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Machine learning‑guided 
determination of Acinetobacter 
density in waterbodies receiving 
municipal and hospital wastewater 
effluents
Temitope C. Ekundayo 1,2,3*, Mary A. Adewoyin 1,4, Oluwatosin A. Ijabadeniyi 2, 
Etinosa O. Igbinosa 1,5 & Anthony I. Okoh 1,6

A smart artificial intelligent system (SAIS) for Acinetobacter density (AD) enumeration in waterbodies 
represents an invaluable strategy for avoidance of repetitive, laborious, and time-consuming routines 
associated with its determination. This study aimed to predict AD in waterbodies using machine 
learning (ML). AD and physicochemical variables (PVs) data from three rivers monitored via standard 
protocols in a year-long study were fitted to 18 ML algorithms. The models’ performance was assayed 
using regression metrics. The average pH, EC, TDS, salinity, temperature, TSS, TBS, DO, BOD, 
and AD was 7.76 ± 0.02, 218.66 ± 4.76 µS/cm, 110.53 ± 2.36 mg/L, 0.10 ± 0.00 PSU, 17.29 ± 0.21 °C, 
80.17 ± 5.09 mg/L, 87.51 ± 5.41 NTU, 8.82 ± 0.04 mg/L, 4.00 ± 0.10 mg/L, and 3.19 ± 0.03 log 
CFU/100 mL respectively. While the contributions of PVs differed in values, AD predicted value by XGB 
[3.1792 (1.1040–4.5828)] and Cubist [3.1736 (1.1012–4.5300)] outshined other algorithms. Also, XGB 
(MSE = 0.0059, RMSE = 0.0770; R2 = 0.9912; MAD = 0.0440) and Cubist (MSE = 0.0117, RMSE = 0.1081, 
R2 = 0.9827; MAD = 0.0437) ranked first and second respectively, in predicting AD. Temperature was 
the most important feature in predicting AD and ranked first by 10/18 ML-algorithms accounting for 
43.00–83.30% mean dropout RMSE loss after 1000 permutations. The two models’ partial dependence 
and residual diagnostics sensitivity revealed their efficient AD prognosticating accuracies in 
waterbodies. In conclusion, a fully developed XGB/Cubist/XGB-Cubist ensemble/web SAIS app for AD 
monitoring in waterbodies could be deployed to shorten turnaround time in deciding microbiological 
quality of waterbodies for irrigation and other purposes.
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XDR	� Extensively drug-resistant
XGB	� Extreme gradient boosted regression
ELM	� Extreme learning machine
GBM	� Gradient boosted machine
ISW	� Irrigation source waters
KNN	� K-nearest neighbours
LR	� Linear regression
LRSS	� Linear regression with stepwise selection
ML	� Machine learning
MSE	� Mean squared error
MAD	� Median absolute deviation
MDR	� Multidrug-resistant
MARS	� Multivariate adaptive regression splines
MHWE	� Municipal and hospital wastewater effluents
NNT	� Neural network
PVs	� Physicochemical variables
RF	� Random forest
RMSE	� Root-mean-squared error
SAL	� Salinity
SAIS	� Smart artificial intelligent system
SVR	� Support vector regression
TEMP	� Temperature
TDS	� Total dissolved solids
TBS	� Turbidity
WWTPs	� Wastewater treatment plants

Acinetobacter species belong to the group of aerobic gram-negative bacteria that are non-motile, non-fermen-
tative, catalase positive, oxidase negative encapsulated coccobacilli, having a DNA G+C content of 39 to 47 
mol1,2. Taxonomically, scientists have identified 68 validated species in the genus Acinetobacter, with numerous 
others yet to be delineated into species3–5. Many Acinetobacter species are found naturally in different environ-
ments, including soil, water, air, wastewater, fomites, human skin, animals, and even on plants6–8. Some species 
can utilise different substrates, such as amino acids, carbohydrates, organic acids, and hydrocarbons, while 
some can secrete industrial enzymes like lipase and protease9,10. However, few species are human opportunistic 
pathogens. For instance, Acinetobacter baumannii is a well-known notorious species in hospital settings that 
cause life-threatening infections such as pneumonia, respiratory and urinary tract infections, septicaemia, and 
wound infections, among others, especially in immune-compromised patients11–13.

Acinetobacter species are widely spread via the environmental milieu and may alarmingly spread antimi-
crobial resistance genes in the environment14,15. In addition, wastewater treatment plants (WWTPs) feed by 
hospital and municipal wastewater inflows have been reported to contribute multidrug-resistant (MDR), and 
extensively drug-resistant (XDR) Acinetobacter isolates to their effluents receiving waterbodies compared with 
other sources15,16. Discharging WWTP effluents increases the prevalence of Acinetobacter in the receiving river 
waterbodies and promotes antimicrobial resistance and transmission to irrigated vegetables15. The transmission 
of Acinetobacter spp. (especially A. baumannii)—with high antimicrobial resistance and case fatality ratio—onto 
fresh produce has been demonstrated and reviewed by Carvalheira et al.17. Acinetobacter species with different 
resistant capabilities ranging from MDR to XDR have been isolated in fresh fruits and vegetables (apples, cab-
bages, melons, cauliflowers, peppers, mushrooms, lettuce, cucumbers, bananas, radishes, sweet corn carrots, 
potatoes, peach, pear, strawberry, apple, celery, tomato, and radish) at a density up to 50–1000 CFU/g18 in 
Hong Kong19, France20, Nigeria21, Lebanon22, Portugal23 and agricultural environment in Algeria24. Furthermore, 
waterbodies especially rural rivers for instance, support recreational use of considerably high levels by people 
incognizant of the inflow/inputs of WWTP effluents and the influx of multidrug-resistant pathogens of public 
health concern including Acinetobacter25.

The routine experimental determination and identification of Acinetobacter species and other bacteria in 
all matrices (water, food, and clinical samples, etc.) using most probable number, direct plate count, adeno-
sine triphosphate testing, and membrane filtration methods are usually laborious, repetitive, time-consuming 
(incubation period), and cost-intensive endeavours that required expert knowledge which might not be readily 
available in most settings. Therefore, there is an urgent need for rapid, reliable, and cost-effective means that 
required no or low technical know-how to assess Acinetobacter density (AD) in waterbodies and other matrices 
to ensure short turnaround time necessary to make informed microbiological quality decisions. It is hypothesized 
that AD in waterbodies could be predicted accurately and dependably by using machine learning intelligence 
frameworks that depend upon the dynamic’s relationship between AD based on the afore determination meth-
ods and physicochemical variables of waterbody and other matrices in a low-cost and time-effective way. Thus, 
an artificial intelligence system for AD determination in waterbodies receiving WWTP effluents, which are 
subsequently used as irrigation source waters (ISW), would be an invaluable preventive option for immediate 
and future public health challenges.

The main merits of ML models lie in their capacity to overcome problems associated with traditional statistical 
models in capturing and predicting multidimensional interactions in large data by “learning” deep patterns26. ML 
frameworks and SAIS allow proactive management of events rather than reactive. Thus, MLs and SAIS are finding 
increasing applications in many sectors, including medicine, precision farming, environmental management, 
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water purification, Vibrio abundance on microplastics, wastewater treatment, watershed typologies and storm-
water quality and epidemiology prediction26–30 and the application is endlessly expanding daily.

Therefore, the present study aimed at predicting/determining AD in waterbodies (receiving hospital, munici-
pal and WWTP effluents) using ML without the repetitive, laborious, cost-intensive, and time-consuming labora-
tory routines to reduce the turnaround time essential to make informed microbiological quality decisions (e.g., 
for irrigation use and other purposes).

Materials and methods
Sample collection and in‑situ determination of physicochemical data.  Water samples were col-
lected using grab sampling technique from the Great Fish River, Keiskamma River and Thyume River, serving 
as receiving waterbodies for municipal and hospital wastewater effluents (MHWE) discharge at one or more 
points along their courses in the Eastern Cape Province, South Africa. At least, five strategic sampling loca-
tions based on socioeconomic importance (e.g., fishing, swimming, nearness to wastewater treatment plants, 
farming, pasture, irrigation, dam etc.) of each river were selected for sample collection. At the sampling sites, 
water temperature (TEMP), pH, total dissolved solids (TDS), electrical conductivity (EC), salinity (SAL), and 
dissolved oxygen (DO) were determined in-situ using a standard multi-parameter device (Hanna, model HI 
9828) instrumental protocol. In addition, the rivers’ turbidity (TBS) was assessed using a turbidimeter (HACH, 
model 2100P). For microbiological analysis and biochemical oxygen demand (BOD) measurement, midstream 
water samples (25–30 cm depth) were collected at the same sampling sites in three replicates into sterile glass 
and amber bottles, respectively and stored in iceboxes and transported to the laboratory for analysis with 6 h of 
collection31. After five days of incubation of samples in amber bottles, the BOD of the samples was determined 
using a biochemical oxygen demand meter (HACH, HQ 40 days)31. Detailed sampling strategy, sampling points’ 
description, and study area maps were as described in our previous study32.

Acinetobacter data acquisition.  The density of Acinetobacter species in the water samples was estimated 
via membrane filtration31. Briefly, 100 ml of serially diluted water samples were filtered in three independent 
iterations using a Ø47 mm 0.45 μm pore-sized cellulose membrane31. These membranes were aseptically placed 
onto freshly prepared Acinetobacter CHROMagar plates containing selective supplements (CHROMagar, Paris, 
France) per the manufacturer’s instruction. The plates were incubated at 37 °C for 24 h. All Acinetobacter colo-
nies presented as red colouration on CHROMagar plates post-incubation was counted and log transformed (log 
CFU/100 mL). All isolates were purified, validated as oxidase negative, and assessed by Acinetobacter-specific 
polymerase chain reaction. Fifty per cent (50%) of glycerol stocks of the pure culture was prepared and stored 
at – 80 °C.

Model development.  Pre‑processing and modelling procedure.  The datasets were first subjected to ex-
planatory and bivariate Pearson’s correlation (r) [Eq. (1)] analyses. The estimation of 95% confidence intervals 
(95% CI) of the r-value in bivariate correlation analysis was based on Fisher’s r-to-z transformation with bias 
adjustment [Eq. (2)]. To avoid multicollinearity, where the r-value between two variables ≥ 0.99, one of them was 
dropped randomly in subsequent models (see Table 2). Any of the two variables can be used in the implementa-
tion of the models. Also, for models’ implementation, the datasets were centre scaled such that the mean = 0 and 
the square root of the variance = 1 for variables. The dataset for DTR was not scaled.

where r is a Pearson’s correlation coefficient with possible values from − 1 to 1 inclusive. Here, u and w represent 
a pair of PVs and h is the sample size.

Acinetobacter density (AD) was modelled as a dependent variable of the rivers’ physicochemical variables 
(PVs). Hence, the conditional expected (CE) AD value at instances of PVs consisting of a vector of TEMP, DO, 
BOD, TSS, SAL, and pH is derived as CEAD|PVs(AD) . Thus, the estimation of the mean AD can be constructed 
as Eq. (3).

Equation (1) was implemented via 18 regression ML algorithms that have the robust capability to fit mul-
tidimensional variables of ordinal/continuous outcome, including linear regression with stepwise selection 
(LRSS), an RF, XGB, SVR, linear regression (LR), a gradient boosted machine (GBM), neural network (NNT) 
(6–6–1 network with 49 weights multiple; decay = 0.1), a KNN (k-nearest neighbour), M5P, a boosted regression 
tree (BRT), a Cubist regression, a decision tree (DTR), multivariate adaptive regression splines (MARS), ANN 
[with one 6-node hidden layers (ANN6), extreme learning machine (ELM), two 4- and 2- node hidden layers 
(ANN42), and two 3- and 3-node hidden layers (ANN33), and elastic net (ENR)]. The dataset (540 observa-
tions, 6 variables after explanatory feature selection) was split into a learning subset (70%) for the estimate of 
models’ coefficients and a validation subset (30%) for model substantiation. In all the ML implementations of 
Eq. (1), ten different learning-validation dataset pairs were generated via tenfold cross-validation accompanied 
by 3 repeats and 10 tune-lengths. Optimal hyper-parameters were derived and selected through a grid search 
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(3)CEAD|PVs(AD) ≈ f (PVs).
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algorithm. Models’ hyper-parameters are provided in detail in the supplemental material. Detailed discussion 
on the strengths and weaknesses and previous application of the various algorithms could be found elsewhere 
and their documentation.

The explanatory rendition of all variables contributions in the models was according to Eq. (4):

where t(j, w.) denotes the jth variable contribution measure to the model’s prediction at instance w and t0 is the 
average model prediction33.

Assessment of ML model’s performance.  The MLI algorithms model’s performance was determined 
against experimental data based on Eqs. (5)–(8):

where h = number of the sample; f0(): baseline model; ri: residual for the ith observation, U: matrix of PVs; w : 
vector of AD; f

(
θ̂ ,U

)
: model based on the training dataset; θ̂ : estimated values of the model’s coefficients; and 

ŵi : model’s prediction equivalent to wi.
RMSE was further employed in assessing mean dropout loss for variable importance following 1000 

permutation34,35.

Models’ sensitivity analysis.  Residual diagnostics and partial-dependence profiles of PVs on the pre-
dicted AD was generated to assess the model’s sensitivity. The partial-dependence profile of a model f() (i.e., 
anticipated/predicted AD value at an instance by the model) and the outcome variable Uj set at s (over the 
empirical/marginal distribution of U-j (h), i.e., the collective distribution of all other PVs without Uj ) is created 
according to Eqs. (9) and (10):

The implementation of all models was achieved in R v.4.1.2 software.

Results
A descriptive summary of the physicochemical variables and Acinetobacter density of the waterbodies is pre-
sented in Table 1. The mean pH, EC, TDS, and SAL of the waterbodies was 7.76 ± 0.02, 218.66 ± 4.76 µS/cm, 
110.53 ± 2.36 mg/L, and 0.10 ± 0.00 PSU, respectively. While the average TEMP, TSS, TBS, and DO of the rivers 
was 17.29 ± 0.21 °C, 80.17 ± 5.09 mg/L, 87.51 ± 5.41 NTU, and 8.82 ± 0.04 mg/L, respectively, the correspond-
ing DO5, BOD, and AD was 4.82 ± 0.11 mg/L, 4.00 ± 0.10 mg/L, and 3.19 ± 0.03 log CFU/100 mL respectively.

The bivariate correlation between paired PVs varied significantly from very weak to perfect/very strong posi-
tive or negative correlation (Table 2). In the same manner, the correlation between various PVs and AD varies. 
For instance, negligible but positive very weak correlation exist between AD and pH (r = 0.03, p = 0.422), and 
SAL (r = 0.06, p = 0.184) as well as very weak inverse (negative) correlation between AD and TDS (r = − 0.05, 
p = 0.243) and EC (r = − 0.04, p = 0.339). A significantly positive but weak correlation occurs between AD and 
BOD (r = 0.26, p = 4.21E−10), and TSS (r = 0.26, p = 1.09E−09), and TBS (r = 0.26, 1.71E-09) whereas, AD had a 
weak inverse correlation with DO5 (r = − 0.39, p = 1.31E−21). While there was a moderate positive correlation 
between TEMP and AD (r = 0.43, p = 3.19E−26), a moderate but inverse correlation occurred between AD and 
DO (r = − 0.46, 1.26E−29).

Model predicted AD and explanatory contribution of PVs.  The predicted AD by the 18 ML regres-
sion models varied both in average value and coverage (range) as shown in Fig. 1. The average predicted AD 
ranged from 0.0056 log units by M5P to 3.2112 log unit by SVR. The average AD prediction declined from SVR 
[3.2112 (1.4646–4.4399)], DTR [3.1842 (2.2312–4.3036)], ENR [3.1842 (2.1233–4.8208)], NNT [3.1836 (1.1399–
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4.2936)], BRT [3.1833 (1.6890–4.3103)], RF [3.1795 (1.3563–4.4514)], XGB [3.1792 (1.1040–4.5828)], MARS 
[3.1790 (1.1901–4.5000)], LR [3.1786 (2.1895–4.7951)], LRSS [3.1786 (2.1622–4.7911)], GBM [3.1738 (1.4328–
4.3036)], Cubist [3.1736 (1.1012–4.5300)], ELM [3.1714 (2.2236–4.9017)], KNN [3.1657 (1.4988–4.5001)], 
ANET6 [0.6077 (0.0419–1.1504)], ANET33 [0.6077 (0.0950–0.8568)], ANET42 [0.6077 (0.0692–0.8568)], and 
M5P [0.0056 (− 0.6024–0.6916)]. However, in term of range coverage XGB [3.1792 (1.1040–4.5828)] and Cubist 

Table 1.   Descriptive statistics of the physicochemical variables and Acinetobacter density of the waterbodies.

Variable Mean ± SE (min–max)

pH 7.76 ± 0.02 (5.05–9.11)

EC (µS/cm) 218.66 ± 4.76 (47.00–561.00)

TDS (mg/L) 110.53 ± 2.36 (23.00–279.00)

SAL (PSU) 0.10 ± 0.00 (0.02–0.27)

TEMP (°C) 17.29 ± 0.21 (4.74–28.64)

TSS (mg/L) 80.17 ± 5.09 (1.00–1244.00)

TBS (NTU) 87.51 ± 5.41 (4.00–1312.00)

DO (mg/L) 8.82 ± 0.04 (6.66–11.27)

DO5 (mg/L) 4.82 ± 0.11 (0.21–9.72)

BOD (mg/L) 4.00 ± 0.10 (0.52–10.19)

Acinetobacter (log CFU/100 mL) 3.19 ± 0.03 (1.00–4.56)

Table 2.   Bivariate correlational relationship among physicochemical variables and Acinetobacter density in 
waterbodies receiving municipal and hospital wastewater effluents. a. Estimation is based on Fisher’s r-to-z 
transformation with bias adjustment.

S/n Bivariate affinity r-value (95% CIa) p-value S/n Bivariate affinity r-value (95% CIa) p-value

1 pH vs EC 0.24 (0.16–0.32) 9.72E−09 30 SAL vs TBS 0.14 (0.06–0.22) 0.001

2 pH vs TDS 0.24 (0.16–0.31) 2.6E−08 31 SAL vs DO 0.15 (0.06–0.23) 0.001

3 pH vs SAL 0.24 (0.16–0.32) 1.94E−08 32 SAL vs DO5 − 0.32 (− 0.40 to − 0.24) 1.61E−14

4 pH vs TEMP 0.22 (0.13–0.30) 3.9E−07 33 SAL vs BOD 0.43 (0.36–0.50) 1.03E−25

5 pH vs TSS 0.13 (0.05–0.22) 0.002 34 SAL vs AD − 0.06 (− 0.14–0.03) 0.184

6 pH vs TBS 0.13 (0.05–0.21) 0.002 35 TEMP vs TSS 0.28 (0.20–0.35) 6.02E−11

7 pH vs DO − 0.17 (− 0.25 to − 0.09) 5.05E−05 36 TEMP vs TBS 0.28 (0.20–0.35) 6.43E−11

8 pH vs DO5 − 0.19 (− 0.27 to − 0.10) 1.15E−05 37 TEMP vs DO − 0.80 (− 0.83 to − 0.77) 8.4E−123

9 pH vs BOD 0.14 (0.06–0.23) 0.001 38 TEMP vs DO5 − 0.58 (− 0.63 to − 0.52) 1.13E−49

10 pH vs AD 0.03 (− 0.0–0.12) 0.422 39 TEMP vs BOD 0.34 (0.26–0.41) 1.19E−15

11 EC vs TDS 0.99 (0.99–0.99) 0 40 TEMP vs AD 0.43 (0.36–0.50) 3.19E−26

12 EC vs SAL 1.00 (1.00–1.00) 0 41 TSS vs TBS 1.00 (1.00–1.00) 0

13 EC vs TEMP − 0.07 (− 0.1–50.01) 0.097 42 TSS vs DO − 0.38 (− 0.45 to − 0.30) 8.77E−20

14 EC vs TSS 0.14 (0.06–0.22) 0.001 43 TSS vs DO5 − 0.21 (− 0.29 to − 0.13) 1.07E−06

15 EC vs TBS 0.14 (0.06–0.23) 0.001 44 TSS vs BOD 0.08 (0.00–0.17) 0.052

16 EC vs DO 0.13 (0.04–0.21) 0.003 45 TSS vs AD 0.26 (0.18–0.34) 1.09E−09

17 EC vs DO5 − 0.33 (− 0.4 to − 0.26) 1.89E−15 46 TBS vs DO − 0.38 (− 0.45 to − 0.30) 7.49E−20

18 EC vs BOD 0.43 (0.36–0.50) 3.35E−26 47 TBS vs DO5 − 0.20 (− 0.28 to − 0.12) 1.93E−06

19 EC vs AD − 0.04 (− 0.13–0.04) 0.339 48 TBS vs BOD 0.08 (− 0.01–0.16) 0.071

20 TDS–SAL 0.99 (0.98–0.99) 0 49 TBS vs AD 0.26 (0.17–0.33) 1.71E−09

21 TDS–TEMP − 0.05 (− 0.13–0.04) 0.267 50 DO vs DO5 0.52 (0.45–0.57) 4.9E−38

22 TDS vs TSS 0.14 (0.06–0.22) 0.001 51 DO vs BOD − 0.18 (− 0.26 to − 0.10) 2.19E−05

23 TDS vs TBS 0.14 (0.06–0.22) 0.001 52 DO vs AD − 0.46 (− 0.52–-0.39) 1.26E−29

24 TDS vs DO 0.10 (0.02–0.19) 0.016 53 DO5 vs BOD − 0.94 (− 0.95 to − 0.92) 2.3E−246

25 TDS vs DO5 − 0.35 (− 0.42 to − 0.28) 3.22E−17 54 DO5 vs AD − 0.39 (− 0.46 to − 0.32) 1.31E−21

26 TDS vs BOD 0.45 (0.38–0.51) 7.19E−28 55 BOD vs AD 0.26 (0.18–0.34) 4.21E−10

27 TDS vs AD − 0.05 (− 0.13–0.03) 0.243 30 SAL vs TBS 0.14 (0.06–0.22) 0.001

28 SAL vs TEMP − 0.10 (− 0.18–-0.01) 0.026 31 SAL vs DO 0.15 (0.06–0.23) 0.001

29 SAL vs TSS 0.14 (0.05–0.22) 0.001
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[3.1736 (1.1012–4.5300)] outshined other models because those models overestimated and underestimated AD 
at lower and higher values respectively when compared with raw data [3.1865 (1–4.5611)].

Figure 2 represents the explanatory contributions of PVs to AD prediction by the models. The subplot A-R 
gives the absolute magnitude (representing parameter importance) by which a PV instance changes AD predic-
tion by each model from its mean value presented in the vertical axis. In LR, an absolute change from the mean 
value of pH, BOD, TSS, DO, SAL, and TEMP corresponded to an absolute change of 0.143, 0.108, 0.069, 0.0045, 
0.04, and 0.004 units in the LR’s AD prediction response/value. Also, an absolute response flux of 0.135, 0.116, 
0.069, 0.057, 0.043, and 0.0001 in AD prediction value was attributed to pH, BOD, TSS, DO. SAL, and TEMP 
changes, respectively, by LRSS. Similarly, absolute change in DO, BOD, TEMP, TSS, pH, and SAL would achieve 
0.155, 0.061. 0.099, 0.144, and 0.297 AD prediction response changes by KNN. In addition, the most contributed 
or important PV whose change largely influenced AD prediction response was TEMP (decreases or decreases the 
responses up to 0.218) in RF. Summarily, AD prediction response changes were highest and most significantly 
influenced by BOD (0.209), pH (0.332), TSS (0.265), TEMP (0.6), TSS (0.233), SAL (0.198), BOD (0.127), BOD 
(0.11), DO (0.028), pH (0.114), pH (0.14), SAL(0.91), and pH (0.427) in XGB, BTR, NNT, DTR, SVR, M5P, ENR, 
ANET33, ANNET64, ANNET6, ELM, MARS, and Cubist, respectively.

Table 4 presents the eighteen regression algorithms’ performance predicting AD given the waterbodies PVs. 
In terms of MSE, RMSE, and R2, XGB (MSE = 0.0059, RMSE = 0.0770; R2 = 0.9912) and Cubist (MSE = 0.0117, 
RMSE = 0.1081, R2 = 0.9827) ranked first and second respectively, to outmatched other models in predicting 
AD. While MSE and RMSE metrics ranked ANET6 (MSE = 0.0172, RMSE = 0.1310), ANRT42 (MSE = 0.0220, 
RMSE = 0.1483), ANET33 (MSE = 0.0253, RMSE = 0.1590), M5P (MSE = 0.0275, RMSE = 0.1657), and RF 
(MSE = 0.0282, RMSE = 0.1679) in the 3, 4, 5, 6, and 7 position among the MLs in predicting AD, M5P (R2 = 0.9589 
and RF (R2 = 0.9584) recorded better performance in term of R-squared metric and ANET6 (MAD = 0.0856) 
and M5P (MAD = 0.0863) in term of MAD metric among the 5 models. But Cubist (MAD = 0.0437) XGB 
(MAD = 0.0440) in term of MAD metric.

The feature importance of each PV over permutational resampling on the predictive capability of the ML 
models in predicting AD in the waterbodies is presented in Table 3 and Fig. S1. The identified important vari-
ables ranked differently from one model to another, with temperature ranking in the first position by 10/18 of 
the models. In the 10 algorithms/models, the temperature was responsible for the highest mean RMSE dropout 
loss, with temperature in RF, XGB, Cubist, BRT, and NNT accounting for 0.4222 (45.90%), 0.4588 (43.00%), 
0.5294 (50.82%), 0.3044 (44.87%), and 0.2424 (68.77%) respectively, while 0.1143 (82.31%),0.1384 (83.30%), 
0.1059 (57.00%), 0.4656 (50.58%), and 0.2682 (57.58%) RMSE dropout loss was attributed to temperature in 
ANET42, ANET10, ELM, M5P, and DTR respectively. Temperature also ranked second in 2/18 models, including 
ANET33 (0.0559, 45.86%) and GBM (0.0793, 21.84%). BOD was another important variable in forecasting AD 
in the waterbodies and ranked first in 3/18 and second in 8/18 models. While BOD ranked as the first impor-
tant variable in AD prediction in MARS (0.9343, 182.96%), LR (0.0584, 27.42%), and GBM (0.0812, 22.35%), it 
ranked second in KNN (0.2660, 42.69%), XGB (0.4119, 38.60); BRT (0.2206, 32.51%), ELM (0.0430, 23.17%), 
SVR (0.1869, 35.77%), DTR (0.1636, 35.13%), ENR (0.0469, 21.84%) and LRSS (0.0669, 31.65%). SAL rank first 
in 2/18 (KNN: 0.2799; ANET33: 0.0633) and second in 3/18 (Cubist: 0.3795; ANET42: 0.0946; ANET10: 0.1359) 

Figure 1.   Comparison of ML model-predicted AD in the waterbodies. RAW​ raw/empirical AD value.
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of the models. DO ranked first in 2/18 (ENR [0.0562; 26.19%] and LRSS [0.0899; 42.51%]) and second in 3/18 
(RF [0.3240, 35.23%], M5P [0.3704, 40.23%], LR [0.0584, 27.41%]) of the models.

Figure 3 shows the residual diagnostics plots of the models comparing actual AD and forecasted AD values by 
the models. The observed results showed that actual AD and predicted AD value in the case of LR (A), LRSS (B), 
KNN (C), BRT 9F), GBM (G), NNT (H), DTR (I), SVR (J), ENR (L), ANET33 (M), ANER64 (N), ANET6 (O), 
ELM (P) and MARS (Q) skewed, and the smoothed trend did not overlap. However, actual AD and predicted AD 
values experienced more alignment and an approximately overlapped smoothed trend was seen in RF (D), XGB 
(E), M5P (K), and Cubist (R). Among the models, RF (D) and M5P (K) both overestimated and underestimated 
predicted AD at lower and higher values, respectively. Whereas XGB and Cubist both overestimated AD value 
at lower value with XGB closer to the smoothed trend that Cubist. Generally, a smoothed trend overlapping the 
gradient line is desirable as it shows that a model fits all values accurately/precisely.

The comparison of the partial-dependence profiles of PVs on AD prediction by the 18 modes using a unitary 
model by PVs presentation for clarity is shown in Figs. S2–S7. The partial-dependence profiles existed in i. a 
form where an average increase in AD prediction accompanied a PV increase (upwards trend), (ii) inverse trend, 
where an increase in a PV resulted in a decline AD prediction, (iii) horizontal trend, where increase/decrease 
in a PV yielded no effects on AD prediction, and (iv) a mixed trend, where the shape switch between 2 or more 
of i–iii. The models’ response varied with a change in any of the PV, especially changes beyond the breakpoints 
that could decrease or increase AD prediction response.

The partial-dependence profile (PDP) of DO for models has a downtrend either from the start or after a 
breakpoint(s) of nature ii and iv, except for ELM which had an upward trend (i, Fig. S2). TEMP PDP had an 
upward trend (i and iv) and, in most cases filled with one or more breakpoints but had a horizontal trend in 
LRSS (Fig. S3). SAL had a PDP of a typical downward trend (ii and iv) across all the models (Fig. S4). While 

Figure 2.   PV-specific contribution to eighteen ML models forecasting capability of AD in MHWE receiving 
waterbodies. The average baseline value of PV in the ML is presented on the y-axis. The green/red bars represent 
the absolute value of each PV contribution in predicting AD.
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pH displayed a typical downtrend PDP in LR, LRSS, NNT, ENR, ANN6, a downtrend filled with different 
breakpoint(s) was seen in RF, M5P, and SVR; other models showed a typical upward trend (i and iv) filled with 
breakpoint(s) (Fig. S5). The PDP of TSS showed an upward trend that returned to a plateau (DTR, ANN33, 
M5P, GBM, RF, XFB, BRT), after a final breakpoint or a declining trend (ANNT6, SVR; Fig. S6). The BOD PDP 
generally had an upward trend filled with breakpoint(s) in most models (Fig. S7).

Discussion
The present investigation studied the invaluableness of MLs in determining AD in waterbodies to shorten the 
turnaround time involved in routine determination of the emerging pathogen with significant public health 
priority and high case-fatality ratio. Jiang et al. previously demonstrated that ML models predicted and offered 
cost-effective risk assessment options for Vibrio spp. relative abundances on microplastics in the estuarine milieu 
based on easy-to-measure environmental variables30.

Characteristics of the waterbodies.  The pH of the waterbodies (5.05–9.11) did not satisfied South 
African water guidelines for irrigation purposes and recreational use of a pH range of 6.5–8.4 and 6.5–8.5, 
respectively36 but the average pH (7.76 ± 0.02) of the waterbodies met the FAO criteria37. In relation to the patho-
gen, Acinetobacter spp. are known to possess and survive under a wide pH (5–10) and temperature (− 20 to 
44 °C) range with an optimal long-term survival temperature of 4–22 °C no matter nutrient availability38.

The observed EC (47.00–561.00 µS/cm) of the waterbodies generally satisfied the WHO guidelines for 2500 
μS/cm in surface waters39, and the mean (218.66 ± 4.76 μS/cm) was in accepted limits of 400 µS/cm and 700 to 
3000 µS/cm WHO and FAO standard for irrigation water37. The EC of the waterbodies also fell in the categories of 
Class I (excellent: ≤ 250 µS/cm) and Class II (good: 250–750 µS/cm) irrigation water EC limits classification40. The 
EC concentrations of the waterbodies will generally impact fishing negatively, as an EC range of 0.15–0.50 μS/cm 
are necessary to support fisheries according to the USEPA (United States Environmental Protection Agency)41.

Table 3.   Feature importance of PVs over 100 permutational resampling on AD prediction. MDt_loss mean_
dropout_loss, %MDtloss = MDt_lossduetoaPV/baseline.

Rank

KNN RF XGB SVR M5P MARS

PE
MDt_
loss

%MDt 
loss PE

MDt_
loss

%MDt 
loss PE

MDt_
loss

%MDt 
loss PE

MDt_
loss

%MDt 
loss PE

MDt_
loss

%MDt 
loss PE

MDt_
loss

%MDt 
loss

0 Base-
line 0.6231 0 Base-

line 0.9198 0 Base-
line 1.0670 0 Base-

line 0.5226 0 Base-
line 0.9206 0 TSS 1.1912 233.28

1 SAL 0.2799 44.92 TEMP 0.4222 45.90 TEMP 0.4588 43.00 DO 0.2094 40.06 TEMP 0.4656 50.58 BOD 0.9343 182.96

2 BOD 0.2660 42.69 DO 0.3240 35.23 BOD 0.4119 38.60 BOD 0.1869 35.77 DO 0.3704 40.23 Base-
line 0.5107 100.00

3 TEMP 0.2645 42.45 BOD 0.3169 34.46 DO 0.3853 36.11 TEMP 0.1665 31.87 BOD 0.3241 35.20 SAL 0.5062 99.14

4 DO 0.2532 40.64 TSS 0.2254 24.51 SAL 0.3124 29.27 TSS 0.1403 26.85 SAL 0.2180 23.68 TEMP 0.4839 94.76

5 pH 0.1818 29.18 SAL 0.2034 22.11 TSS 0.2911 27.28 pH 0.1249 23.91 pH 0.1673 18.17 DO 0.2181 42.72

6 TSS 0.1528 24.53 pH 0.1572 17.10 pH 0.2159 20.24 SAL 0.1240 23.73 TSS 0.1516 16.46 pH 0.0000 0.00

Rank

Cubist BRT NNT DTR ENR ANET33

PE
MDt_
loss

%MDt 
loss PE

MDt_
loss

%MDt 
loss PE MDt loss

%MD 
loss PE

MDt_
loss

%MDt 
loss PE

MDt_
loss

%MDt 
loss PE

MDt_
loss

%MDt 
loss

0 Base-
line 1.0418 0 Base-

line 0.6785 0 Base-
line 0.3525 0 Base-

line 0.4657 0 Base-
line 0.2147 0 Base-

line 0.1218 0

1 TEMP 0.5294 50.82 TEMP 0.3044 44.87 TEMP 0.2424 68.77 TEMP 0.2682 57.58 DO 0.0562 26.19 SAL 0.0633 51.94

2 SAL 0.3795 36.43 BOD 0.2206 32.51 TSS 0.1284 36.42 BOD 0.1636 35.13 BOD 0.0469 21.84 TEMP 0.0559 45.86

3 BOD 0.3262 31.31 DO 0.1931 28.47 BOD 0.0736 20.88 pH 0.1101 23.64 SAL 0.0160 7.45 TSS 0.0529 43.43

4 DO 0.3118 29.93 TSS 0.1259 18.56 pH 0.0532 15.09 DO 0.0866 18.60 TSS 0.0146 6.80 DO 0.0424 34.82

5 TSS 0.2779 26.68 SAL 0.1072 15.80 DO 0.0354 10.04 TSS 0.0409 8.78 TEMP 0.0135 6.29 BOD 0.0418 34.29

6 pH 0.2190 21.02 pH 0.0799 11.77 SAL 0.0010 0.29 SAL 0.0252 5.40 pH 0.0035 1.65 pH 0.0128 10.47

Rank

ANET42 ANET10 ELM LR LRSS GBM

PE
MDt_
loss

%MDt 
loss PE

MDt_
loss

%MDt 
loss PE

MDt_
loss

%MDt 
loss PE

MDt_
loss

%MDt 
loss PE

MDt_
loss

%MDt 
loss PE

MDt_
loss

%MDt 
loss

0 Base-
line 0.1389 0 Base-

line 0.1662 0 Base-
line 0.1858 0 Base-

line 0.2129 0 Base-
line 0.2115 0 Base-

line 0.3633 0

1 TEMP 0.1143 82.31 TEMP 0.1384 83.30 TEMP 0.1059 57.00 BOD 0.0584 27.42 DO 0.0899 42.51 BOD 0.0812 22.35

2 SAL 0.0946 68.13 SAL 0.1359 81.76 BOD 0.0430 23.17 DO 0.0584 27.41 BOD 0.0669 31.65 TEMP 0.0793 21.84

3 BOD 0.0903 65.00 DO 0.1021 61.45 TSS 0.0344 18.52 TSS 0.0233 10.93 TSS 0.0233 11.01 TSS 0.0510 14.05

4 pH 0.0567 40.82 BOD 0.0680 40.94 SAL 0.0227 12.23 SAL 0.0101 4.75 SAL 0.0115 5.45 DO 0.0491 13.51

5 TSS 0.0381 27.41 pH 0.0559 33.66 DO 0.0025 1.32 TEMP 0.0058 2.73 pH 0.0045 2.11 SAL 0.0160 4.41

6 DO 0.0361 26.02 TSS 0.0546 32.84 pH − 0.0042 − 2.27 pH 0.0051 2.41 TEMP 0.0000 0.00 pH 0.0148 4.07
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Figure 3.   Comparison between actual and predicted AD by the eighteen ML models.
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TDS summed up organic and inorganic substances in the waterbodies but generally did not exceed the 
WHO’s maximum permissible limit of 1000 mg/L TDS in drinking water39. The TDS (23.00–279.00 mg/L) of the 
waterbodies followed the World Health Organization standard of a TDS < 300 mg/L (excellent) and its average 
(110.53 ± 2.36 mg/L) does not exceed the USEPA and WHO limit for drinking water (500 mg/L)41,42.

However, the TBS average values of the waterbodies exceeded the WHO guideline of 5 NTU39. Higher EC, 
TDS, and TBS in surface waters are generally attributed to wastewater and anthropogenic activities inputs43. Also, 
high levels of EC, TDS and TBS are known to impair visibility, cleanliness, safety, aesthetics, and recreational use 
of river waters44. The mean TSS (80.17 ± 5.09 mg/L) of the waterbodies exceeded the WHO (2006) wastewater 
discharge limit of 60 mg/L and exceeded the Australia and New Zealand (2000) guideline limits (TSS < 0.03 mg/L) 
of water quality for aquaculture45,46. In addition, the average BOD level (4.00 ± 0.10 mg/L) of the waterbodies 
complied with the tolerance limit of 5 mg/L in surface waters for aquatic life47. Higher level of BOD in waterbod-
ies depletes DO available for aquatic organisms48 and generally have negative impacts on fishing and fish harvest.

The average AD (3.19 ± 0.03 log CFU/100 mL) obtained in this study is comparable to AD reported from 
waterbody impacted by hospital wastewater, WWTP, informal settlements, and veterinary clinics effluents 
along Umhlangane River course in Durban South Africa49. The observed DO (8.82 ± 0.04 mg/L) and BOD 
(4.00 ± 0.10 mg/L) both suggested the facultative aerophilic characteristics of Acinetobacter and a relatively high 
nutrient composition of the rivers’ probable from wastewater effluents. The average EC in the waterbodies was 
218.66 ± 4.76 µS/cm. This shows high level of organic carbon (DOC) in the rivers. EC is an indirect indicator of 
DOC25,50,51 and found to have associations with Acinetobacter-specific ARG and other ARG abundance25,52,53. 
Generally, A. baumannii in the environment can survive irrespective of the level of DO54.

The finding from this study revealed that AD negligible—positive but very weak—correlated with pH 
(r = 0.03), and SAL (r = 0.06) and—negatively—with TDS (r = − 0.05) and EC (r = − 0.04) (Table 2). These results 
can be attributed to the ability of the Acinetobacter to survive under a wide range of harsh environmental con-
ditions. A significantly positive correlation between AD and BOD (r = 0.26), TSS (r = 0.26), and TBS (r = 0.26) 
indicated a considerable increase AD with an increase in nutrient and DOC pollution in aquatic environments 
(Fig. S7). Also, findings showed a moderate positive correlation between TEMP and AD (r = 0.43), suggesting 
that AD improves in abundance with an increase in temperature38 to specific breakpoints. AD moderately and 
inversely correlated with DO (r = − 0.46), indicating that Acinetobacter abundance increases with an anaerobic 
condition or low oxygen level.

Model predicted AD and explanatory contribution of PVs.  The predicted AD average and range 
values by the 18 ML models differed. The present study’s findings suggested that both lower/upper bound and 
the general trend characteristic of the prediction is far more important than the average prediction only. Most 
algorithms had higher average predictions but overestimated or underestimated AD values at lower and upper 
bounds, respectively. Thus, algorithms other than XGB and Cubist are not suitable for predicting AD in water-
bodies. Whereas the performance of most ML algorithms, such as RF, DTR, and MARS43,55, has been praised 
in terms of average predictions and regression metrics, most studies neglect consideration of the lower/upper 
bound and the general trend characteristic of their predictions—which are far significant when dealing with 
infectious organisms/poison that might have low infectivity dose/potent at a very low concentration. Several 
researchers also reported the superiority of XGB against several ML algorithms in predictive performance in 
terms of average prediction, and sensitivity43,55. Although a previous study showed that RF models achieved 
higher level of accuracy than XGB, SVR, and ENR in predicting the Vibrio spp. relative abundance on microplas-
tics, the actual trend characteristics including the lower/upper bounds were not reported30. The difference in the 
models’ trend coverage and boundary characteristics in AD predictions are attributable to the capability of the 
models to capture the complex interactions of co-occurrence levels/changes in different environmental variables 
at different degrees or concentrations. The performance of Cubist [3.1736 (1.1012–4.5300)] was also found to 
be comparable to XGB [3.1792 (1.1040–4.5828)] in term of trend and boundaries characteristics as both models 
outshined other models. A typical problem with most algorithms observed in this study was over-estimation 
and underestimation of AD at lower and higher concentrations, respectively. These limitations suggested that 
the models could raise false alarm of high risk at lower AD as well as undermine higher risk at higher concentra-
tions of AD. An indication that those models could not capture the nonlinear complex relationships between 
AD, PVs, and underlying anthropogenic inputs.

Nevertheless, the absolute contributions of individual PV change to models’ prediction of AD from their 
models attributed mean values varied (Fig. 2). The behaviours could be interpreted in term of the complex 
interactions among the PVs coupled with the prevailing anthropogenic fluxes in the waterbodies. Several PVs 
undergo fluctuations co-concurrently unlike behaviours in models in which other PVs are held constant to assess 
a particular PV’s effects on the outcome variable (AD). These interactions are capture to some great degrees by 
the algorithms leading to differences in the ranking of PVs contributions to AD predictions by the algorithms. 
Also, intrinsic characteristics of the distinct algorithms and data noise are major causes of differences in observed 
contributions of variables in ML models30.

Considering the overall performance of 18 AI-based models assayed in this study using four metrics, 
XGB (MSE = 0.0059, RMSE = 0.0770; R2 = 0.9912; MAD = 0.0440) and Cubist (MSE = 0.0117, RMSE = 0.1081, 
R2 = 0.9827; MAD = 0.0437) were the best models ranking in first and second position respectively, to out-
shined others in AD prediction in waterbodies (Table 4). XGB has reputation of been the best performer ML 
algorithms in most microbiological regression studies compared with others30. Cubist has been demonstrated 
to outperformed partial least squares, RF, and MARS in predicting soil property including soil total nitrogen, 
organic carbon, total sulphur, exchangeable calcium clay; sand, and cation exchange capacity, and pH and RF, 
classification, and regression trees, SVM, and KNN predicting NH4–N and COD in subsurface constructed 
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wetlands effluents56,57. In forecasting daily dissemination of COVID-19 vaccination, Cubist outperformed ENR, 
Gaussian Process, Slab (SPIKES), and Spikes ML algorithms58. Also, Cubist has been shown to outmatched 
XGB in predicting left ventricular pressures, volumes, and stresses59. An ensemble of XGB and Cubist could be 
further exploited for a better performance in forecasting AD in waterbodies. However, ANN (R2 = 0.953) was 
demonstrated to show a superior predictive coefficient over Cubist model (R2 = 0.946) and LR (R2 = 0.481) when 
assaying faecal coliform content in treated wastewater for reuse purposes60. Generally, while XGB involved 
ensemble of trees that capture multidimensional interactions/relationships, Cubist combined the strengths of 
both linear regression equations and a committee tree-based structural nodes for capture effectively linear and 
nonlinear multidimensional relationships among variables and outcome event56. The results show that ANET6, 
ANRT42, ANET33, M5P, and RF had MSE and RMSE that placed them in the 3, 4, 5, 6, and 7 position among the 
MLs in predicting AD, their performances are to be avoided for practical forecast of AD for preventive purposes.

Feature importance of PVs in predicting AD.  TEMP was the most important PV in predicting AD 
in the waterbodies and ranked by 10/18 ML-algorithms including RF, XGB, Cubist, BRT, and NNT accounting 
45.90%, 43.00%, 50.82%, 44.87%, and 68.77% in respective models, as well as 82.31%, 83.30%, 57.00%, 50.58%, 
and 57.58% RMSE dropout loss in ANET42, ANET10, ELM, M5P, and DTR respectively. The observed results 
can be explained in term of the direct and indirect influence TEMP had on other PVs and AD in the water-
bodies. DO decreases with increase temperature, favoured facultative aerobic lifestyle of Acinetobacter. Also, 
temperature increase decomposition of organic matters in waterbodies, thereby leading to high BOD contents 
providing more nutrients for AD and other microbial lives. Resultant increase in DOC in waterbodies is an 
indirect indicator of EC25,50,51 and found to have associations with Acinetobacter-specific ARG abundance in 
waterbodies25,52,53. BOD was another significant feature identified in forecasting AD in the waterbodies and 
ranked first in 3/18 [MARS (182.96%), LR (27.42%), and GBM (22.35%)] and second in 8/18 models [KNN 
(42.69%), XGB (38.60%); BRT (32.51%), ELM (23.17%), SVR (35.77%), DTR (35.13%), ENR (21.84%) and LRSS 
(31.65%)]. BOD is a measure of nutrient pollution from anthropogenic inputs such as wastewater effluents, 
agricultural activities, and environmental events such as rainwater runoffs among others. BOD also influence 
EC, TDS, and TBS in surface waters43 Whereas SAL was identified as first important feature in in 2/18 (KNN, 
ANET33) and second in 3/18 (Cubist, ANET42, ANET6) models, Acinetobacter can only survive relatively 
high SAL without improving its population density (Fig. S4). Unlike Vibrio spp, whose high density are linked 
with high salinity30 as it promotes genes expression and functional proteins61 and eventual vibrio growth and 
reproduction62, high SAL are not suitable for AD as its inhibitory for growth related gene expression.

The sensitivity analyses of the 18 ML predictive models of AD using the residual diagnostics plots found that 
LR (A), LRSS (B), KNN (C), BRT (F), GBM (G), NNT (H), DTR (I), SVR (J), ENR (L), ANET33 (M), ANER64 
(N), ANET6 (O), ELM (P) and MARS (Q) did not fit the data optimally. This imply that the models are not 
suitable for forecasting AD in waterbodies. Meanwhile models such as RF (D), XGB (E), M5P (K), and Cubist 
(R) fitted the data with more alignment and approximately overlapped smoothed trend between the actual and 
the predicted AD values, RF (D) and M5P (K) over-predicted and under-predicted AD at lower and higher 
extremities, respectively. Thus, could be interpreted as forecasting exaggerated risk (AD) at probable innocu-
ous level while weakening true risk at higher extremity. Such models are not suitable to assess real life events of 
AD in waterbodies. Although both XGB and Cubist predicted AD value slightly higher than the actual value at 
lower extremities, XGB had a closer fit smoothed trend than Cubist. Compared to other models assayed in this 

Table 4.   Predictive performance of eighteen regression algorithms in predicting AD in the waterbodies.

Rank ML MSE ML RMSE ML R2 ML MAD

1 XGB 0.0059 XGB 0.0770 XGB 0.9912 Cubist 0.0437

2 Cubist 0.0117 Cubist 0.1081 Cubist 0.9827 XGB 0.0440

3 ANET6 0.0172 ANET6 0.1310 M5P 0.9589 ANET6 0.0856

4 ANRT42 0.0220 ANET42 0.1483 RF 0.9584 M5P 0.0863

5 ANET33 0.0253 ANET33 0.1590 BRT 0.8140 ANET33 0.0987

6 M5P 0.0275 M5P 0.1657 KNN 0.7459 RF 0.1044

7 RF 0.0282 RF 0.1679 ANET6 0.6727 ANET42 0.1078

8 BRT 0.1261 BRT 0.3551 SVR 0.6294 SVR 0.2142

9 KNN 0.1723 KNN 0.4150 MARS 0.5913 KNN 0.2297

10 SVR 0.2475 SVR 0.4975 ANET42 0.5804 BRT 0.2385

11 MARS 0.2770 MARS 0.5263 DTR 0.5460 DTR 0.3146

12 DTR 0.3032 DTR 0.5506 ANET33 0.5178 MARS 0.3176

13 GBM 0.3547 GBM 0.5955 GBM 0.4768 GBM 0.4148

14 NNT 0.3834 NNT 0.6192 NNT 0.4259 NNT 0.4399

15 ENR 0.4853 ENR 0.6967 ENR 0.2732 LRSS 0.5421

16 LR 0.5036 LR 0.7097 LR 0.2570 LR 0.5774

17 LRSS 0.50506 LRSS 0.7107 LRSS 0.2549 ENR 0.6104

18 ELM 0.5447 ELM 0.7380 ELM 0.1965 ELM 0.6368
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study, the duo is the best and could be applied for AD AI-smart system design for water quality monitoring. A 
stacked model of XGB and Cubist may outmatch and overcome the limitation the two models had at the lower 
extremity of AD value.

The overall summary of the PDPs of the PVs on AD prediction by the 18 modes (Figs. S2–S7), found that 
any degree of change/flux in a particular PV especially changes beyond its breakpoints attracted a correspond-
ing varied response in AD which could decrease or increase AD prediction response. The various forms of 
partial-dependence profiles as explained in previous section also showed the direct/indirect/complex interac-
tions between a PV and AD coupled with the sensitivity of a model in mapping the relationships. Summarily, 
the increase in AD level (PDP) in most models equivalent to a decline trend in DO and SAL especially after its 
breakpoint(s) excluding ELM where DO had upward trend (i; Figs. S2 and S4). These patterns revealed a nonlin-
ear relationship between AD and the PVs. A near increase-by-increase relationship exist between TEMP and AD 
in most models coupled with one or more breakpoints. LRSS revealed a zero-relationship between AD and TEMP 
indicating its inability to map the relationship between them. Although Acinetobacter has been showed to have a 
broad pH range, a typical downtrend PDP of pH by LR, LRSS, NNT, ENR, ANN6—filled with breakpoint(s) in 
RF, M5P, and SVR while other models showed a typical upward—is informative of the weakness of the models 
as increasing in pH from 5.02 to 10 promotes Acinetobacter growth38. AD prediction responses aligned with a 
general increase in BOD regardless of breakpoint(s) in most models revealed important of nutrients for Acine‑
tobacter population density in waterbodies.

Furthermore, the strengths of this current study aside been the first that assessed AD in waterbodies receiving 
hospital and municipal wastewater effluents along their courses, two ML algorithms optimally and accurately 
predict AD, proven to be promising candidates for developing SAIS for AD determination and thereby shorten 
the turnaround time and reduce labour involved in experimental approaches. Also, the MLs were able to capture 
nonlinear complex multidimensional interactions between AD and PVs as well as their inherent anthropogenic 
fuels which conventional mathematical models could not robustly mapped63. In addition, the MLs are amenable 
to improvements and can be utilized across several water management landscape. However, the shortcoming of 
the present study lies in the lack of spatiotemporal covariates that could improve upon the ML models’ predic-
tions as stochastic distributions of waterborne pathogens are governed by both spatial extension and temporal 
duration across depth in water columns. Future studies should seek data from a wide range of socioeconomic 
activities/areas as well as include spatiotemporal and geospatial inputs in developing AI-based predictive frame-
work for AD determination.

Conclusion
The present study has proven SAIS as an evidence-based strategy to shorten the turnaround time involved in 
assessing AD in waterbodies; thereby minimizing exposure. The best models (XGB/Cubist) identified in this 
study could be developed into standalone SAIS (XGB/Cubist, XGB-Cubist ensemble, or web app) or integrated 
into existing instrumentations for PV estimation in waterbodies to enhance timely decision-making of microbio-
logical qualities of waterbodies for irrigation and other purposes. The study also unveiled temperature and BOD 
as significant candidates for predicting AD in waterbodies in most models. Finally, AD in waterbodies could 
accurately and reliably predicted via AI-based smart systems that rely on waterbody physicochemical variables’ 
dynamics in a low-cost and time-effective manner.

Data availability
All data generated or analysed during this study are included in this published article and its Supplementary 
Information Files.

Received: 6 March 2023; Accepted: 10 May 2023

References
	 1.	 Sofia, C., Angela, R., Luminiţa, S. I., Raluca, F. & Iuliana, T. Cultural and biochemical characteristics of Acinetobacter spp. strains 

isolated from hospital units. J. Prev. Med. 12(3–4), 35–42 (2004).
	 2.	 Krizova, L., Maixnerova, M., Sedo, O. & Nemec, A. Acinetobacter bohemicus sp. nov. widespread in natural soil and water ecosys-

tems in the Czech Republic. Syst. Appl. Microbiol. 37, 467–473 (2014).
	 3.	 Gundi, V. A., Dijkshoorn, L., Burignat, S., Raoult, D. & La Scola, B. Validation of partial rpoB gene sequence analysis for the 

identification of clinically important and emerging Acinetobacter species. Microbiol. 155, 2333–2341 (2009).
	 4.	 Nemec, A. et al. Genotypic and phenotypic characterization of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex 

with the proposal of Acinetobacter pittii sp. nov. (formerly Acinetobacter genomic species 3) and Acinetobacter nosocomialis sp. 
nov. (formerly Acinetobacter genomic species 13TU). Res. Microbiol. 162, 393–404 (2011).

	 5.	 Nemec, A. et al. Acinetobacter seifertii sp. nov., a member of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex 
isolated from human clinical specimens. Int. J. Syst. Evol. Microbiol. 65(Pt 3), 934–942. https://​doi.​org/​10.​1099/​ijs.0.​000043 (2015).

	 6.	 Choi, J. Y. et al. Acinetobacter species isolates from a range of environments: species survey and observations of antimicrobial 
resistance. Diagn. Microbiol. Infect Dis. 74, 177–180 (2012).

	 7.	 Choi, J. Y. et al. Acinetobacter kookii sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 63, 4402–4406 (2013).
	 8.	 Maravić, A. et al. Urban riverine environment is a source of multidrug-resistant and ESBL-producing clinically important Acine‑

tobacter spp. Environ. Sci. Pollut. Res. 23, 3525–3535 (2016).
	 9.	 Bhuyan, S. Studies on biosurfactant/ bioemulsifier by Acinetobacter genospecies & Brevibacterium halotolerans isolated from 

marine environments. Ph. D. thesis, University of Pune, India (2012).
	10.	 Luo, Q. J. et al. Isolation and characterization of marine diesel oil-degrading Acinetobacter sp. strain Y2. Ann. Microbiol. 6(2), 

633–640 (2013).
	11.	 Peleg, A. Y., Seifert, H. & Paterson, D. L. Acinetobacter baumannii: Emergence of a successful pathogen. Clin. Microbiol. Rev. 21, 

538–582. https://​doi.​org/​10.​1128/​CMR.​00058-​07 (2008).

https://doi.org/10.1099/ijs.0.000043
https://doi.org/10.1128/CMR.00058-07


13

Vol.:(0123456789)

Scientific Reports |         (2023) 13:7749  | https://doi.org/10.1038/s41598-023-34963-6

www.nature.com/scientificreports/

	12.	 Adegoke, A. A., Mvuyo, T. & Okoh, A. I. Ubiquitous Acinetobacter species as beneficial commensals but gradually being embold-
ened with antibiotic resistance genes. J. Basic Microbiol. 52, 620–627 (2012).

	13.	 Mujumdar, A. S. & Balu, C. Isolation, biotyping, biochemical and physiological characterization of marine Acinetobacter isolated 
from west coast of India. Int. J. Curr. Microbiol. Appl. Sci. 2, 277–301 (2015).

	14.	 Palavecino, E., Greene, S. R. & Kilic, A. Characterisation of carbapenemase genes and antibiotic resistance in carbapenem-resistant 
Acinetobacter baumannii between 2019 and 2022. Infect. Dis. 54(12), 951–953. https://​doi.​org/​10.​1080/​23744​235.​2022.​21131​37 
(2022).

	15.	 Hubeny, J. et al. Characterization of carbapenem resistance in environmental samples and Acinetobacter spp. isolates from waste-
water and river water in Poland. Sci. Total Environ. 822, 153–437 (2022).

	16.	 Eze, E. C., El Zowalaty, M. E. & Pillay, M. Antibiotic resistance and biofilm formation of Acinetobacter baumannii isolated from 
high-risk effluent water in tertiary hospitals in South Africa. J. Global Antimicrob. Resist. 27, 82–90 (2021).

	17.	 Ana, C., Joana, S. & Paula, T. Acinetobacter spp. in food and drinking water: A review. Food Microbiol. 95, 103675. https://​doi.​org/​
10.​1016/j.​fm.​2020.​103675 (2021).

	18.	 Berlau, J., Aucken, H. M., Houang, E. & Pitt, T. L. Isolation of Acinetobacter spp. including a Baumannii from vegetables: Implica-
tions for hospital-acquired infections. J. Hosp. Infect. 42, 201–204. https://​doi.​org/​10.​1053/​jhin.​1999.​0602 (1999).

	19.	 Houang, E. T. et al. Epidemiology and infection control implications of Acinetobacter spp in Hong Kong. J. Clin. Microbiol. 39, 
228–234 (2001).

	20.	 Ruimy, R. et al. Organic and conventional fruits and vegetables contain equivalent counts of Gram-negative bacteria expressing 
resistance to antibacterial agents. Environ. Microbiol. 12, 608–615 (2010).

	21.	 Dahiru, M. & Enabulele, O. Incidence of Acinetobacter in fresh carrot (Daucus carota subsp. sativus). Int. J. Biol. Biomol. Agric. 
Food Biotech. Eng. 9, 1203–1207 (2015).

	22.	 Al Atrouni, A. et al. First report of oxa-72-producing Acinetobacter calcoaceticus in Lebanon. New Microb. New Infect. 9, 11–12 
(2016).

	23.	 Carvalheira, A., Silva, J. & Teixeira, P. Lettuce and fruits as a source of multidrug resistant Acinetobacter spp. Food Microbiol. 64, 
119–125 (2017).

	24.	 Zekar, F. M. et al. From farms to markets: Gram-negative bacteria resistant to third-generation cephalosporins in fruits and veg-
etables in a region of north Africa. Front. Microbiol. 8, 1569 (2017).

	25.	 Murphy, A., Barich, D., Fennessy, M. S. & Slonczewski, J. L. An Ohio state scenic river shows elevated antibiotic resistance genes, 
including Acinetobacter tetracycline and macrolide resistance, downstream of wastewater treatment plant effluent. Microbiol. 
Spectr. 9, e00941-e1021. https://​doi.​org/​10.​1128/​Spect​rum.​00941-​21 (2021).

	26.	 Yang, X. et al. Machine learning-assisted evaluation of potential biochars for pharmaceutical removal from water. Environ. Res. 
214, 113953. https://​doi.​org/​10.​1016/j.​envres.​2022.​113953 (2022).

	27.	 Liu, F., Jiang, X. & Zhang, M. Global burden analysis and AutoGluon prediction of accidental carbon monoxide poisoning by 
global burden of disease study 2019. Environ. Sci. Pollut. Res. Int. 29(5), 6911–6928 (2022).

	28.	 Forrest, I. S. et al. Machine learning-based marker for coronary artery disease: derivation and validation in two longitudinal 
cohorts. Lancet 401, 215–225. https://​doi.​org/​10.​1016/​S0140-​6736(22)​02079-7 (2023).

	29.	 Guzman, C. B. et al. Comparing stormwater quality and watershed typologies across the United States: A machine learning 
approach. Water Res. 216, 118283. https://​doi.​org/​10.​1016/j.​watres.​2022.​118283 (2022).

	30.	 Jiang, J. et al. Machine learning to predict dynamic changes of pathogenic Vibrio spp. abundance on microplastics in marine 
environment. Environ. Pollut. 305, 119257. https://​doi.​org/​10.​1016/j.​envpol.​2022.​119257 (2022).

	31.	 American Public Health Association (APHA). Standard Methods for Examination of Water and Wastewater 21st edn. (APHA, 
2005).

	32.	 Adewoyin, M. A., Ebomah, K. E. & Okoh, A. I. Antibiogram profile of Acinetobacter baumannii recovered from selected freshwater 
resources in the Eastern Cape Province, South Africa. Pathogens 10(9), 1110 (2021).

	33.	 Biecek, P. & Burzykowski, T. Explanatory Model Analysis: Explore (Chapman and Hall/CRC, 2021).
	34.	 Namkung, J. Machine learning methods for microbiome studies. J. Microbiol. 58(3), 206–216 (2020).
	35.	 Hansen, L. K. Stochastic linear learning: Exact test and training error averages. Neural Netw. 6(3), 393–396 (1993).
	36.	 DWAF (Department of Water Affairs and Forestry). Water Quality Guidelines Vol. 8, 2–68 (Department of Water Affairs and 

Forestry, 1996).
	37.	 Ayers, R. S. & Westcott, D. W. Water Quality for Agriculture; FAO Irrigation and Drainage Paper, No. 29 (FAO, 1985).
	38.	 Dekic, S., Hrenovic, J., Ivankovic, T. & van Wilpe, E. Survival of ESKAPE pathogen Acinetobacter baumannii in water of different 

temperatures and pH. Water Sci. Technol. 78(5–6), 1370–1376 (2018).
	39.	 World Health Organization. Guidelines for Drinking-Water Quality (World Health Organization, 2017).
	40.	 Abbas, H., Khan, M. Z., Begum, F., Raut, N. & Gurung, S. Physicochemical properties of irrigation water in western Himilayas, 

Pakistan. ater Supply 20, 3368–3379 (2020).
	41.	 USEPA. National Primary Drinking Water Regulations EPA 816-F-09–004 (USEPA, 2009).
	42.	 WHO. Guidelines for Drinking-Water Quality, 4th Edition. https://​www.​who.​int/​publi​catio​ns/i/​item/​97892​41548​151 (2011).
	43.	 Ibrahim, B. et al. Modelling of arsenic concentration in multiple water sources: A comparison of different machine learning 

methods. Groundw. Sustain. Dev. 17, 100745 (2022).
	44.	 Health Canada. Guidelines for Canadian recreational water quality. In: Water, Air, and Climate Change Bureau, Healthy Environ‑

ments and Consumer Safety Branch, 3rd edn. (Health Canada, 2012).
	45.	 World Health Organization. Guidelines for the Safe Use of Wastewater, Excreta and Greywater in Agriculture and Aquaculture. 

(World Health Organization, 2006). https://​apps.​who.​int/​iris/​handle/​10665/​78265.
	46.	 Australian and New Zealand Guidelines for Fresh and Marine Water Quality. The Guidelines: Volume 1. (2000). https://​www.​water​

quali​ty.​gov.​au/​anz-​guide​lines/​resou​rces/​previ​ous-​guide​lines/​anzecc-​armca​nz-​2000.
	47.	 Bhatnagar, A. & Devi, P. Water quality guidelines for the management of pond fish Culture. Int. J. Environ. Sci. 5, 1980–2009 (2013).
	48.	 Pleto, J. V. R., Migo, V. P. & Arboleda, M. D. M. Preliminary water and sediment quality assessment of the meycauayan river seg-

ment of the Marilao-Meycauayan-Obando River System in Bulacan, the Philippines. J. Health Pollut. 10, 200609 (2020).
	49.	 Govender, R., Amoah, I. D., Kumari, S., Bux, F. & Astenström, T. Detection of multidrug resistant environmental isolates of 

Acinetobacter and Stenotrophomonas maltophilia: A possible threat for community acquired infections?. J. Environ. Sci. Health. A 
56(2), 213–225. https://​doi.​org/​10.​1080/​10934​529.​2020.​18657​47 (2021).

	50.	 Monteiro, M. T. F. et al. Dissolved organic carbon concentration and its relationship to electrical conductivity in the waters of a 
stream in a forested Amazonian blackwater catchment. Plant Ecol. Divers. 7, 205–213. https://​doi.​org/​10.​1080/​17550​874.​2013.​
820223 (2014).

	51.	 Ye, L. L., Wu, X. D., Liu, B., Yan, D. Z. & Kong, F. X. Dynamics of dissolved organic carbon in eutrophic Lake Taihu and its tribu-
taries and their implications for bacterial abundance during autumn and winter. J. Freshw. Ecol. 30, 129–142. https://​doi.​org/​10.​
1080/​02705​060.​2014.​939108 (2015).

	52.	 Garner, E. et al. Metagenomic characterization of antibiotic resistance genes in full-scale reclaimed water distribution systems and 
corresponding potable systems. Environ. Sci. Technol. 52, 6113–6125. https://​doi.​org/​10.​1021/​acs.​est.​7b054​19 (2018).

	53.	 Wang, C. & Hong, P.-Y. Genome-resolved metagenomics and antibiotic resistance genes analysis in reclaimed water distribution 
systems. Water 12, 3477 (2020).

https://doi.org/10.1080/23744235.2022.2113137
https://doi.org/10.1016/j.fm.2020.103675
https://doi.org/10.1016/j.fm.2020.103675
https://doi.org/10.1053/jhin.1999.0602
https://doi.org/10.1128/Spectrum.00941-21
https://doi.org/10.1016/j.envres.2022.113953
https://doi.org/10.1016/S0140-6736(22)02079-7
https://doi.org/10.1016/j.watres.2022.118283
https://doi.org/10.1016/j.envpol.2022.119257
https://www.who.int/publications/i/item/9789241548151
https://apps.who.int/iris/handle/10665/78265
https://www.waterquality.gov.au/anz-guidelines/resources/previous-guidelines/anzecc-armcanz-2000
https://www.waterquality.gov.au/anz-guidelines/resources/previous-guidelines/anzecc-armcanz-2000
https://doi.org/10.1080/10934529.2020.1865747
https://doi.org/10.1080/17550874.2013.820223
https://doi.org/10.1080/17550874.2013.820223
https://doi.org/10.1080/02705060.2014.939108
https://doi.org/10.1080/02705060.2014.939108
https://doi.org/10.1021/acs.est.7b05419


14

Vol:.(1234567890)

Scientific Reports |         (2023) 13:7749  | https://doi.org/10.1038/s41598-023-34963-6

www.nature.com/scientificreports/

	54.	 Dekic, S., Jasna, H., van Erna, W., Chantelle, V. & Ivana, G.-B. Survival of emerging pathogen Acinetobacter baumannii in water 
environment exposed to different oxygen conditions. Water Sci. Technol. 80(8), 1581–1590. https://​doi.​org/​10.​2166/​wst.​2019.​408 
(2019).

	55.	 Zhuang, X. & Zhou, S. The prediction of self-healing capacity of bacteria-based concrete using machine learning approaches. 
Comput. Mater. Continua 59, 1–10 (2019).

	56.	 Clingensmith, C. M. & Grunwald, S. Predicting soil properties and interpreting vis-NIR models from across Continental United 
States. Sensors 22, 3187. https://​doi.​org/​10.​3390/​s2209​3187 (2022).

	57.	 Nguyen, X. C. et al. Developing a new approach for design support of subsurface constructed wetland using machine learning 
algorithms. J. Environ. Manag. 301, 113868. https://​doi.​org/​10.​1016/j.​jenvm​an.​2021.​113868 (2022).

	58.	 Oyewola, D. O., Dada, E. G. & Misra, S. Machine learning for optimizing daily COVID-19 vaccine dissemination to combat the 
pandemic. Health Technol. 12, 1277–1293. https://​doi.​org/​10.​1007/​s12553-​022-​00712-4 (2022).

	59.	 Dabiri, Y. et al. Prediction of left ventricular mechanics using machine learning. Front. Phys. https://​doi.​org/​10.​3389/​fphy.​2019.​
00117 (2019).

	60.	 Sbahi, S., Ouazzani, N., Hejjaj, A. & Mandi, L. Neural network and cubist algorithms to predict fecal coliform content in treated 
wastewater by multi-soil-layering system for potential reuse. J. Environ. Qual. 50, 144–157. https://​doi.​org/​10.​1002/​jeq2.​20176 
(2021).

	61.	 Naughton, L. M., Blumerman, S. L., Carlberg, M. & Boyd, E. F. Osmoadaptation among Vibrio species and unique genomic features 
and physiological responses of Vibrio parahaemolyticus. Appl. Environ. Microbiol. 75(9), 2802–2810. https://​doi.​org/​10.​1128/​AEM.​
01698-​08 (2009).

	62.	 Whitaker, W. B., Parent, M. A. & Naughton, L. M. Modulation of responses of Vibrio parahaemolyticus O3:K6 to pH and tem-
perature stresses by growth at different salt concentrations. Appl. Environ. Microbiol. 76(14), 4720–4729. https://​doi.​org/​10.​1128/​
AEM.​00474-​10 (2010).

	63.	 Long, B. et al. Machine learning-informed and synthetic biology-enabled semi-continuous algal cultivation to unleash renewable 
fuel productivity. Nat. Commun. 13(1), 1–11 (2022).

Acknowledgements
The National Research Foundation, South Africa is acknowledged for the grant with Unique Grant No. 135441. 
Adewoyin appreciated The World Academy of Science, Italy (NRF/TWAS) for founding with Grant Numbers 
99767 and 116387. Ekundayo thanked the African-German Network of Excellence in Science (AGNES), the 
Federal Ministry of Education and Research (BMBF) and the Alexander von Humboldt Foundation (AvH) for 
financial support.

Author contributions
Conceptualization: T.C.E.; A.M.A.; Investigation: T.C.E.; A.M.A.; Software and Formal analysis: T.C.E.; Resources: 
A.I.O; Writing—original draft preparation and interpretations: T.C.E.; A.M.A; A.I.O.; E.O.I.; O.A.I.; Supervi-
sion: A.I.O.; Funding acquisition: A.I.O.; critical review for intellectual contents: T.C.E.; A.M.A.; A.I.O.; E.O.I.; 
O.A.I.; All authors contributed to writing—review and editing, and approved the final version of the manuscript 
for publication.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​023-​34963-6.

Correspondence and requests for materials should be addressed to T.C.E.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

https://doi.org/10.2166/wst.2019.408
https://doi.org/10.3390/s22093187
https://doi.org/10.1016/j.jenvman.2021.113868
https://doi.org/10.1007/s12553-022-00712-4
https://doi.org/10.3389/fphy.2019.00117
https://doi.org/10.3389/fphy.2019.00117
https://doi.org/10.1002/jeq2.20176
https://doi.org/10.1128/AEM.01698-08
https://doi.org/10.1128/AEM.01698-08
https://doi.org/10.1128/AEM.00474-10
https://doi.org/10.1128/AEM.00474-10
https://doi.org/10.1038/s41598-023-34963-6
https://doi.org/10.1038/s41598-023-34963-6
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Machine learning-guided determination of Acinetobacter density in waterbodies receiving municipal and hospital wastewater effluents
	Materials and methods
	Sample collection and in-situ determination of physicochemical data. 
	Acinetobacter data acquisition. 
	Model development. 
	Pre-processing and modelling procedure. 

	Assessment of ML model’s performance. 
	Models’ sensitivity analysis. 

	Results
	Model predicted AD and explanatory contribution of PVs. 

	Discussion
	Characteristics of the waterbodies. 
	Model predicted AD and explanatory contribution of PVs. 
	Feature importance of PVs in predicting AD. 

	Conclusion
	References
	Acknowledgements


