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From language models 
to large‑scale food and biomedical 
knowledge graphs
Gjorgjina Cenikj 1,2*, Lidija Strojnik 1, Risto Angelski 3, Nives Ogrinc 1, 
Barbara Koroušić Seljak 1 & Tome Eftimov 1

Knowledge about the interactions between dietary and biomedical factors is scattered throughout 
uncountable research articles in an unstructured form (e.g., text, images, etc.) and requires 
automatic structuring so that it can be provided to medical professionals in a suitable format. Various 
biomedical knowledge graphs exist, however, they require further extension with relations between 
food and biomedical entities. In this study, we evaluate the performance of three state‑of‑the‑art 
relation‑mining pipelines (FooDis, FoodChem and ChemDis) which extract relations between food, 
chemical and disease entities from textual data. We perform two case studies, where relations were 
automatically extracted by the pipelines and validated by domain experts. The results show that 
the pipelines can extract relations with an average precision around 70%, making new discoveries 
available to domain experts with reduced human effort, since the domain experts should only 
evaluate the results, instead of finding, and reading all new scientific papers.

Noncommunicable chronic diseases (NCDs) account for more than 70% of deaths worldwide. Cardiovascular 
diseases account for most NCD deaths (17.9 M people annually), followed by cancers (9.3 M), respiratory diseases 
(4.1 M), and diabetes mellitus (1.5 M)1,2. As the leading cause of death globally, most of the deaths that happen 
from cardiovascular diseases (CVDs) are due to heart attacks and  strokes3. A lot of scientific evidence indicates 
that between the most important risk factors for heart disease and stroke are unhealthy diet, alcohol and tobacco 
consumption, and physical activity. Among all the factors that contribute to the development and progression 
of CVDs, diet is one of the major  ones4,5. It has been shown that eating more fruit and vegetables and decreasing 
the salt in diet reduce the risk of CVDs.

Further, although there is a lot of knowledge about dietary effects on CVDs and broadly on NCDs, there are 
still many unresolved research questions. Such questions are not easy to be answered because food and nutrition 
in relation to diseases are described by various concepts and entities that interact in various  ways6. For instance, 
there are many foods (described by food entities) made up of components (described by chemical entities)7 
that may fight NCDs (described by disease entities) while others can be  harmful8. These impacts are dependent 
on the combination of foods and their chemicals, the state of the food (e.g., raw/cooked, fresh/molded, etc.), 
the cooking method (e.g., steamed, grilled, baked, etc.), the health status of the person consuming food (e.g., 
healthy, ill, allergic) and  others9. As there are many combinations of these factors, collecting and structuring the 
relations between all the concepts and entities describing the impacts of food on NCDs is a very complex work 
exceeding human capabilities. And taking into account the fact that research in this field is still progressing, 
the related knowledge evolves on a daily basis, making it challenging to follow. Such knowledge further opens 
possibilities to use Artificial Intelligence (AI) methods to aid in the early detection (prediction) of NCDs as well 
as their progression. However, before developing predictive AI methods, unstructured (textual) data available 
in cohorts, electronic health records (EHRs), registries, and scientific and grey literature needs to be structured 
and normalized/linked to domain semantic resources and further included in knowledge bases (KBs) which can 
be utilized for predictive modeling and integrated into health systems which will make the information easily 
accessible to medical professionals. To this end, user interfaces play a critical role in ensuring that healthcare 
professionals can effectively utilize AI systems to provide high-quality care to their  patients10.

A Knowledge Graph (KG) is a type of KB, where knowledge is stored in the form of entities characterized 
by some attributes, and relations connecting the entities. Conventional methods of KG construction can be 
broadly categorized into manual, and automatic, or semi-automatic methods. The benefits of manual creation 
and curation approaches are their high precision and  reliability11, however, due to the high amount of effort 
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required by domain experts, they also have lower recall rates, poor scalability and time  efficiency12. Automatic 
and semi-automatic KG construction is enabled by text-mining methods, which are able to extract entities and 
relations which can be structured as a KG.

In the biomedical domain, automatic and semi-automatic structuring of textual data in the form of KGs is an 
active research area, which typically involves the use of Information Extraction (IE) pipelines consisting of mul-
tiple components. These components include Named Entity Recognition (NER) methods, which extract specific 
types of entities from raw text, Named Entity Linking (NEL) methods, whose goal is to map entity mentions to 
entries in a given KB, and Relation Extraction (RE) methods, which aim to automatically detect relations between 
 entities13. Over the past 20 years, significant progress has been made in creating multiple IE pipelines for the 
biomedical domain. These pipelines primarily concentrate on identifying genotype and phenotype entities, as 
well as health-related entities such as diseases, treatments, drugs, and others. To allow their development, several 
collaborative workshops, as part of conference events like  BioNLP14,  BioCreative15,  i2b216, and  DDIExtraction17, 
have been arranged to provide semantic resources (e.g., annotated corpora, ontologies) that will further allow 
the developing of biomedical IE pipelines. The efforts done in the biomedical domain are focused entirely on 
biomedical concepts and not investigating relations with food concepts. On the other side, most of the efforts 
done in IE in the food domain are focused on relations that do not involve health/biomedical concepts, and even 
more, are developed using static data that is already presented in some other resources (e.g., datasets, controlled 
vocabularies, ontologies), so they need to be updated when new data is available in these resources. In addi-
tion, only a few studies have concentrated on traditional text mining techniques that employ sentiment analysis 
through manual feature  extraction18–20. Despite this, the food and nutrition domain is low-resourced in semantic 
data resources compared to the biomedical domain. There is a lack of annotated food-disease relation corpora 
that serve as a benchmark and help develop IE pipelines. Even more, food semantic resources such as  FoodOn21, 
 FoodEx222, are still under development (i.e., frequently updating them with new data) to support IE activities.

To bridge the gap between the food and biomedical domains, we introduce an approach that uses language 
models to extract the relations that exist between food, chemical, and disease entities and further normalize them to 
allow the creation of a KG. In our case, we evaluate the approach to trace the new knowledge about CVDs and milk 
products. The benefit of our approach is that we are not using the information that already exists in some static 
resources (e.g., databases), but try to catch all relations from textual data related to CVDs and milk products (milk 
was selected as a case study since it is rich in nutrients, a resource of proteins, vitamins, minerals, and fatty acids, 
which have an important impact on human metabolism and health) available in scientific abstracts, where new 
findings are presented. This makes the methodology easy to apply on new corpora of scientific abstracts, where 
the results of the pipelines can point out areas where the KG should be updated with new entities or relations.

Related work
A recent survey on knowledge-based biomedical data  science23 highlights the application of KGs in the bio-
medical and clinical domain in improving the retrieval of information from large sources of clinical data or 
 literature24–26, providing evidence to support phenomena observed in  data27,28, using link prediction to com-
plete missing information and hypothesize previously unknown  relationships29, and improving patient data 
 representation30–32. In the biomedical domain, IE pipelines have been developed for the extraction of drug-disease 
 relations33,34 and disease-symptom  relations35 from biomedical literature. A Coronavirus KG has been constructed 
by merging the Analytical Graph, with a collection of published scientific  articles36. A PubMed KG has been 
constructed by extracting biomedical entities from PubMed abstracts and enriching it with funding, author, and 
affiliation  data37. A recent  work12 proposes the construction of domain-specific KGs with minimal supervision, 
which is able to derive open-ended relations from unstructured biomedical articles without the need of extensive 
labeling. While this study is largely focused on data integration, and only uses NER to extract the biomedical 
entities from the literature, our study goes a step further in the RE task, to extract the relations between the enti-
ties based on the text in the scientific abstracts, so that new relations can be added between entities in existing 
resources. Apart from using biomedical scientific papers as a source of information, EHRs have also been used 
for extracting disease-symptom  relations38 and constructing a medical KG with nine biomedical entity  types39.

In the food domain, FoodKG has been recently developed for representing food recipe data including their 
ingredients and nutritional  content40 by enriching a large amount of recipe data from Recipe1M dataset with the 
nutritional information available from USDA’s National Nutrient Database for Standard Reference represented 
with  FoodOn21 semantic meta-data. Additionally,  FoodKG41 was developed by using the existing text and graph 
embedding techniques applied to a controlled vocabulary called AGROVOC, to model the relations that exist 
in a plethora of datasets related to food, energy and water.

Results
To trace the knowledge about food, chemical, and disease interactions, we have shown the creation of a KG cen-
tered around the impact of different foods and chemicals on CVDs, and the other targeting the composition of 
the selected food item “milk”, as well as its beneficial and detrimental effects on different NCDs. For this purpose, 
three NLP pipelines, called FooDis, FoodChem, and ChemDis, were combined to extract “food-disease”, “food-
chemical”, and “chemical-disease” relations from textual data. Semantically, we distinguish two relations between 
food-disease and chemical-disease entity pairs, which are “treat” and “cause”. In the case of food-chemical entity 
pairs, we extracted only one relation which is “contains”. All three pipelines were executed twice, on two different 
corpora, one that was collected for CVDs and one collected for milk products. In both use cases, the searched 
keywords were selected by domain experts. In the CVDs case, a more general keyword was selected “heart disease 
food”, since we would like to retrieve broader aspects between different cardiovascular events and food products. 
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This ends up with 9984 abstracts. In the milk use case, three keywords were selected by the domain experts i.e., 
“milk composition”, “milk disease”, and “milk health benefits”.

Table 1a presents the number of abstracts that were retrieved and used in the analysis for both use cases, 
together with the keywords used to retrieve them, while Table 1b presents the number of relations that were 
extracted for both use cases.

Figure 1a features the KG constructed by running the three pipelines for the two application use cases. The 
same nodes are grouped together by normalizing the extracted food, chemical, and disease entities.

To go into more detail how the KG is constructed, in Fig. 1b we present an example using the relations 
extracted for the “heart failure” disease entity. The green nodes, “meat products”, “salt” and “dietary fish oil” 
represent the food entities for which the FooDis pipeline extracted a relation with the “heart failure” disease 
entity, meaning that they have some effect on its development or treatment. In particular, the red edges connect-
ing the “heart failure” disease entity and the food entities “meat products”, and “salt” indicate that the pipeline 
identified a “cause” relation, i.e. meat products, and salt can contribute to the occurrence of heart failure. On the 
other hand, the green edge between the “dietary fish oil” entity and the “heart failure” disease entity indicates 
a “treat” relation, i.e. the pipeline identified that dietary fish oil has a beneficial effect to heart failure. Similarly, 
the ChemDis pipeline identified that the chemical entities “DHA”, “ester”, “acid, n-3 fatty”, “antidiabetics cana-
gliflozin”, “omega-3 fatty acid” and “calcium” can be used for treating “heart failure”, while the chemical entities 
“(-)-cocaine” and “vitamin E” can contribute to the development of “heart failure”. Table 2 presents the supporting 
sentences from scientific abstracts from which the relations were extracted and further used for constructing the 
graph presented in Fig. 1b. Next, such graphs are connected based on the same entities to link the information 
from different abstracts. Further, to validate the extracted information, domain experts were involved to check 
the extracted relations for both use cases.

Use case: cardiovascular diseases. For the CVDs use case, a highly-skilled domain expert (an MD with 
more than 40 years of working experience in cardiology) evaluated the extractions from the three pipelines. 
The relations that were evaluated are extracted after the “Final relation determination” step from the FooDis, 
FoodChem and ChemDis pipelines. All three pipelines utilized here follow the same workflow. Each extracted 
relation is determined by all sentences where information about it is presented. We called them “supporting 
sentences”. The sentences can be from the same or different abstracts, since information about the same relation 
can be investigated in different papers.

Domain expert evaluation. Each pipeline provides the result as a 6-tuple i.e., (name of the first entity, named of 
the second entity, synonyms for the first entity, synonyms for the second entity, relation, supporting sentences), 
which is further evaluated by the domain expert. The domain expert was asked to assign a binary indicator of the 
truthfulness of the relation. The pipelines were then evaluated by taking the mean of the correctness indicators 
assigned by the annotator for each relation and pipeline, which we refer to as the precision in the remainder of 
this section. In particular, if a pipeline extracted three relations, and the expert marked two of these as correct 
(binary indicators 1,0,1), the reported precision would be 0.66.

Figure 2a presents the number of relations extracted by each of the pipelines for the CVDs study, and the 
number of relations that the domain expert evaluated. We need to point out here that all extracted relations were 
provided to the domain expert, however, the evaluation has been performed only on those relations for which the 
domain expert has expert knowledge. Because of this, the human evaluation process covers 44% of the “contains” 

Table 1.  Number of processed paper abstracts and number of extracted relations for each case study.

Case study Keyword Number of abstracts

Number of paper abstracts processed for each search keyword

 Heart disease Heart disease food 9984

 Milk

Milk composition 13,500

Milk disease 17,268

Milk health benefits 2343

Case study IE pipeline Relation Number of relations extracted

Number of relations extracted by each pipeline in each case study

 Heart disease

FooDis
Cause 516

Treat 699

ChemDis
Cause 635

Treat 1079

FoodChem Contains 981

 Milk

FooDis
Cause 1184

Treat 789

ChemDis
Cause 670

Treat 597

FoodChem Contains 1875
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relations extracted by the FoodChem pipeline, 33% of the “treat” relations extracted by the FooDis pipeline, 26% 
of the “cause” relations extracted by the FooDis pipeline, 26% of the “cause” relations extracted by the ChemDis 
pipeline, and 23% of the “treat” relations extracted by the ChemDis pipeline.

(a) The entire knowledge graph containing all extracted relations

(b) Ego network of the "heart failure" node

Figure 1.  Knowledge graph constructed using the FooDis, FoodChem and ChemDis pipelines. The nodes 
in green represent the food entities, the nodes in blue represent the chemical entities, and the nodes in red 
represent the disease entities. The red, green, and blue edges represent the “cause”, “treat” and “contains” 
relations, respectively. The figures have been generated using the pyvis python  library42, version 0.1.8.2.
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The mean precision of each of the pipelines (FooDis, ChemDis, and FoodChem) in the CVDs use case is 
presented in Fig. 2b. From it, the FooDis pipeline achieves the highest precision of 0.79 for the “cause” and 0.78 
for the “treat” relation. The lowest precision of 0.68 is achieved by the ChemDis pipeline for the extraction of 
the “cause” relation.

Since the three pipelines extract a relation based on supporting sentences, in the Supplementary Materials, 
we have presented the distribution of the number of relations versus their number of supporting sentences.

All of the pipelines extract more than 74% of the relations based on a single supporting sentence. The Chem-
Dis and FoodChem pipelines can find a larger number of supporting sentences for some relations compared 
to the FooDis pipeline. In particular, the ChemDis pipeline can find up to five supporting sentences to identify 
“cause” relations and up to 14 supporting sentences to identify “treat” relations, while the FooDis pipeline uses 
up to three, and four supporting sentences for the “cause” and “treat” relations, respectively.

Next, to see how the mean precision is affected by the number of supporting sentences, we analyze for each 
semantic relation separately. The results are presented in Supplementary Materials. From the conducted analysis, 
we can conclude that the mean precision is proportional to the number of supporting sentences. Almost for 
all relations, a precision of 1.00 is reached when the number of supporting relations is sufficiently high. This 
indicates that when the number of supporting sentences for a relation increases, there is an agreement between 
the domain expert validation and the result provided by our pipelines, with some exceptions listed in the Sup-
plementary Materials.

Error analysis. Next, we analyze the types of false discoveries produced by FooDis, FoodChem, and ChemDis 
pipelines.

Figure 3 features the relations with the highest number of supporting sentences for four chemical entities: 
“carbohydrates”, “fatty acid”, “sodium” and “vitamin d”. Here the results for the selected chemical entity from 
the two pipelines that deal with chemical entities (i.e., ChemDis and FoodChem) are presented. The green bars 
refer to the number of sentences in which the relation was correctly identified, while the purple plots refer to 
the number of false positive sentences for that relation, i.e. sentences where the relation was identified, however, 
it was marked as incorrect by the experts.

For the “carbohydrates” entity, the ChemDis pipeline produced the false positive relation “carbohydrates-
treat-cardiomyopathy” when the supporting sentences suggested that a low-carbohydrate diet is recommended 
for treating cardiomyopathy. In this case, the pipeline fails to identify that a reduction of the chemical entity is 
required to treat the disease. In addition, the FoodChem pipeline produces a false discovered relation “bulk-
contains-carbohydrates”, when the supporting sentence was saying that these two entities are contained in another 
entity, “dry beans”. For the “fatty acid” chemical entity, the ChemDis pipeline produced the false positive rela-
tion “fatty acid-cause-dysfunction endothelial”, when the supporting sentence was saying that increased fatty 
acid levels and endothelial dysfunction were contributing to the development of another disease, “sepsis”. The 
FoodChem pipeline produced the false entities, “wine-contains-fatty acid” and “acid fatty trans-contains-fatty 
acid”. In the first case, the two entities were co-occurring in the supporting sentence without any relation, while 
in the second one, the sentence was saying that trans fatty acids are a subcategory of fatty acids. In the case of 

Table 2.  Supporting sentences for the relations of entity “heart failure” to different food and chemical entities.

Food/chemical name Relation Supporting sentences

(−)-Cocaine Cause 1) Additionally, cocaine use has been associated with left ventricular hypertrophy, myocarditis, and dilated cardiomyopathy, which can lead 
to heart failure if drug use is continued

Vitamin E Cause 1) Yet, high doses of supplemental vitamin E have been associated with an elevated risk of heart failure and all-cause mortality. 2) Vitamin 
E supplementation might be associated with an increase in total mortality, heart failure, and hemorrhagic stroke

Salt Cause 1) In patients who already have heart failure, a high salt intake aggravates the retention of salt and water, thereby exacerbating heart failure 
symptoms and progression of the disease

Meat products Cause 1) Thermal processing of meat products generates cardiotoxic compounds capable of inducing heart failure in both humans and laboratory 
animals

Acid, n-3 fatty Treat

1) Evidence from epidemiological, clinical and experimental studies indicates a beneficial role of the omega-3 polyunsaturated fatty acids 
(omega-3 PUFA) found in fish oils in the prevention and management of heart failure. 2) This review summarise the data related to use 
of omega-3 PUFA supplementation as a potential treatment for heart failure and discussed possible mechanism of action. 3) The 2017 
American Heart Association science advisory on omega-3 fatty acid supplements suggested that it is reasonable to use omega-3 fatty acids 
for secondary prevention in people with coronary heart disease and heart failure

Antidiabetics canagliflozin Treat 1) It has been concluded that canagliflozin, dapagliflozin, empagliflozin, or ertugliflozin can be recommended for preventing hospitaliza-
tion associated with heart failure in patients with type 2 diabetes and established cardiovascular disease or those at high cardiovascular risk

DHA Treat 1) Intake of fish oil containing docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) prevents heart failure; however, the mecha-
nisms are unclear

Ester Treat 1) Because L-carnitine and its esters help reduce oxidative stress, they have been proposed as a treatment for many conditions, i.e. heart 
failure, angina and weight loss

Omega-3 fatty acid Treat 1) The 2017 American Heart Association science advisory on omega-3 fatty acid supplements suggested that it is reasonable to use omega-3 
fatty acids for secondary prevention in people with coronary heart disease and heart failure

Calcium Treat 1) Here we review the key observations, controversies, and discoveries that have led to the development of novel compounds targeting the 
RyR2/calcium release channel for treating heart failure and for preventing lethal arrhythmias

Dietary fish oil Treat 1) Intake of fish oil containing docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) prevents heart failure; however, the mecha-
nisms are unclear
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the “sodium” chemical entity, most of the sentences extracted by the ChemDis pipeline express the correct rela-
tion, however, sodium is incorrectly extracted as a partial match of the entity “Sodium-glucose co-transporter 2 
inhibitors (SGLT2is)”. In the case of “vitamin d”, all of the false positive “cause” relations extracted by the Chem-
Dis pipeline are due to the pipeline not recognizing that the deficiency of the vitamin was causing the diseases.

Figure 4 features the top 10 relations with a maximal number of supporting sentences for three disease entities. 
Here, we present the results from pipelines that are dealing with disease entities (i.e., FooDis and ChemDis). For 
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Figure 2.  Number of extracted and evaluated relations and mean precision of each pipeline for the heart 
disease study. The plots have been generated using the plotly python  library43, version 5.7.0.
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the “general cardiovascular disorders” entity, the pipelines extracted the relations “dietary vegetable-cause-general 
cardiovascular disorders”, “acid, saturated fatty-treat-general cardiovascular disorders”, “acid fatty polyunsatu-
rated-cause-general cardiovascular disorders”, “cholesterol-treat-general cardiovascular disorders” due to the 

0 1 2
Number of supporting sentences

cardiovascular sy...
obesity

obesities, visceral
hypertension

fatty infiltratio...
dyslipidaemia

dysfunction endot...
3-10 heart diseas...

body fails to res...
fatty liver, nona...

Pipeline: ChemDis
Relation: cause

0 2
Number of supporting sentences

hyperlipidemia
coronary artery d...

cardiomyopathy
dehydration
weight loss

coronary heart di...

Pipeline: ChemDis
Relation: treat

0.0 0.5 1.0
Number of supporting sentences

potato
bulk

Pipeline: FoodChem
Relation: contains

correct
incorrect

Relations with maximal support for entity: carbohydrates

Figure 3.  Top 10 “cause”, “treat”, and “contains” relations with maximum number of supporting sentences for 
four chemical entities: “carbohydrates”, “fatty acid”, “sodium” and “vitamin d”. The entities in the rows of the 
ChemDis pipeline are diseases caused or treated by the chemical, while the entities in the rows of the FoodChem 
pipeline are food entities in which the chemical is contained.
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fact that the pipelines were not able to recognize that the sentences were referring to the reduction of these food 
or chemical entities affecting the disease development or treatment of the general cardiovascular disorders. This 
is also the reason for false positive relations extraction for the other two disease entities featured in the figure.

Use case: milk. For the use case related to the composition and health effects of milk, two highly-skilled 
domain experts evaluated the results from all three pipelines: a chemist and a food and nutritional scientist.

Domain expert evaluation. From the 33,111 processed abstracts related to the milk case study, the three pipe-
lines extracted a total of 6792 relations, from which 5139 were evaluated by the two domain experts. We need to 
point out again that all extracted relations were provided to the domain experts, however, they evaluated only 
those relations for which they have domain expertise. Figure 5a features the number of relations extracted by 
each pipeline for the milk case study, and the number of relations the experts evaluated. The highest number of 
evaluated relations were the “contains” relations extracted by the FoodChem pipeline, and the experts were able 
to evaluate 96% of them (2849 out of 2754). The experts also evaluated 73% of the “treat” and 78% of the “cause” 
relations produced by the FooDis, 34% of the “cause” relations, and 35% of the “treat” relations produced by the 
ChemDis pipeline.

The mean precision for each of the five semantic relations for both domain experts is presented in Fig. 5b 
separately. In addition, we have also presented the mean precision for each type of relation by averaging the 
precision across both domain experts. From the figure, we can see that the first domain expert, who evaluated 
the relations which were supported by a single sentence, identified more incorrect relations than the second 
domain expert, who evaluated the relations supported by multiple sentences.

The overall mean precision for each of the five relations averaged across both domain experts are as follows:

Figure 4.  Top 10 “cause” and “treat” relations with maximal number of supporting sentences related to three 
disease entities: “general cardiovascular disorders”, “diabetes”, and “obesity”. The entities listed in the rows of 
the FooDis pipeline are food entities, while the entities listed in the rows of the ChemDis pipeline are chemical 
entities, that cause or treat the specified disease.
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• 0.51 for the “cause” relation extracted by the ChemDis pipeline,
• 0.79 for the “treat” relation extracted by the ChemDis pipeline,
• 0.65 for the “cause” relation extracted by the FooDis pipeline,
• 0.70 for the “treat” relation extracted by the FooDis pipeline,
• 0.70 for the “contains” relation extracted by the FoodChem pipeline.

(a) Number of extracted and evaluated relations per each pipeline for the milk study

(b) Mean precision of the extracted relations for each of the reviewers (in black and green),
as well as overall mean precision (purple), for each pipeline for the milk study.

Figure 5.  Number of extracted and evaluated relations and mean precision of each pipeline for the milk study. 
The plots have been generated using the plotly python  library43, version 5.7.0.
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The error analysis for the milk case study followed the same procedure as for the heart disease study and resulted 
in similar findings, presented in the Supplementary Materials.

Discussion
Going through the two use cases, it is obvious that the proposed methodology can be used to structure the new 
knowledge that is coming rapidly with new scientifically published papers. On average, the precision of each 
extracted relation is around 70%. This indicates that the pipelines allow us to trace the knowledge and make it 
available to domain experts. This reduces the time required by the domain experts, since they should only evalu-
ate the results, instead of finding and reading all new papers.

Even though the pipelines can contribute to the automation of the KG construction process and reduce the 
efforts required by the experts in structuring scientific text, there are still opportunities for further improvements. 
A large portion of the incorrectly extracted relations is due to the partial extraction of entities, especially by the 
food NER methods, which is a consequence of the simple dictionary-based approach. We want to point out here 
that in initial experiments, we also considered other food NER methods that are corpus-based and involve the 
training of a ML model on text annotated with food entities. At that time,  BuTTER44 and  FoodNER45 were the 
only corpus-based food NER models. However, because these models were trained on food recipe text, which 
is very different from scientific text both in the contents and the writing style, the models failed to generalize 
to scientific text and did not produce satisfactory results. As far as the chemical and disease NER models are 
concerned, we chose to use the SABER method, since it performs both the NER and NEL tasks and is reported 
to have good predictive performance.

Further extension of the pipelines is needed to capture quantities, i.e. whether a surplus or a deficit of the 
entities in question lead to the development or treatment of the diseases. Some of the relations are false positives 
due to mistakes made by the RE models, for instance, where a relation was extracted between entities that simply 
co-occur in a sentence without any relation, or the relation is expressed in the sentence, but between different 
entities. The RE models produce such errors, especially in the case where a single sentence contains a lot of enti-
ties or expresses multiple relations. This is likely due to the RE models extracting the “cause” and “treat” relations 
being trained using transfer learning, and the RE models extracting the “contains” relation being trained using 
small amounts of manually annotated data. The annotations produced as part of this study can be used to re-train 
the RE models using larger quantities of high-quality data.

From the point of view of assessing the importance of milk in our diet, it is crucial to assess the large amount 
of data available to obtain consistent outcomes and to evaluate the advantages and disadvantages of milk con-
sumption. The presented approach can provide evidence that can be used to develop or renew dietary and health 
guidelines for relevant decision-makers.

Methods
In this study, three relation mining pipelines (FooDis, FoodChem and ChemDis) are used to extract relations 
between food, chemical, and disease entities, from the raw text of abstracts of biomedical scientific textual data.

The pipelines follow a common template, which is presented in Fig. 6. The initial step is querying PubMed and 
retrieving abstracts of scientific papers. Different Named Entity Recognition (NER) and Named Entity Linking 
(NEL) methods are applied for the extraction of food, chemical, and disease entities, which are linked to existing 
resources in the biomedical and food domain.

Next, sentences that express facts or analysis of the research and contain at least one pair of different entities 
are extracted from the abstracts. Abstracts typically include the objective, hypothesis, methodology, and main 
findings of the research. However, not all of these pieces of information are reliable sources for drawing conclu-
sions, since if the authors’ hypothesis was untrue, and we were to extract information from the sentence that 
describes that hypothesis, our findings would be incorrect. For this reason, it is necessary to identify sentences 
which describe the objective, hypothesis, or methodology of the research and only extract relations from the 
sentences which describe the research findings or previously known facts.

The sentences are annotated for the existence of a “cause”, “treat” or “contains” relation, and the entity pairs 
are connected with one of these relations on the basis of the gathered evidence.

Named entity recognition. Food named entity recognition. Even though corpus-based methods have 
already been developed for the food  domain44,45, these methods are trained on the FoodBase  corpus46, which 
contains recipe texts. As was observed in our experiments, when applied on scientific text, the corpus-based 
methods have poor generalization, so in order to extract the food entities, we opted for a simpler, dictionary-
based approach which uses a dictionary of food names extracted from the Unified Medical Language System 
(UMLS) Metathesaurus, which is not dependent on the data used for training the model. For this purpose, we 
use the MRSTY and MRCONSO tables from the UMLS Rich Release Format  files47. The construction of the 
dictionary involves two steps: extracting the identifiers of all concepts with the semantic type “food” from the 
MRSTY table, and extracting all of the names used to refer to each of the food concepts from the MRCONSO 
table. In this dictionary, we have a total of 36,836 instances. By matching the words in the abstracts with the 
names of food entities defined in the dictionary extracted from the UMLS, we are also able to perform the NEL 
task, i.e. link the extracted food entities with their identifiers in the UMLS, and further find their identifiers in 
other KBs to which the UMLS identifiers are linked.

Disease named entity recognition. The Sequence Annotator for Biomedical Entities and Relations (SABER)48 is 
a tool providing several pre-trained models for biomedical NER and NEL, using a neural network architecture 
consisting of Bidirectional Long Short-Term Memory and Conditional Random Fields. We use the DISO pre-



11

Vol.:(0123456789)

Scientific Reports |         (2023) 13:7815  | https://doi.org/10.1038/s41598-023-34981-4

www.nature.com/scientificreports/

trained model to extract disease entities, which can be “Acquired Abnormality”, “Anatomical Abnormality”, “Cell 
or Molecular Dysfunction”, “Congenital Abnormality”, “Pathologic Function”, “Disease or Syndrome”, “Mental or 
Behavioral Dysfunction”, “Neoplastic Process”, “Sign or Symptom”. Apart from identifying these entities, SABER 
can also perform NEL, i.e. link the extracted entities to identifiers in the Disease  Ontology49.

Chemical named entity recognition. We use the pre-trained model CHED from the  SABER48 tool to extract 
chemical entities which can be mentioned in the text using common and trademark names, abbreviations, 
molecular formulas, chemical database identifiers, and names defined in the nomenclature of the International 
Union of Pure and Applied Chemistry. SABER is also capable of linking the extracted chemical entities to the 
PubChem  database50.

Relation extraction. SAFFRON relation extraction model. SAFFRON51 is a RE model which employs 
transfer learning to identify “cause” or “treat” relations.  BERT52,  RoBERTa53 and  BioBERT54 models are trained 
on data that is annotated for the existence of “cause” and “treat” relations between different types of biomedi-
cal entities in the  CrowdTruth55–57, Adverse Drug  Events58 and the FoodDisease  datasets59. We choose to use 
the Single Sequence Classifier (SSC) models introduced  in51, which are trained by fine-tuning BioBERT and 
RoBERTa models to perform the RE task on the CrowdTruth and FoodDisease datasets, since these datasets are 
annotated for the existence of both the “cause” and the “treat” relation, unlike the models trained on the Adverse 
Drug Events dataset, which can only identify the “cause” relation. The occurrences of the biomedical entities in 
each annotated sentence are masked to prevent the models from learning relations between specific entities and 
teach them to instead recognize relations based on the context words used to express the relation, so they can 
successfully generalize to the task of recognizing the relations, regardless of the type of entities between which 
they occur. Each model outputs a binary indicator of the existence of a “cause” or “treat” relation.

The SAFFRON models are applied to each sentence that contains 2 entities of the required type (at least 1 
food and 1 disease entity, or at least 1 food and 1 chemical entity), and expresses a “Fact” or “Analysis” of the 
research article. In particular, the 4 models (BioBERT trained on the FoodDisease dataset, RoBERTa trained on 
the FoodDisease dataset, BioBERT trained on the CrowdTruth dataset, RoBERTa trained on the CrowdTruth 
dataset) are applied for the extraction of each relation, “cause” or “treat”. A voting strategy is used to combine 
the binary predictions of the 8 models. A “cause” relation is assigned if at least 3 out of the 4 models which are 
trained to extract this relation produce a positive prediction, and at most 1 out of the 4 models which are trained 
to predict the “treat” relation produce a positive prediction and vice versa. If this condition is not satisfied for 
any of the “cause” or “treat” relations, the sentence is discarded.

Figure 6.  Overview of the general pipeline template.
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FoodChem relation extraction model. The FoodChem RE  model59 is used to extract the “contains” relations 
between food and chemical entities. For this purpose, 3 transformer-based models (BERT, BioBERT and RoB-
ERTa) are applied on each sentence that contains at least one food and one chemical entity, and expresses a “Fact” 
or “Analysis”. A voting scheme is implemented in such a way that a “contains” relation is assigned to a (food, 
chemical, sentence) triple if at least 2 of the 3 models produce a positive prediction for the existence of the rela-
tion. If less than 2 models produce a positive prediction, the triple is discarded.

Pipelines. The FooDis, FoodChem and ChemDis pipelines follow the same methodological template and 
only differ in the NER and RE methods used to extract the entities and relations.

FooDis pipeline. The FooDis pipeline extracts “cause” and “treat” relations between food and disease entities. 
A dictionary-based NER method using the food names in the Unified Medical Language System (UMLS) is 
applied to extract the food entities from the text of the abstracts. The SABER DISO model is used to extract the 
disease entities.

FoodChem pipeline. The FoodChem pipeline extracts “contains” relations between food and chemical entities. 
The entities are extracted using the corresponding NER methods, and the FoodChem RE model is applied to 
each sentence.

ChemDis pipeline. The ChemDis pipeline extracts “cause” and “treat” relations between chemical and disease 
entities. The pipeline components are identical to the FooDis pipeline, with the exception of the use of a different 
pre-trained SABER model. In the ChemDis pipeline, the SABER CHED model is used to extract chemical enti-
ties, whereas in the FooDis pipeline, the SABER DISO model is used to extract disease entities.

Knowledge graph construction. The three pipelines FooDis, FoodChem and ChemDis produce triples 
in the form of (entity1, relation, entity2). Each entity is further linked to an external KB. Such outputs are natu-
rally suited for the construction of a KG. The constructed KG contains nodes that represent the food, chemical 
and disease concepts from the external KBs, as determined by their unique identifiers. In the case when several 
terms can be used to refer to the same entity (i.e. the terms are synonyms), the terms are grouped by their unique 
identifiers. This means that the relations in which a unique entity is involved are determined based on all of the 
relations identified for its synonyms. In order to make the results more easily interpretable, instead of only using 
the identifiers in the constructed KG, we assign to each entity node one of the synonyms as its name. The edges 
in the constructed KG represent the “cause”, “treat” or “contains” relations.

Conclusions
In this paper, we conduct an evaluation of three Information Extraction pipelines (FooDis, FoodChem and 
ChemDis). The pipelines extract relations between food, chemical, and disease entities from abstracts of scien-
tific papers. Three domain experts evaluated the pipelines for two use cases, the first one being centered around 
cardiovascular diseases, and the second one targeting milk and milk products. This is the first application of the 
three pipelines where the results were evaluated by domain experts. The FoodChem pipeline, extracting “con-
tains” relations between food and chemical entities, achieves a mean precision of 0.70 when aggregated across 
the evaluation of the three experts. The ChemDis pipeline, capturing relations between chemical and disease 
entities, obtains a mean precision of 0.56 for the extraction of the “cause” relation and 0.79 for the “treat” rela-
tion. The FooDis pipeline achieves a mean precision of 0.69 for the extraction of the “cause” relation and 0.73 
for the “treat” relation. The conducted evaluation and the expert consultation revealed potential directions for 
further improvement of the pipelines. The annotated data is also a valuable resource that can be used to retrain 
and improve the RE models.

Data availibility
The relevant data is available at (https:// github. com/ gjorg jinac/ langu age_ models_ to_ bio_ kgs).
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