therapist. The next day, the same team reviewed the video recording again for an 
accurate interpretation. Interpretations were primarily based on the patient’s sagittal view images. We defined 
aspiration, the target outcome of this study, as the detection of one or more swallowing with a Penetration-
Aspiration scale score of 6–8 on the VFSS during  hospitalization39.

Statistical analysis. Statistical analyses were performed using R software version 4.2.3 (R Core Team, R 
Foundation for Statistical Computing, Vienna, Austria). Continuous variables were tested for normality using 
the Shapiro–Wilk test and are expressed as median (interquartile range). The Wilcoxon rank-sum test was then 
applied for comparative analysis between the two groups. Categorical variables are expressed as frequency (pro-
portion). The chi-squared (trend) test was used for comparative analysis between the two groups. The area under 
the receiver operating characteristic curve (AUROC) was analyzed using the “Epi” package in the R software to 
determine the predictive value of the GUSS for  aspiration40. We established a stepwise logistic regression model 
using the backward elimination method to interpret the adjusted odds ratio (aOR) for predicting aspiration. 
During the stepwise elimination of covariates, the model fitness was assessed using the Akaike information crite-
rion. Multicollinearity between variables was confirmed using the variation inflation factor, with sqrt (variation 
inflation factor) > 2 as the threshold. We defined statistical significance as a P-value less than 0.05.

Figure 1.  Flowchart of patient inclusion. VFSS videofluoroscopic swallowing study.
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Machine learning. Data pre‑processing and model establishing. We used the “caret” package of the R soft-
ware for the ML modeling  process41. Before ML modeling, the data were pre-processed. First, we identified vari-
ables with near-zero-variance and removed them. Then, the threshold was set at a correlation coefficient > 0.7 to 
check for multicollinearity between continuous variables. Continuous variables were then subjected to centering 
and scaling. Categorical variables underwent one-hot encoding and were transformed into dummy variables. 
We also detected and removed variables and individuals with more than 20% missing values. Then, we imputed 
remained missing values while applying a multivariate imputation via the method of the chained  equation42.

We randomly allocated the entire data into 75% of the training set and 25% of the test set for ML prediction. 
A synthetic minority oversampling technique was applied to balance the target classes of the training data-
set. We utilized the following ML algorithms to generate the prediction model: regularized logistic regression 
(RLRs)–ridge, lasso, and elastic net–and ensemble algorithms such as random forest (RF) and extreme gradi-
ent boosting (XGB). We also utilized classic ML classifiers such as support vector machines (SVM), k-nearest 
neighbors (KNN), and naïve Bayes (NB). We performed five-fold cross-validation with 50 repeats for an optimal 
training model. In addition, we used a random or grid search for hyperparameter tuning. We provide tuned 
hyperparameters and their searching method for each model in Supplementary Table S2. The AUROC, F1 score, 
sensitivity, and specificity were used as metrics to measure the performance of the ML models (Fig. 2). The entire 
code for the machine learning process is available in the Online Supplementary Content S1.

Regularized logistic regressions. Some classical algorithms have the advantage of being fast and easy to apply, 
but the biggest problem is the possibility of  overfitting43. Overfitting is defined as when the data has many fea-
tures, and the hypothesis function fits nicely on the training data. However, it fails to generalize the validation 
data, a common problem when doing ML  modeling44. Logistic regression is based on a linear model commonly 
used in medical statistics, and the more features it has, the more vulnerable it is to overfitting. RLR proceeds in 
a way that minimizes overfitting through regularization; it overcomes overfitting with a non-sparse solution (L2 
regularization, Ridge) or sparse solution method (L1 regularization, Lasso) for high-order variables in a linear 
equation while maximizing predictive  power45. Meanwhile, the elastic net method performs regularization by 
the hybrid method of Ridge and  Lasso46.

Ensemble algorithms. Ensemble learning is a technique for deriving more accurate results by creating multiple 
classifiers and combining the predictions. This method helps more accurate prediction by combining several 
weaker models instead of one robust model, and bagging and boosting types are the most  representative47,48.

RF is a representative ensemble algorithm that uses a bagging method based on a decision  tree49. It is an 
algorithm that improves predictive power while solving the overfitting problem that inevitably occurs as the 
number of branches in the decision tree  increases50. This algorithm allows duplication of data division during 
the bagging process, and through this, a unique dataset can be continuously  formed51.

The boosting method differs from bagging in that several classifiers perform learning sequentially, and pre-
dictions are performed while weighting the next  classifier52. One representative boosting module is XGB, which 
provides optimized custom options by providing parallel processing techniques and various hyperparameter 
 settings53. Therefore, it solves the problem of slow process and overfitting of the boosting method with sequential 
features in general and shows high predictability  simultaneously54.

Other classic classifiers. SVM is a classical ML algorithm that creates a virtual vector space; then, it finds the 
margins that separate each group and recognizes patterns based on such  boundaries55. SVM performs the clas-
sification task by maximizing the distance between the margins that classify the two  groups56. SVM can be used 
not only for linear classification but also for non-linear classification through kernelization. On the other hand, 
SVM is not suited for datasets with a lot of  noise57.

KNN works by finding the nearest neighbors based on the distance between data points and predicting the 
label of new data by referring to the labels of those  neighbors58. KNN measures the distance between all data 
points each time, so the computation cost is high. However, it has the advantage of obtaining simple and good 
classification performance when the data is relatively  small59.

Bayes’ theorem is a formula that calculates conditional probability, which is the probability of an event occur-
ring, given that another event has already  happened60. Based on Bayes’ theorem, NB calculates the probability 

Figure 2.  Schematic diagram of the machine learning process in this study. AUROC area under the receiver 
operating characteristics curve.
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that the input data belongs to each class. Like other classic classifiers, NB has the advantage of fast model learning 
and efficient data  processing61. On the other hand, NB is calculated based on the assumption that each feature 
is independent. Therefore, accuracy may be low if some features’ independence assumption is  unsuitable62.

Results
Baseline characteristics. A total of 3408 hospitalized patients with acute stroke were included for analysis. 
Among them, 448 patients presented with aspiration on VFSS during hospitalization. The results of the baseline 
characteristics and comparison analyses between the aspiration and non-aspiration groups are presented in 
Table 1. The aspiration group was significantly older than the non-aspiration group (73.0 [63.0–79.0] vs. 67.0 
[58.0–77.0] years old; p < 0.001). Furthermore, the ratio of males, medical aid, previous cerebrovascular acci-
dents, and diabetes were significantly higher in the aspiration group (p = 0.002, p < 0.001, p < 0.001, and p = 0.036, 
respectively). In addition, the ratio of dyslipidemia was significantly lower in the aspiration group (p = 0.013). 
Among the stroke-related features, the aspiration group had a significantly higher rate of hemorrhagic stroke 
(25.9% vs. 18.5%; p < 0.001), initially altered mental status (29.5% vs. 6.3%; p < 0.001), aphasia (18.1% vs. 5.5%; 
p < 0.001), and facial asymmetry (63.4% vs. 40.0%; p < 0.001) than the non-aspiration group. Additionally, the 
aspiration group showed a significantly higher rate of patients admitted via the emergency department (91.1% 
vs. 86.9%; p = 0.016) and more severe functional deterioration–higher modified Rankin scale and Morse Fall 
scale (3.0 [2.0–4.0] vs. 2.0 [1.0–3.0]; p < 0.001 and 35.0 [35.0–50.0] vs. 35.0 [20.0–35.0]; p < 0.001, respectively). 

Table 1.  Baseline characteristics. ED emergency department, GUSS gugging swallowing screen, mRS modified 
Rankin Scale, MS mental status, VFSS videofluoroscopic swallowing study.

Variables No aspiration (n = 2,960) Aspiration (n = 448) p-value

Age, years 67.0 (58.0–77.0) 73.0 (63.0–79.0)  < 0.001

Male, n (%) 1735 (58.6) 297 (66.3) 0.002

Body mass index, kg/m2 23.7 (21.8–25.7) 23.1 (21.3–25.2)  < 0.001

Medical-aid, n (%) 172 (5.8) 51 (11.4)  < 0.001

Urban residence, n (%) 1346 (45.5) 181 (40.4) 0.050

Current smoking, n (%) 858 (29.0) 113 (25.2) 0.111

Comorbidities, n (%)

 Previous cerebrovascular accidents 476 (16.1) 113 (25.2)  < 0.001

 Hypertension 1453 (49.1) 240 (53.6) 0.085

 Diabetes 651 (22.0) 119 (26.6) 0.036

 Dyslipidemia 275 (9.3) 25 (5.6) 0.013

 Cancers 157 (5.3) 24 (5.4) 0.921

 Symptomatic arrhythmias 97 (3.3) 16 (3.6) 0.855

 Coronary artery diseases 49 (1.7) 5 (1.1) 0.516

 Cerebral neurodegenerative diseases 152 (5.1) 27 (6.0) 0.500

Initial systolic blood pressure, mmHg 152.0 (140.0–169.0) 157.0 (140.0–177.0) 0.001

Initial diastolic blood pressure, mmHg 86.0 (78.0–96.0) 85.0 (77.0–95.0) 0.547

GUSS score 20.0 (13.0–20.0) 9.0 (7.0–14.0)  < 0.001

Arrival to initial VFSS, days 2.0 (1.0–5.0) 5.0 (3.0–8.0)  < 0.001

Stroke subtype, n (%)

 Hemorrhagic 549 (18.5) 116 (25.9)
 < 0.001

 Ischemic 2411 (81.5) 332 (74.1)

Stroke territory, n (%)

 Anterior circulation 2038 (68.9) 308 (68.8)

0.313 Posterior circulation 612 (20.7) 102 (22.8)

 Combined 310 (10.5) 38 (8.5)

Lesion side, n (%)

 Right 1267 (42.8) 206 (46.0)

0.415 Left 1388 (46.9) 201 (44.9)

 Bilateral 305 (10.3) 41 (9.1)

Altered MS at admission, n (%) 187 (6.3) 132 (29.5)  < 0.001

Aphasia, n (%) 162 (5.5) 81 (18.1)  < 0.001

Facial asymmetry, n (%) 1184 (40.0) 284 (63.4)  < 0.001

Admission via ED, n (%) 2572 (86.9) 408 (91.1) 0.016

Initial mRS 2.0 (1.0–3.0) 3.0 (2.0–4.0)  < 0.001

Morse fall scale 35.0 (20.0–35.0) 35.0 (35.0–50.0)  < 0.001
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Finally, days from admission to the initial VFSS study were significantly longer in the aspiration group than in 
the non-aspiration group (5.0 [3.0–8.0] vs. 2.0 [1.0–5.0] days; p < 0.001).

Comparisons of initial laboratory findings between the two groups are presented in Supplementary Table S3. 
The aspiration group showed a significantly lower albumin level, hemoglobin, platelet, total cholesterol, and tri-
glyceride (p < 0.001, p = 0.012, p = 0.025, p = 0.011, and p < 0.001, respectively). Furthermore, the random glucose 
level was significantly higher in the aspiration group (p = 0.046).

Aspiration screening with the GUSS. The GUSS score was significantly lower in the aspiration group 
(9.0 [7.0–14.0]) than in the non-aspiration group (20.0 [13.0–20.0]) (p < 0.001) (Table 1). When evaluating the 
predictive value of the GUSS for aspiration, the AUROC was 0.79 (0.77–0.81), and the cut-off score was 14.5. 
Based on the cut-off value, the F1 measure was 0.39, the sensitivity was 0.64, and the specificity was 0.83 (Table 2).

Machine learning models. We provide the number of samples after random allocation and target class 
balancing for each ML model in Supplementary Table S4. The predictive values and confusion matrix for each 
model are provided in Table 2 and Supplementary Table S5, respectively. Overall, the RLRs, RF, XGB, and NB 
algorithms showed AUROC values similar to that of the GUSS. Among the applied ML algorithms, ridge regres-
sion showed the highest AUROC (0.81 [0.76–0.86]) and F1 measure (0.45). The elastic net regression had the 
highest sensitivity (0.72), higher than that of the GUSS (0.64). The RF, XGB, SVM, and NB models showed low 
sensitivity and high specificity.

Most ML algorithms identified the modified Rankin scale as the most important variable for their perfor-
mance. For RLRs, mental status, facial asymmetry, stroke territory, and sex were highly important features for the 
prediction. Meanwhile, days to the VFSS study were also relatively crucial for other ML algorithms’ prediction 
performance. The entire list of the top-five most important variables for each model is shown in Fig. 3.

The stepwise logistic regression model. The final logistic regression model and covariates are provided 
in Table 3. Higher age (aOR, 1.03; 95% confidence interval [CI] 1.01–1.04; p < 0.001), male sex (aOR, 2.19; 95% 
CI 1.71–2.81; p < 0.001), days to initial VFSS (aOR, 1.02; 95% CI 1.01–1.04; p = 0.002), posterior circulation 
stroke (aOR, 1.59; 95% CI 1.21–2.09; p = 0.001), altered mental status (aOR, 2.61; 95% CI 1.89–3.60; p < 0.001), 
aphasia (aOR, 1.95; 95% CI 1.35–2.81; p < 0.001), higher modified Rankin scale score (aOR, 1.63; 95% CI 1.47–
1.80; p < 0.001), previous cerebrovascular accidents (aOR, 1.48; 95% CI 1.13–1.94; p = 0.004), and higher systolic 
blood pressure (aOR, 1.11; 95% CI 1.05–1.18; p < 0.001) were significantly associated with a higher risk of aspira-
tion. In contrast, facial symmetry (aOR, 0.49; 95% CI 0.39–0.62; p < 0.001), higher body mass index (aOR, 0.96; 
95% CI 0.93–1.00; p = 0.039), left side lesion (aOR, 0.75; 95% CI 0.59–0.96; p = 0.023), and higher diastolic blood 
pressure (aOR, 0.87; 95% CI 0.79–0.96; p = 0.007) were significantly associated with a lower risk of aspiration.

Discussion
In patients hospitalized with acute stroke, we compared the predictive value of aspiration with the GUSS, an 
existing dysphagia screening tool. We proposed ML models based on the patients’ initial information to enable 
early screening. Among applied ML algorithm predictors, RLRs showed valid prediction performances and 
were not inferior to GUSS. This study provides a significant contribution to the field because it is the first study 
to develop ML models to screen aspiration in patients with acute stroke with a relatively large sample compared 
to related previous studies. In addition, our study demonstrated that a new aspiration screening tool could be 
developed by utilizing scattered and various clinical information from hospitalized patients with acute stroke. 
Therefore our ML models have the potential to minimize the time and efforts of medical staff for screening 
dysphagia after acute stroke in the clinical field and enable an efficient decision-making process, ultimately 
improving patient outcomes.

Early dysphagia assessment in patients with acute stroke is critical and essential for establishing a dietary 
and fluid intake  strategy18. Screening tools for dysphagia can identify swallowing difficulties before confirmatory 
studies, such as a VFSS or fiberoptic endoscopic evaluation of swallowing, which require a separate space and 
scheduling. These screening tools have been found to reduce the rate of aspiration pneumonia and unnecessary 

Table 2.  Prediction performance. AUROC area under the receiver operating characteristics curve.

Predictors AUROC F1 measure Sensitivity Specificity

Gugging swallowing screen 0.79 (0.77–0.81) 0.39 0.64 0.83

Ridge regression 0.81 (0.76–0.86) 0.45 0.66 0.79

Lasso regression 0.80 (0.75–0.85) 0.41 0.67 0.77

Elastic net regression 0.81 (0.76–0.86) 0.41 0.72 0.76

Random forest 0.78 (0.72–0.84) 0.30 0.24 0.96

Extreme gradient boosting 0.80 (0.75–0.85) 0.34 0.25 0.97

Support vector machines 0.66 (0.60–0.72) 0.15 0.12 0.93

k-nearest neighbors 0.71 (0.65–0.77) 0.32 0.66 0.67

Naïve bayes 0.78 (0.73–0.83) 0.43 0.37 0.95
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tube feeding or nil per os period in patients with acute  stroke12. However, although traditional screening tools 
can be applied to most patients in an awake and alert state, an accurate evaluation is impossible if there is a 
cognitive decline or the patient cannot obey instructions because of aphasia. In particular, questionnaires such 
as the dysphagia handicap index and eating assessment tool-10 are relatively more restricted by the limitations 
mentioned above, although they have the advantage of being non-invasive, unlike the  GUSS16,17. Consequently, 
a significant limitation of these traditional screening tools is their limited ability to detect dysphagia in patients 
who may be highly likely at risk for aspiration conditions after acute stroke.

In this study, we demonstrated that the limitations of these existing screening tools could be overcome 
through ML prediction models, especially in unstable patients with acute stroke. In particular, compared to the 
GUSS, ML-based models demonstrated a vital advantage; they could predict aspiration with similar performance 
without requiring an invasive direct swallowing test. Moreover, another advantage is that aspiration screening can 
be performed much more readily and efficiently based on the initial clinical information obtained from patients 
with acute  stroke63. Unlike traditional screening tools relying on subjective assessments by human experts, 
ML-based models also have the potential to screen for aspiration more objective and standardized manner by 
utilizing various features. Furthermore, ML models have the evolutionary potential to continuously learn and 
adapt to new data, leading to further improvement in their predictive performance over time. Overall, using an 
ML-based aspiration screening tool potentially contribute to improving patient outcomes and reducing costs.

Our newly developed ML-based screening tool showed valid performance compared to previous dysphagia 
screening tools. Unfortunately, few studies have attempted to predict precisely aspiration, not overall dysphagia, 
after acute stroke. Kim et al.13 identified the predictive values for aspiration on the GUSS and dysphagia handicap 
index in a single-center prospective study, with AUROCs of 0.77 and 0.79, respectively; our ML models’ pre-
diction performances were not inferior to their screening tools. Warnecke et al.11 conducted a study to predict 
aspiration using the GUSS in 100 patients with acute stroke, with an AUROC confirmed as 0.76. Meanwhile, 
Edmiaston et al.14 introduced a bedside stroke dysphagia screen named Barnes-Jewish Hospital-Stroke Dysphagia 
Screen. In their study with 225 patients with acute stroke, sensitivity and specificity for detecting aspiration were 
95% and 50%, respectively, showing relatively higher false-positive rates. Leder et al.64 reported clinical predictors 
such as dysphonia, dysarthria, abnormal gag reflex, abnormal volitional cough, cough after swallowing, and voice 
change after swallowing for post-stroke aspiration. Their model’s sensitivity and specificity were 80% and 30% 
for predicting aspiration, respectively, similar to Edmiaston et al.’s. Meanwhile, RLR models in our study showed 

Figure 3.  Feature importance of the optimal model: (a) ridge regression, (b) lasso regression, (c) elastic 
net regression, (d) random forest, (e) extreme gradient boosting, (f) support vector machines, (g) k-nearest 
neighbors, and (h) naïve Bayes. Overall, most machine learning algorithms showed similar feature importance 
results. The modified Rankin scale was the most important variable. Further, days to the VFSS, mental status, 
facial asymmetry, stroke territory, and sex were crucial features for the prediction. MFS Morse Fall scale, mRS 
modified Rankin Scale, VFSS videofluoroscopic swallowing study.
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relatively balanced sensitivity and specificity compared to other models through regularization. Consequently, 
the ML-based aspiration prediction models presented in this study showed similar or slightly better predictive 
values than the previous results of dysphagia screening tools.

This study is significant in providing clinical clues while analyzing both ML and stepwise logistic regression 
models; it comprehensively examined related predictors and presented their serial importance. Our results 
showed that functional level was a significant predictor of aspiration. The modified Rankin scale provides a 
functional evaluation of stroke  severity65. Days to initial VFSS also showed high feature importance; we inferred 
that this feature was an indirect indicator of medical complications or functional level, demonstrating that the 
patient could sit upright for the VFSS. In a previous study, Henke et al.66 demonstrated stroke severity as a reliable 
and straightforward predictor, consistent with our findings. As reported in previous studies, facial asymmetry 
was also a significant predictor of  aspiration67,68.

Some clinical findings showed notable results. This study showed that the dyslipidemia rate was higher in the 
non-aspiration group. In a previous study, Scheitz et al.69 reported that statin users’ risk of post-stroke pneumo-
nia was reduced; the results of this study supported their findings, which might be related to the intravascular 
anti-inflammatory effect of  statin70. However, in both groups, the frequency of dyslipidemia was less than 10%; 
therefore, it needs to be cautious for this interpretation. Meanwhile, in the logistic regression model of this 
study, it was confirmed that the higher the systolic blood pressure and the lower the diastolic blood pressure, 
the higher the risk of aspiration. These results were inferred because extraordinarily high or low blood pressure 
on admission was associated with worse stroke  severity71. However, clinical findings such as older age, male, 
previous cerebrovascular disease, stroke in the posterior circulation, and altered mental status were also factors 
related to stroke severity. They were associated with a significantly high aspiration risk in this study, consistent 
with previous studies’  results72,73.

We designated the AUROC and F1 measures as metrics because of an imbalance in the dependent variable. A 
linear model slightly outperformed the ensembled algorithms and other classical classifiers utilized in our study. 
The best model in terms of AUROC was ridge regression. Meanwhile, the elastic net regression method, which 
combines ridge and lasso regularization for the linear  model74, showed the highest sensitivity among other ML 
models. However, the ensembled algorithms, such as RF and XGB, showed low sensitivity with very high specific-
ity. Thus, the ability to discriminate negative cases was high, somewhat inconsistent with the original purpose of 
screening aspiration. These results demonstrated that approaches using ML sometimes easily over-rely on some 
features, resulting in overfitting, which leads to non-generalizable  results75. We also infer from these results that 
regularization methods more effectively reduced overfitting than ensemble algorithms in our  dataset76. Appro-
priate regularization techniques are crucial in deriving generalizable and applicable results from ML models.

The study has several limitations. First, it was a single-center, retrospective study. Due to the study’s retrospec-
tive nature, some variables related to dysphagia, such as sensory change of throat, were not included as covariates 

Table 3.  Final logistic regression model for identifying risk factors of aspiration after acute stroke. mRS 
modified Rankin scale, MS mental status, OR odds ratio, VFSS videofluoroscopic swallowing study.

Variables Adjusted OR 95% Confidence Interval p-value

Age 1.03 1.01–1.04  < 0.001

Male 2.19 1.71–2.81  < 0.001

Body mass index 0.96 0.93–1.00 0.039

Previous cerebrovascular accidents 1.48 1.13–1.94 0.004

Diabetes 1.29 1.00–1.68 0.053

Cerebral neurogenerative diseases 0.62 0.38–1.01 0.054

Initial systolic blood pressure 1.11 1.05–1.18  < 0.001

Initial diastolic blood pressure 0.87 0.79–0.96 0.007

Days to initial VFSS 1.02 1.01–1.04 0.002

Stroke territory

 Anterior circulation Reference

 Posterior circulation 1.59 1.21–2.09 0.001

 Combined 0.81 0.50–1.31 0.388

Lesion side

 Right Reference

 Left 0.75 0.59–0.96 0.023

 Bilateral 0.82 0.52–1.31 0.394

Ischemic stroke 0.85 0.63–1.16 0.311

Altered MS at admission 2.61 1.89–3.60  < 0.001

Aphasia 1.95 1.35–2.81  < 0.001

Facial symmetry 0.49 0.39–0.62  < 0.001

Initial mRS 1.63 1.47–1.80  < 0.001

Blood urea nitrogen 0.99 0.97–1.00 0.120
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because they could not be consistently evaluated in patients with acute stroke. Moreover, the generalizability 
of our results is not verified and requires further validation through multicenter studies. Second, we attempted 
to create an ML model that can be widely applied to all patients with acute stroke. However, stroke is a broad-
spectrum disease entity. If subgroup analyses may yield better model performance. Thus, future studies should 
establish more specific prediction models for certain stroke patients. These models can be helpful for patients 
with mild stroke to avoid unnecessary radiation exposure as well as enable quick decisions to prevent aspiration 
pneumonia in patients with severe stroke before a VFSS study. Third, we could not present longitudinal findings 
regarding the prediction of long-term outcomes; this limitation was primarily related to the hospital setting and 
rehabilitation treatment delivery system of South Korea. We observed that many patients were transferred to 
rehabilitation or convalescent hospitals after acute care, and some were not reliably followed long-term. Finally, 
we could only compare predictive values between ML algorithms and GUSS among several existing dysphagia 
screening tools. Future studies should verify the validity of our proposed ML models for other screening tools.

In conclusion, this study demonstrated that an ML-based screening model was not inferior to the GUSS in 
predicting aspiration in hospitalized patients with acute stroke. The RLRs showed better performance among the 
evaluated ML algorithms. Our findings suggest that ML prediction models can be efficient and straightforward, 
reducing the time and efforts of medical staff for dysphagia screening in patients with acute stroke. Furthermore, 
ML prediction models are objective and can overcome the limitations of previous dysphagia screening tools. 
However, additional validation is required, and specific ML models for each subgroup based on stroke severity 
and subtype are necessary for clinical applications.

Data availability
All data generated or analysed during this study are included in its supplementary information files.
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