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An efficient quantum partial 
differential equation solver 
with chebyshev points
Furkan Oz , Omer San  & Kursat Kara *

Differential equations are the foundation of mathematical models representing the universe’s physics. 
Hence, it is significant to solve partial and ordinary differential equations, such as Navier–Stokes, heat 
transfer, convection–diffusion, and wave equations, to model, calculate and simulate the underlying 
complex physical processes. However, it is challenging to solve coupled nonlinear high dimensional 
partial differential equations in classical computers because of the vast amount of required resources 
and time. Quantum computation is one of the most promising methods that enable simulations 
of more complex problems. One solver developed for quantum computers is the quantum partial 
differential equation (PDE) solver, which uses the quantum amplitude estimation algorithm (QAEA). 
This paper proposes an efficient implementation of the QAEA by utilizing Chebyshev points for 
numerical integration to design robust quantum PDE solvers. A generic ordinary differential equation, 
a heat equation, and a convection–diffusion equation are solved. The solutions are compared with the 
available data to demonstrate the effectiveness of the proposed approach. We show that the proposed 
implementation provides a two-order accuracy increase with a significant reduction in solution time.

Today, computational sciences have become indispensable. The advancement of high-performance comput-
ing infrastructure has triggered new questions, and as a result, computational sciences have led to numerous 
new discoveries. Designed in the early 2000s as a game engine accelerator, Graphical Processing Units (GPUs) 
have quickly become one of the most important tools in computational science, driven by high performance 
in artificial intelligence (AI) and machine learning (ML) applications. Today, research labs, funding agencies, 
startups, and big tech companies are starting to agree that quantum computers could be the next breakthrough 
in computational science (e.g., see a consensus study report by the National Academies of Science, Engineering, 
and Medicine1).

Many researchers from various fields are considering how to transfer algorithms that are frequently used in 
classical computers today to quantum computing. To advance the field of quantum computing, it is crucial to 
answer questions like what kinds of structures or algorithms can be more effective in quantum computing and 
to which parts of a complicated computational process quantum computing can be applied. For example, on the 
one hand, we are asking how to adapt widely used algorithms such as FFT, multigrid, or other iterative solvers to 
quantum computing2–4, on the other hand, there is a new interest in how to implement the fastest optimization 
methods and numerical linear algebra applications5,6. Also, in this emerging field, developing a workforce that 
understands the fundamentals of quantum computing has a very important role. For example, some algorithms 
that have been idle over time that do not scale up well on classical computers might work very efficiently on 
quantum computers. Therefore, revisiting many computational techniques or algorithms with quantum comput-
ers in mind could lead to new technologies.

Partial differential equations (PDEs) are mathematical models of the universe’s physics. Obtaining analyti-
cal solutions to some of the practically important PDEs is unattainable yet. As a field that has led the creation 
of numerous novel algorithms in the PDE community, fluid dynamics, or more precisely computational fluid 
dynamics, is one of the most widespread applications of quantum computing7–9, along with applications in 
finance10, healthcare11, and material science12. For example, finding a solution to Navier-Stokes (NS) existence 
and smoothness problem will receive a million-dollar prize from the Clay Mathematics Institute13. Finding 
new algorithms or utilizing new types of hardware to solve challenging PDEs are active areas of research7,14–18. 
With this in mind, many fluid dynamicists are excited that quantum computing could enable such demanding 
calculations in the coming years. In a nutshell, when describing the interaction between different scales in fluid 
dynamics, there is a huge transition from the inertial scale, where large fluid structures are described, to the 
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Kolmogorov scale, where dissipation takes place. If we call the size of a circulation bubble on an airplane wing ℓ , 
and take it as a typical unit of inertial scale, we can estimate that it might take many decades of CPU time using 
one teraflop machines to simulate a simulation box of (10ℓ)3 with a moderate Reynolds number of 105 (e.g., see 
a recent discussion8). Even at a higher Reynolds number, the possibility of such a direct numerical simulation 
with the entire aircraft placed at the center of the simulation domain does not seem feasible unless there is a 
major breakthrough in computational sciences (e.g., we refer the reader to an estimate19 that arrives at CPU time 
of a fraction of the earth’s age).

The recent advent of quantum computers showed that quantum computing significantly speeds up over the 
corresponding best classical algorithm. Although there are some studies before the 1990s20,21, the first major 
scientific achievement can be accepted as the Shor quantum computing algorithm for factoring large numbers, 
which can break popular encryption schemes22. The interest in quantum computing is increased even more with 
the Grover search algorithm that can search unstructured databases with crucial speedup23. Subsequently, more 
studies have been conducted that show a speedup with the quantum computation24,25.

The development of quantum computing26–36 and the advancement of quantum computers37–47 led to the 
algorithms developed for differential equations. There are several strategies to solve PDEs with quantum 
computing19,48–70. However, this paper focuses on the quantum PDE solver algorithm19,59,60 that boosts proba-
bilistic measures. This solver uses an (almost) optimal quantum algorithm71 to solve a system of ordinary differ-
ential equations (ODEs) obtained from PDEs by discretization. The quantum PDE solver is based on a quantum 
amplitude estimation algorithm (QAEA)72 that estimates the amplitude of a state. The algorithm is used to solve 
Navier–Stokes equations59,60, which play a significant role in the aerospace industry as the governing equations 
model fluid dynamics and aerodynamics. Subsequently, it is used to solve Burger’s equation19, which is extensively 
used as a benchmark problem for computational fluid dynamics solvers.

As significant progress has been made in quantum computing technologies, in this study, we aim to explore 
how such a distributor in the information processing paradigm can leverage the current trends in developing 
quantum algorithms for scientific applications. Specifically, we introduce an efficient quantum PDE solver by 
defining the Gauss-Lobatto-Chebyshev points73 and the cubic-spline interpolation method74. Gauss-Lobatto-
Chebyshev points are also called Chebyshev extreme points. However, in this paper, it is called Chebyshev points 
shortly. The new approach is used to solve a generic ODE, the heat equation, and the advection-diffusion equa-
tion to show the accuracy of the proposed quantum PDE solver. In our proposed approach, using Chebyshev 
points reduces the number of evaluations for the oracle function and increases the sampling points used in 
QAEA. Hence, the accuracy of the solver increases. At the same time, the solution time is decreased significantly. 
Although far from completeness, we hope our paper sheds light on the prospects of designing emerging quantum 
PDE solvers as government, public and private sectors face an innovation race on quantum information science 
and technology.

Quantum PDE solver
The quantum PDE solver59,60 is an approach that utilizes QAEA to solve the underlying system. The first task of 
the solver is spatial discretization as x → xj (1 ≤ j ≤ m) and u(x, t) → u(xj , t) ≡ u(j, t) . The spatial boundary 
points correspond to the grid points x1 and xm . It is important to note that time t remains a continuous parameter. 
Once the spatial discretization takes place, the PDEs can be represented by a system of ODEs in the form of:

where f(u(j, t)) is the driver function. The PDEs are represented by a system of ODEs with Eq. (1), which can be 
solved with an ODE solver. Herein, a quantum algorithm introduced by Kacewicz71 will be introduced to solve 
a system of ODEs. The algorithm requires a bounded function A(j, t) that approximates the exact solution u(j, t) 
over the time interval 0 ≤ t ≤ T . Both u(j, t) and A(j, t) have to satisfy the initial condition:

The driver function f(u) is assumed to have continuous, bounded derivatives to order r, with the rth derivative 
satisfying the Hölder condition:

where, H > 0 and 0 < ρ ≤ 1 . The driver function’s smoothness is parameterized by q = r + ρ , with q ≫ 1 for 
smooth functions and q ∼ 1 for non-smooth functions. Hölder class functions75,76 satisfy these conditions and 
they are elements of the Hölder space F r,ρ.

Kacewicz divides the time interval [0, T] into n primary subintervals, Ti = [ti , ti+1] . The distance of each 
subintervals are calculated by h = T/n , where ti = ih (0 ≤ i ≤ n) . It has to be noted that each primary subinter-
val Ti is related to approximate solution Ai(j, t) . At this step, 

{

yi(j)| 0 ≤ i ≤ n− 1
}

 is introduced to provide the 
initial condition for the primary subinterval Ti : Ai(j, ti) ≡ yi(j) . The discussion of the 

{

yi(j)
}

 will be provided 
in the following equations. Kacewicz further divides each primary subinterval Ti to secondary subintervals 
(sub-subintervals) ti,m = ti +mh̄ (0 ≤ m ≤ Nk) , where h̄ = h/Nk = T/nk and Nk = nk−1 . In this paper, the 
representation of the mth sub-subinterval in Ti is given as Ti,m = [ti,m, ti,m+1] , and the approximate solution within 
Ti,m is given as Ai,m(j, t) . The notation Ti,m is used for the time interval and it uses uppercase T. The lowercase 
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t corresponds to the time value. Since the latter always appears with a lowercase letter t, the distinction is clear 
from the context. In order to find the approximate solution, Taylor’s method77–79 is used about ti,m as:

For Hölder class functions f ∈ F
r,ρ , the parameter r is given. For a quasi-smooth driver function f(u), the 

parameter r is chosen in such a way that the error O (h̄r+1) is sufficiently small. In this study, the order of accu-
racy is limited to the second order. There are two reasons for this selection: (i) to minimize the time required for 
the discretization and (ii) to avoid spatial discretization error-dominated solutions. If the error is dominated by 
spatial error, the accuracy advantage of the present implementation may be negligible. Nonetheless, the solution 
time advantage will not be affected by any type of error. The approximate solutions {Ai,m(j, t)} are required to 
be continuous at the intermediate times ti,m : Ai,m(j, ti,m+1) = Ai,m+1(j, ti,m+1) . As noted earlier, {yi(j)} requires 
to provide the initial condition for the approximate solution Ai(j, t) for the ith primary subinterval Ti . Thus, at 
t = ti ≡ ti,0 , it is required that: Ai(j, ti) ≡ Ai,0(j, ti,0) = yi(j) . These two requirements determine Ai(j, t) through-
out the subinterval Ti . Specifically, if t ∈ Ti,m , then Ai(j, t) = Ai,m(j, t) . Once the {Ai(j, t)| 0 ≤ i ≤ n− 1} are 
known, the global, approximate solution is known: A(j, t) = Ai(j, t) for t ∈ Ti . At this step, for known parameters 
n, k, and {yi(j)| 0 ≤ i ≤ n− 1} , approximate solution A(j, t) can be determined. The details of how the param-
eters are calculated will be discussed later. Herein, how the {yi(j)} are chosen is explained. In order to calculate 
{yi(j)} , Eq. (1) is integrated over Ti:

It has to be noted the second term has been added and subtracted. As a result, Eq. (5) is exact. To obtain an 
equation that relates the {yi(j)} , Kacewicz replaces u(j, ti) ≈ Ai(j, ti) ≡ yi(j) with yi(j) ; discards the third term 
on the RHS as it is O (h̄r+1) ; and writes τ = h̄z so that Eq. (5) becomes:

for 0 ≤ i ≤ n− 2 . Eq. (6) determines yi+1(j) from yi(j) and the Taylor polynomials {Ai,m(j, t)} . The {yi(j)} are 
determined iteratively. The first step sets y0(j) equal to the initial condition: y0(j) = U0(j) . The {y0(j)} then 
determine A0(j, t) throughout the primary subinterval T0 = [0, t1] as described above. Eq. (6) then determines 
y1(j) from y0(j) , once the integral on the RHS is evaluated. To that end, Kacewicz introduces Nk knot times 
{zm,p} in each secondary subinterval Ti,m and approximates the integral by its average value over the knot times:

The average value of f on the right-hand side of Eq. (7) is calculated by the Quantum Amplitude Estimation 
Algorithm72 (QAEA). However, in this approach, the number of knot points scales up quickly, leading to a slower 
solution time. To avoid this issue, the Chebyshev points will be introduced to approximate the integral.

Chebyshev points.  Chebyshev points are the roots of the Chebyshev polynomials of the first kind. They 
are widely used in numerical methods to avoid non-physical oscillations called Runge’s phenomenon80,81. In this 
study, Chebyshev points are utilized to decrease the number of knot points in the algorithm. It has to be noted 
that other point distributions are available in the literature. However, the Chebyshev points are robust for such 
an application. In this approach, instead of Nk knot times, Knf  number of knot points {wm,p} are introduced with 
Chebyshev points in each sub-subinterval Ti,m as:

where the number of knot points is much less than the previously introduced number of sub-subintervals 
( Knf ≪ Nk ). To that end, a new function qm(gs) , which satisfies qm(gs) = Ai,m(j,wm,p) at 0 ≤ p < Knf  is defined 
in the interval of [ti,m, ti,m+1] as:

where gs ∈ [ti,m, ti,m+1] , C and D are unknown coefficients. C and D can be found by matching the functional 
values at end points73. At this step, Kns number of knot points are introduced in the same interval. It has to be 
noted that Knf ≪ Nk ≪ Kns . Once the new knot points are substituted into Eq. (7), the final equation will be:
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(
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(
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In the present implementation, a small amount of discretization is required as Knf ≪ Nk . Additionally, in the 
calculation of f appearing on the RHS of Eq. (10), a high number of points will be used in the approximation of 
the integral as Nk ≪ Kns . This will ensure that the number of calculations in the Quantum Amplitude Estimation 
Algorithm is higher with the present implementation. As a result, it may lead to a more accurate approximation. 
It has to be noted that the Chebyshev points are utilized in time integration. Hence, the proposed time integra-
tion approach is not affected by the spatial dimension of the problem. While we demonstrated our method on 
a one-dimensional problem, our proof of concept results indicates that our approach can be easily extended to 
higher dimensions and more complex domains. In other words, the algorithm can be used in two- or three-
dimensional problems. The driver function appearing in Eq. (1) will be the only parameter changing with the 
dimensionality. Finally, before the QAEA can be used to evaluate Eq. (10), f must be shifted and rescaled in 
such a way that it will be in the range of [0, 1]. Novak82 and Heinrich83 showed how the QAEA could be used to 
evaluate a function average, and Gaitan59,60 explains how the shift and rescaling are implemented. In this way, 
the {y1(j)} are determined. They, in turn, determine the {A1,m(j, t)} throughout T1 = [t1, t2] as described above. 
This allows the RHS of Eq. (6) to be evaluated using the QAEA to approximate the integral giving the {y2(j)} . 
Iterating this procedure over the remaining primary subintervals Ti gives the approximate solution A(j, t), where 
A(j, t) = Ai(j, t) for t ∈ Ti and 0 ≤ i ≤ n− 1 . Kacewicz71 shows that for Hölder class functions the solution error 
ε satisfies (for n ≥ 5):

with probability 1− δ . Here αk = k(q+ 1)− 1 and q = r + ρ is the driver function smoothness parameter. 
Vanquez and Woerner84 show how error scales with Oracle calls, and Gaitan59,60 and Oz19 show the complexity 
analysis of the quantum PDE algorithm by including QAEA.

Quantum amplitude amplification algorithm.  Quantum Amplitude Amplification Algorithm 
(QAAA) is a quantum algorithm that allows finding a desired state with amplified probability, and it is an impor-
tant part of the quantum PDE solver. The algorithm details are available in Brassard et al.72. Moreover, Gaitan59 
explained the usage of QAAA in the quantum PDE solver. However, we will provide a short explanation of the 
algorithm for a clear understanding of this study. The quantum circuit for the algorithm is illustrated in Fig. 1.

QAAA starts by introducing unitary operator A that acts on Hilbert space H without any measurements. 
The state obtained by applying A to zero state is defined as:

If  we represent Eq. (12) in an alternative form by defining |n0 >= |φ0 > /
√
< φ0|φ0 >  , 

|n1 >= |φ1 > /
√
< φ1|φ1 > , and a =< φ1|φ1 > . The new equation will be:

Herein, |n1 > is, following Brassard et al.72 terminology, the good (desired) state, and 
√
a is the amplitude of 

this state. The objective of the QAAA is to amplify this amplitude to obtain a good state. For the amplification, 
a unitary operator is required, which can be defined as:

where Sχ is an operator that conditionally changes the sign of the amplitudes of the good states, and S0 is an 
operator that changes the sign of the amplitude if and only if the state is a zero state. The simple action of Q on 
the subspace Hφ spanned by the vectors |φ1 > and |φ2 > can be shown as:
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∫

0
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∑
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(11)ε ≡ sup{j,t}
∣

∣u(j, t)− A(j, t)
∣

∣ = O

(

1

nαk

)

,

(12)|φ >= A |0 >= |φ0 > +|φ1 > .

(13)|φ >=
√
1− a|n0 > +

√
a|n1 > .

(14)Q = −A S0A
−1Sχ ,

(15)Q|φ1 > = (1− 2a)|φ1 > −2a|φ0 >

Figure 1.   The quantum circuit representation of Quantum Amplitude Amplification Algorithm for three 
qubits.
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where a =< φ1|φ1 > . If we assume 0 < a < 1 , the eigenvalues of the operator Q will be:

where θa is defined as:

Lastly, if we apply operator Q j times, the final state will be:

Herein, if we choose a j in such a way that sin2((2j + 1)θa) is close to 1, the amplitude will be greatly amplified 
for the good state.

Quantum amplitude estimation algorithm.  Quantum Amplitude Estimation Algorithm (QAEA) is a 
quantum algorithm that returns an estimate of the quantum amplitude sin(θa) . The algorithm is defined in Hil-
bert space, H′ , with two n-qubits registers. It is based on Quantum Phase Estimation85 (QPE); however, QAEA 
differs from QPE with minor changes. The first task in QAEA is to initialize qubits to the state of:

where |φ >= A |0 > . After that, Quantum Fourier Transform (QFT) can be applied to the first register. The 
representative circuit of QFT is illustrated in Fig. 2.

In the next step, a new operator whose action on the computational basis is defined as:

where |l >
⊗

|m > are states defined in Hilbert space, H′ . Finally, the algorithm requires applying inverse 
QFT (QFT† ) to the first register and measuring it. When the measurement, M, is substituted into equation 
θ̃a = πM/N , the approximate value of a can be calculated. Herein, N is defined as N = 2n . The circuit repre-
sentation of the algorithm is given in Fig. 3. This algorithm summarizes the QAEA. For further details, Novak82 
implemented QAEA to calculate the function mean value, and Gaitan59,60 developed a quantum PDE solver by 
calculating the function mean value with QAEA.

Governing equations
The quantum PDE solver starts by discretization to convert PDEs into a system of ODEs. This paper will use three 
test cases: a generic ODE, heat equation, and convection-diffusion equation. The cases include several vital terms 
of complex PDEs. The generic ODE case does not require any spatial discretization. Hence the numerical error 
will reveal the advantage of the current implementation. The heat and convection–diffusion equations include 
important terms of Navier-Stokes equations, which are the fundamental equations of the aerospace industry.

Ordinary differential equation.  In principle, the quantum PDE solver59,60 converts a PDE into a system of 
ODEs to integrate over time (Eq. (1)). In this procedure, the discretization of PDEs introduces spatial numerical 

(16)Q|φ0 > = 2(1− a)|φ1 > +(1− 2a)|φ0 >,

(17)�± = e±i2θa ,

(18)sin2(θa) = a =< φ1|φ1 > .

(19)Qj|φ >=
1√
a
sin((2j + 1)θa)|φ1 > +

1√
1− a

cos((2j + 1)θa)|φ0 > .

(20)|Ŵ >= |0 >
⊗

|φ >,

(21)�(Q)|l >
⊗

|m >= |l >
⊗

Ql|m >,

Figure 2.   The quantum circuit representation of Quantum Fourier Transform with three qubits without qubit 
swapping at the end.

Figure 3.   The quantum circuit representation for Quantum Amplitude Estimation Algorithm.



6

Vol:.(1234567890)

Scientific Reports |         (2023) 13:7767  | https://doi.org/10.1038/s41598-023-34966-3

www.nature.com/scientificreports/

error to the system. To avoid and differentiate the error stemming from the spatial discretization, a generic ODE 
will be integrated with the proposed quantum PDE solver. The ODE used as a test case is:

where the analytical solution can be obtained by integrating Eq. (22) as:

The ODE includes Sine function terms with several frequencies and an exponential term. While different fre-
quencies contribute to the complexity of the problem, the exponential term increases the amplitude. Addition-
ally, the ODE does not require to be spatially discretized because it is already in the form given in Eq. (1). The 
simulation details and initial conditions used in the numerical experimentation will be detailed later when we 
present our results.

Heat equation.  The heat equation in one physical dimension can be written as:

where t is the time, α2 is the thermal diffusivity. The quantity of interest for which the equation is solved is referred 
to as u. The boundary and initial conditions of the equation are:

where L is the length of the spatial interval. The analytical solution of the equation can be obtained by the 
separation of variables method86. For the given boundary and initial conditions, the analytical solution can be 
obtained as follows:

where f(x) is the initial condition given in Eq. (25), the subscript k corresponds to indices in Fourier sine series 
and L is the length of the spatial interval. L is taken as 1 in this study. Since the initial condition is a sine function 
and the sine is an orthogonal function, the final analytical solution will be:

The heat equation is a PDE that needs to be discretized to convert the system in the form of Eq. (1). The system 
of ODEs for heat equation is:

where the lattice spacing �x = xj − xj−1 is assumed to be constant. The fourth-order finite difference scheme is 
used as a method for spatial derivative. The reason a high-order scheme is used is to decrease the spatial error to 
reveal the accuracy improvements with the new implementation. Otherwise, spatial error dominates the total 
error, and accuracy comparison becomes misleading.

Convection–diffusion equation.  The convection–diffusion equation in one dimension can be written as:

where t is the time, α2 is the thermal diffusivity, c is the velocity of the wave, and u is the parameter that the 
equation is solved for. The initial conditions of the equation can be given by:

(22)du

dt
=

et/10

10
+ sin(t)+ 4 sin(2t)+ 3 sin(3t)+ 4 sin(4t)− 5 sin(5t)− 6 sin(6t)− 7 sin(7t),
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(24)∂u
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2u

∂x2
,
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∞
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)

e−α2π2k2t/L2 k = 1, 2, 3, ...,∞

(28)βk =
2

L

L
∫

0

f (x) sin

(

kπx

L

)

dx k = 1, 2, 3, ...,∞.

(29)u(x, t) = sin(πx)e−α2π2t .
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For this test case, a periodic boundary condition is used. The analytical solution of the equation can be solved 
with the separation of variables method as the heat equation. The final analytical solution for given initial and 
boundary conditions reduces:

The convection–diffusion equation must also be written as Eq. (1). The system of ODEs for the convection–dif-
fusion equation is:

The details of the initial and boundary conditions will be provided in the following section.

Results
In this section, the new implementation will be applied to three different test cases, a generic ordinary differential 
equation, the heat equation, and the convection–diffusion equation. The results of the present approach will be 
compared with the analytical solution and available literature19,59,60. It is important to state that the quantum PDE 
solver is developed by Gaitan59,60. Oz et al.19 implemented the quantum PDE solver to Burgers’ equation (BE). 
In the present paper, the algorithm utilized in Reference19 will be used for the new test cases and compared with 
the proposed implementation. Moreover, solution time differences will be investigated. Before presenting the 
results, the common input parameters required in the quantum PDE solver will be introduced. Firstly, the order 
of the bounded derivatives, r, that appears in Eq. (3) is taken as 2. It is a free parameter that affects the order of 
accuracy of the solver. The impact of the parameter on the solution vector will be discussed later in the paper.

Kacewicz’s quantum algorithm requires specifying the error bound and the probability. The error bound 
is defined as ε1 = 0.005 , and the probability δ = 0.005 is the probability that the quantum algorithm returns a 
solution that violates the bounds of the quantum algorithm. Kacewicz requires ε1 = 1/nk . Solving this expres-
sion for k gives:

The error bound is already specified. However, n and k are still free parameters. To that end, Courant-Friedrichs-
Lewy (CFL) stability condition87 is introduced in the old implementation, and a value is specified in such a way 
that the stability conditions meet. It ensures that there will not be instabilities developing because of the time 
discretization. In the present method, the number of intervals n is the free parameter, and k will be calculated 
with Eq. (41). Later, the free parameter n will be changed to investigate the accuracy and solution time differ-
ences between the two implementations. It has to be noted that n has to be within the stability limit to converge 
a solution. Otherwise, the simulation will diverge.

Ordinary differential equations.  An ordinary differential equation is defined in Eq. (22) with the analyti-
cal solution given in Eq. (23). The given ODE has sine functions with various frequencies and an exponential 

(34)u(x, 0) = f (x) = sin(2πx).

(35)u(x, t) = sin(2π(x − ct))e−α24π2t .

(36)

du(j, t)

dt
=

−c

12�x
[u(m− 2, t)− 8u(m− 1, t)+ 8u(j + 1, t)− u(j + 2, t)]

α2

12�x2
[−u(m− 2, t)+ 16u(m− 1, t)− 30u(j, t)+ 16u(j + 1, t)− u(j + 2, t)] (j = 1)

(37)

du(j, t)

dt
=

−c

12�x
[u(m− 1, t)− 8u(j − 1, t)+ 8u(j + 1, t)− u(j + 2, t)]

α2

12�x2
[−u(m− 1, t)+ 16u(j − 1, t)− 30u(j, t)+ 16u(j + 1, t)− u(j + 2, t)] (j = 2)

(38)

du(j, t)

dt
=

−c

12�x
[u(j − 2, t)− 8u(j − 1, t)+ 8u(j + 1, t)− u(j + 2, t)]

α2

12�x2
[−u(j − 2, t)+ 16u(j − 1, t)− 30u(j, t)+ 16u(j + 1, t)− u(j + 2, t)] (2 < j < m− 1)

(39)

du(j, t)

dt
=

−c

12�x
[u(j − 2, t)− 8u(j − 1, t)+ 8u(j + 1, t)− u(2, t)]

α2

12�x2
[−u(j − 2, t)+ 16u(j − 1, t)− 30u(j, t)+ 16u(j + 1, t)− u(2, t)] (j = m− 1)

(40)

du(j, t)

dt
=

−c

12�x
[u(j − 2, t)− 8u(j − 1, t)+ 8u(2, t)− u(3, t)]

α2

12�x2
[−u(j − 2, t)+ 16u(j − 1, t)− 30u(j, t)+ 16u(2, t)− u(3, t)] (j = m).

(41)k = 1+ ⌈ln (1/ε1)/ ln(n)⌉.
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function. The discretization of the equation lacks lattice spacing. Thus, the error does not include spatial discre-
tization error.

In the simulation, the initial condition is taken as u(0) = −1 , which is calculated from the exact solution at 
the initial time, and the simulation is run in the interval of T = [0 2] . As previously stated, this problem is an 
initial value problem. Therefore, there is no boundary condition for u(2). First, the simulation is carried out with 
the implementation used by Oz et al.19. The conditions implemented for the number of subintervals n led to 5. 
The number of sub-subintervals and knot points Nk led to 625. In the present implementation, the number of 
subintervals n is a free parameter. However, it is specified as 5 for a better comparison. For this case, Knf  is taken 
as 10 and Kns is taken as 50, 000. As previously stated, Knf ≪ Nk ≪ Kns . Herein, the selection of Knf  and Kns is 
arbitrary. However, results with various selections will be provided later. Figure 4 shows the analytical solution 
with the comparison of two implementations of quantum PDE solver along with the analytical solution given in 
Eq. (23). As expected, the results have no distinct difference.

To examine the performance of the new implementation, solution time, L 1 , L 2 , and L ∞ errors are calculated. 
The errors are defined as:

where n is the number of subintervals, xi = uan,i − ui , and uan,i and ui are the exact solution obtained from the 
analytical expression and the results obtained from the carried out simulations, respectively. The solution time 
is normalized with the solution time obtained with the implementation used in the quantum BE solver. It has 
to be noted that solution times given in this study are to provide an idea about the implementations rather than 
a benchmark test. Table 1 compares the normalized solution times and errors defined in Eq. (42). The L 1 error 
difference indicates that the summation of the errors at each subinterval improved one order with the present 
implementation. Moreover, L 2 norm, which is extensively used in the literature to show the accuracy of the solu-
tions, and L ∞ norm, which shows the maximum error in the solution vector, is also improved one-order with 
the present implementation. The present implementation also decreased the solution time by approximately 100 
times, which is a drastic decrease with the improved accuracy.

We only showed a test case with a constant number of subintervals and sub-subintervals. In the new test case, 
the number of subintervals and sub-subintervals will be chosen as a free parameter for the implementation used 
in the quantum BE solver as well.

In the present implementation, Kns will be taken as 50, 000. First, one of the free parameters has to be con-
stant to examine the other parameter. To that end, the number of subintervals n is taken as 5, and the number of 

(42)|x|p =
(

∑

i

|xi|p
)1/p

, |x|∞ = max(xi), (p = 1, 2), (0 ≤ i ≤ n),

Figure 4.   The comparison of results obtained with quantum PDE solver using two implementations and the 
analytical solution in the interval of T = [0 2] with n = 5 . The results show no distinct difference.

Table 1.   The normalized solution times and errors obtained by the quantum PDE algorithm for two different 
implementations.

Solution L1 L2 L∞
Time Error Error Error

Oz19 1 3.8690× 10
−5

2.0905× 10
−5

1.7964× 10
−5

Present Imp. 0.012 5.6736× 10
−6

3.0930× 10
−6

2.5859× 10
−6
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sub-subintervals is changed in the range of [6, 630] . The range starts from the low number of sub-subintervals 
and increases up to the value that is calculated in the previous test case. Figure 5 shows the errors and normalized 
solution times calculated for both implementations. Both of the plot axes are logarithmic, and the normaliza-
tion of the time is done by the solution time of the implementation used in the quantum BE solver with 6 sub-
subintervals. Thus the solution time plot starts from 1 for the old implementation. The errors are decreasing with 
the increasing sub-subintervals, as expected for all error types. The order of the error scales with the square of the 
time spacing as the parameter r is taken as 2. However, the error amplitude in the present approach significantly 
differs from the old method. Figure 5a shows that the old implementation reached up to the order of O(10−5) 
with the highest number of sub-subintervals used in this study. The same order of accuracy is reached with 
approximately 10 sub-subintervals. However, at the maximum number of sub-subintervals used in the study, the 
accuracy reached O(10−9) . Moreover, the old implementation reached the order of O(10−5) while the present 
implementation reached up to the order of O(10−9) at the approximately same time (Fig. 5b). The old imple-
mentation reached the order of O(10−5) accuracy approximately 100 times faster. The reason for the gain in the 
amplitude of the error is because of the increased number of sampling points used in the QAEA, which leads to 
better accuracy. It is also observed that oscillations appear after a specific limit with the new implementation. Our 
initial observation shows that the probabilistic behavior of QAEA causes these oscillations. However, it is still not 
clear, and it requires in-depth investigation. As a result, we leave these oscillations as the subject of future studies.

Lastly, the number of sub-subintervals will be constant, and the number of subintervals n will be taken as a 
free parameter, and it will change in the range of [6 200] . The number of sub-subintervals is specified as 20. Our 
experience indicates that other selections lead to similar observations. Thus the simulations with Knf  20 will be 
provided. Kns will be taken as 50, 000. Figure 6 shows the errors and normalized solution times calculated for 
both implementations. Both of the plot axes are logarithmic, and the normalization of the time is done by the 
solution time of the implementation used in the quantum BE solver with 6 subintervals. The error and solution 
time plots yielded similar results with the variable sub-subinterval case. However, the old implementation leads 
to wider error distribution with increasing subintervals. L ∞ is decreasing more than L 1 error, which indicates 
that the error distribution is getting close to uniform distribution because the total error in the solution vector 
is decreasing more than the cumulative error in the solution vector. It may be due to the fact that errors intro-
duced by the number of subintervals saturate slowly. Hence, the error introduced by the other sources starts 
to dominate. As a result, the error distribution is uniform because of the other error sources as the number of 
subintervals decreases. For the solution time, it is possible to observe a similar trend to the previous case. At 
the time old implementation achieved O(10−5) L 2 error accuracy, the new implementation reached O(10−7) . 
Additionally, in this test case, the old implementation reached a maximum order of O(10−5) L 2 error accuracy. 
However, the lowest L 2 error accuracy is in the order of O(10−6) with the present implementation, and this 
accuracy is achieved approximately 0.07 times faster.

Heat equation.  Herein, the ODE problem is extended to the PDE problem. The first PDE problem is defined 
as in Eq. (24), where the analytical solution is given as Eq. (29). The given equation includes the diffusion (vis-
cous) term in the Navier–Stokes equation, which is critical in the aerospace industry and various other fields, 
as mentioned by References19,59,60,88–91. In PDEs, discretization in space is required. As a result, the PDE can be 
written as a system of ODEs, as shown in Eq. (1). Inherently, the error calculated in this subsection will include 
spatial discretization error. However, it will be minimized by using high-order methods.

Figure 5.   The distribution of the (a) errors and (b) normalized solution times obtained from the carried out 
simulations for both implementations with 5 subintervals where the axes are logarithmic.
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First, the boundary conditions of the system are given as u(0, t) = 0 and u(L, t) = 0 , where L is the length of 
the computational domain, and it is taken as L = 1 . The initial condition of the system is u(x, 0) = sin(πx) . The 
simulations will be carried out with 65 lattice points with the fourth-order finite difference method in the inter-
val of T = [0 0.078125] and thermal diffusivity α2 = 1 . Initially, the equation is solved with the CFL condition 
where the CFL number is taken as 0.1. With the given conditions, the parameters are calculated as n = 300 and 
Nk = 300 . For a better comparison, the same number of subintervals are used with the present implementation 
along with Knf = 10 . The free parameter Kns is taken as 920. This value is much lower than the one used in the 
ODE problem. Our experience shows that in PDE problems, lower Kns than the ODE problem leads to better 
accuracy. Otherwise, it leads to unnecessary calculations, which help spatial error to cumulate. Figure 7 shows 
the solution vector obtained at the end of the simulations. The figure shows every third point of the solution 
vector for clarity. In the results, there is no distinguishable difference. The dissipative behavior from the second-
order derivative decreased the maximum amplitude of the initial wave, and the quantum PDE algorithm solved 
it with great accuracy.

The detailed error analysis is provided in Table 2. Unlike the ODE case, the accuracy of the old implementa-
tion is as high as the present implementation. However, the solution time is approximately 40 times higher for the 
old implementation. L 1 error is higher than the L 2 error, which is expected to observe because of the definition 
of the errors. L ∞ error, on the other hand, is so close to the order of O(10−9) for both of the implementations.

In the heat equation, the number of subintervals is more important than the ODE problem because of the 
nature of PDEs. Thus, the performance of both implementations will be investigated with a free parameter for the 

Figure 6.   The distribution of the (a) errors and (b) normalized solution times obtained from the carried out 
simulations for both implementations with 20 sub-subintervals where the axes are logarithmic.

Figure 7.   The comparison of results obtained with quantum PDE solver using two implementations and the 
analytical solution in the interval of T = [0 0.078125] with n = 300 . Every third point is shown for clarity.
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number of subintervals with a constant number of sub-subintervals. In this study, the number of sub-subintervals 
is specified as 30. Although it is lower than what is obtained, when the conditions are enforced, it will show 
the error trend with the changing number of subintervals in the range of n = [30, 300] . When the number of 
subintervals is lower than 30, the algorithm fails to converge due to the stability condition for both implementa-
tions. Figure 8 shows the error and normalized solution time of the carried-out simulations. The normalization 
is done by the old implementation with n = 30 . Both axes are logarithmic to show the error slope and solution 
times. Same as the ODE case, the second-order accuracy was expected. However, in the proposed method, the 
slope of the error is slightly steeper than the second order. The reason might be the cancellation of the higher 
order error terms with the proposed method. As a result, the error from higher-order terms is smaller than the 
other test cases used in the study. The reason the same behavior is not observed with the old implementation 
may be the other factors contributing to the error, such as an error coming from QAEA. The deviation from 
the second order with increasing sub-subintervals in the proposed method indicates additional error sources 
affecting the overall error (Fig. 8a). The error is drastically decreasing with the present implementation. The 
present implementation’s errors start to decrease when the new implementation reaches the lowest error within 
the test case intervals. L ∞ error of the old implementation starts from in the order of O(10−5) and reaches up to 
order of O(10−6) (Fig. 8a). However, the present implementation starts from the order of O(10−6) and reaches 
up to the order of O(10−8) . The slope of the errors is different in the two implementations. In the ODE case, 
the slope of the error is approximately constant for both implementations. The reason might be because of the 
spatial error. In the old implementation, the error coming from the quantum algorithm was higher. In every 
subinterval, spatial discretization will introduce additional errors. Thus this will accumulate in every subinterval. 
Although the slope of the errors is different in both implementations, they are the same in the solution time plot 
(Fig. 8b). The ratio of the fastest solution of the present implementation to the slowest solution of the present 
implementation is 0.17. The present implementation is approximately 5 times faster than the old implementa-
tion within the test case limits.

Convection–diffusion equation.  Herein, we extend our previous heat equation case into a more com-
plex PDE where both convective and diffusive terms are included. The partial differential equation is defined in 
Eq. (33), where the analytical solution is defined as shown in Eq. (35). The problem is a simplified version of the 

Table 2.   The normalized solution times and errors obtained by the quantum PDE algorithm for two different 
implementations. Although accuracy gain is not observed, the solution time decreases approximately 40 times 
with the new implementation.

Solution L1 L2 L∞
Time Error Error Error

Oz19 1 5.6989× 10
−7

8.1340× 10
−8

1.5865× 10
−8

Present Imp. 0.024 6.3932× 10
−7

8.2208× 10
−8

1.3419× 10
−8

Figure 8.   The distribution of the (a) errors and (b) normalized solution times obtained from the carried out 
simulations for both implementations with 30 sub-subintervals where the axes are logarithmic.
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Navier-Stokes equations which is crucial in the aerospace industry. The aforementioned spatial error included 
in the error norms will be observed in this case as well. To minimize it, high-order spatial discretization, namely 
the fourth-order central scheme, is used in this test case as shown in Eqs. (36–40). The thermal diffusivity α2 is 
taken as 0.1 while the velocity of the wave, c is taken as 10. This combination ensures that the wave is moving 
by losing its amplitude slowly. The computational domain is limited to x = [0 1] where the initial condition is 
u(x, 0) = sin(2πx) . It has to be noted that the boundary conditions used in this test case are periodic boundary 
conditions which make the limits of Eq. (1) in the range of 1 ≤ j ≤ m because of the boundaries included in solu-
tion vector. In the simulation, the number of subintervals is specified as 70. Conditions enforced to determine 
the number of sub-subintervals led to 4900. The same number of subintervals is used with the present imple-
mentation. However, Knf  is taken as 500 and Kns is taken as 3000. A new case is also simulated with the present 
implementation where the number of subintervals is 700, the Knf  is 30, and Kns is 3000. The present implemen-
tation requires a low number of sub-subintervals for better performance. The additional computational cost 
introduced by the new implementation can be neglected by the low number of sub-subintervals. However, 500 
sub-subintervals lead to longer solution times with less accurate results. It has to be noted that 700 subintervals 
lead to 490, 000 sub-subintervals. Thus, the simulation is not run for n = 700 with the old implementation. In 
this problem, the number of elements used in spatial discretization is 264. Lower values led to spatial error-
dominated results, which prevented observing an advantage with the current implementation. The simulations 
are carried out by both of the implementations, and the results are shown in Fig. 9. The solution vectors of both 
implementations coincide with the analytical solutions as the error of the solution vectors are close to machine 
zero. The figure shows every tenth point to avoid a complex-looking figure.

The details of the error norms, along with the normalized solution time, are given in Table 3. The time nor-
malization is done with the old implementation. The table shows that the accuracy of the previous implementa-
tion is close to machine zero. However, the proposed implementation with n = 70 leads to one order higher L 2 
and L ∞ errors along with two orders higher L 1 error. Although the solution time is 8 time faster, the accuracy is 
lower than the old implementation. The advantage of the old implementation can be observed with the higher 
number of subintervals, where the number of sub-subintervals can be lower. In regular computational simula-
tions, the number of subintervals increment should lead to, generally speaking, higher solution times. However, 
in the present implementation, increasing the number of subintervals, n, does not increase the solution time 
because of the decreasing number of sub-subintervals. When n = 700 , the present implementation provided 
the same accuracy in a 20 times faster solution time. Additionally, if we consider the solution time gain as the 
complexity of the problem increases (ODE, heat equation, convection–diffusion equation), the solution time 

Figure 9.   The comparison of results obtained with quantum PDE solver by using two implementations along 
with the analytical solution in the interval of T = [0 0.015259] with n = 70 . Every tenth point is shown for 
clarity.

Table 3.   The normalized solution times and errors obtained by the quantum PDE algorithm for two different 
implementations with n = 70 and n = 700.

Num. of Solution L1 L2 L∞
Subint. Time Error Error Error

Oz19 70 1 4.4797× 10
−7

3.1025× 10
−8

2.7335× 10
−9

Present Imp. 70 0.123 1.2151× 10
−5

8.4202× 10
−7

7.4375× 10
−8

Present Imp. 700 0.047 6.0950× 10
−7

4.2291× 10
−8

3.7378× 10
−9
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gain decreases with the complexity. The decrease in solution time gain is because of the increase in lattice points. 
Increasing the lattice point leads to an increase in the number of ODEs in the system. Thus the function given 
in Eq. 9 has to be written for every ODE in the system. Although it is not an expensive process, it contributes to 
the total time with the high number of spatial discretization points. Additionally, an increased number of sub-
subintervals required to obtain specific order of accuracy contributes to total time, yet the solution time gain is 
still high. Quantitatively, an algorithm providing the solution 20 times faster will provide the results of a day-long 
simulation in 1.20 hours. It is important to note that the simulation times may change when the quantum algo-
rithm is run on a real quantum computer. The calculation of the average value of the driver function appearing in 
Eq. (4) by the QAEA requires some time. Although it is shown that QAEA may lead to a quadratic speedup19,59,60, 
it requires quantum computers to observe the speedup. The numerical simulation of the quantum algorithm 
on a classical computer is not expected to show a quantum speedup as classical computers do not generate the 
quantum entanglement or state superposition that underlies the speedup. Nonetheless, in this paper, QAEA is 
simulated under the same conditions for both implementations. Thus, even if QAEA shows a quantum speedup 
on a quantum computer, the solution time gain obtained by the present implementation should be observable.

Table 3 shows the error norms and solution times with a certain number of subintervals, but the development 
of the error norms with the number of subintervals is not investigated. In the following simulations, the number 
of sub-subintervals is initially specified as 30 for both implementations. The number of subintervals, n, is speci-
fied as a free parameter that will be changed. The parameter Kns is chosen as 3000. The number of subintervals 
is changed in the range of n = [10, 400] . The norms and normalized solution times are given in Fig. 10. The 
normalization is done with the solution time obtained by the old implementation with n = 10 . The error slope for 
the present implementation is higher than the old implementation (Fig. 10a). It must be noted that the number 
of sub-subintervals in the old implementation must be calculated with the aforementioned conditions. However, 
it is chosen as a certain number to compare under the same conditions. Yet, Table 3 shows the results with the 
conditions enforced. Although the expected order of accuracy is two, the old implementation led to lower orders 
because of the contribution coming from the quantum algorithm. The proposed algorithm, however, is closer to 
the second order. At the same time, the error amplitude is also lower. The present implementation’s simulation 
time is approximately 1.5 times higher with the same number of subintervals, yet it provides two-order more 
accurate results. The old implementation leads to O(10−5) accuracy (considering L 2 norm) with n = 400 . The 
same order of accuracy is obtained with n = 60 with the current implementation. Moreover, the solution vec-
tors are 4.3 times faster with the proposed implementation. In the present implementation, specifying optimum 
Knf  and Kns parameters is important. Kns may change drastically depending on the function. Although using 
high values for Kns will not affect the results, it may lead to increased solution times. The optimum selection of 
Kns requires experience. For an optimum starting point, we suggest to define Kns as a square of Knf  where Knf  is 
mostly limited by the physical quantities. Based on the desired order of accuracy, Kns can be gradually increased 
until the targeted order of accuracy is achieved.

Conclusion
As quantum computer and quantum algorithm developments are accelerating, the pursuit of a way to implement 
efficient quantum algorithms for quantum computing is rising. Researchers from different fields are looking for 
alternative methods to solve their physical problems that are not feasible to solve in classical computers. This 
paper proposes an efficient implementation with Chebyshev points for the quantum PDE algorithm developed by 

Figure 10.   The distribution of the (a) errors and (b) normalized solution times obtained from the simulations 
for both implementations with 30 sub-subintervals where the axes are logarithmic.
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Gaitan59,60. Simulations are carried out for three different equations: a generic ODE, heat equation, and convec-
tion–diffusion equation. The analytical solutions of the equations are used to calculate the error of the solution. 
The L 1 , L 2 , and L ∞ norms of the error vectors are obtained for the proposed implementation and compared 
with the literature. The results showed that the proposed implementation might lead to a two-order accuracy 
gain and up to 100 times solution time decrease. Although the results of the test cases in this study indicated a 
significant speed-up with the proposed algorithm, the value of the approach depends on the complexity of the 
problem, such as PDEs with both convection and diffusion terms. With the additional physical complexity, the 
speed-up advantage of the algorithm is reduced. Thus, we will explore the quantum advantage of our approach in 
high-dimensional settings and more complex problems. Moreover, the present implementation of our approach 
requires the definition of several user-defined parameters, such as Kn,s and Kn,f  . These hyperparameters can be 
automated from the temporal dynamics of the underlying problem, a topic we would like to explore in the future. 
We also plan to use the proposed algorithm in real quantum machines. Finally, we would like to conclude that 
quantum computing is still in a very early stage, and researchers working at the interface of quantum computing 
and numerical methods will significantly contribute to this emerging field.

Data availibility
The datasets of the current study are available from the corresponding author upon request.
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