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Enhanced performance 
of nanocomposite membrane 
developed on sulfonated poly (1, 
4‑phenylene ether‑ether‑sulfone) 
with zeolite imidazole frameworks 
for fuel cell application
Bita Soleimani 1, Ali Haghighi Asl 1*, Behnam Khoshandam 1 & Khadijeh Hooshyari 2

Proton exchange membrane fuel cells (PEMFC) have received a lot of interest and use metal–organic 
frameworks (MOF)/polymer nanocomposite membranes. Zeolite imidazole framework‑90 (ZIF‑90) 
was employed as an addition in the sulfonated poly (1, 4‑phenylene ether‑ether‑sulfone) (SPEES) 
matrix in order to investigate the proton conductivity in a novel nanocomposite membrane made 
of SPEES/ ZIF. The high porosity, free surface, and presence of the aldehyde group in the ZIF‑90 
nanostructure have a substantial impact on enhancing the mechanical, chemical, thermal, and proton 
conductivity capabilities of the SPEES/ZIF‑90 nanocomposite membranes. The results indicate that 
the utilization of SPEES/ZIF‑90 nanocomposite membranes with 3wt% ZIF‑90 resulted in enhanced 
proton conductivity of up to 160 mS/cm at 90 °C and 98% relative humidity (RH). This is a significant 
improvement compared to the SPEES membrane which exhibited a proton conductivity of 55 mS/cm 
under the same conditions, indicating a 1.9‑fold increase in performance. Furthermore, the SPEES/
ZIF‑90/3 membrane exhibited a remarkable 79% improvement in maximum power density, achieving 
a value of 0.52 W/cm2 at 0.5 V and 98% RH, which is 79% higher than that of the pristine SPEES 
membrane.

The adverse impact of the widespread use of fossil fuels on the environment, specifically with respect to climate 
change, has resulted in significant efforts to identify and implement feasible and sustainable alternatives. As a 
result, there is an increasing focus on exploring and utilizing environmentally-friendly renewable energy sources, 
including hydrogen. One of the energy production systems that utilizes hydrogen fuel is fuel  cells1. Researchers 
have taken an interest in the Proton Exchange Membrane Fuel Cell (PEMFC) as a green energy technology among 
various fuel cells, owing to its distinctive features and benefits. These advantages include high start-up speed, 
efficiency, and current density, along with a low operating temperature and emission-free  operation2. Actually, 
one of the most essential parts of PEMFCs is the proton exchange membrane, which directly determines whether 
the fuel cell performs successfully or not. Therefore, preparing a suitable membrane for application and accelerat-
ing the commercialization process in PEMFC has been one of the main goals of many  researchers3. A number of 
non-flourinated polymers, such as sulfonated poly (ether ether ketone)4, sulfonated poly (phthalazinone ether 
ketone)5,6, poly vinyl  alcohol7, and sulfonated poly ether  sulfone8–10, have recently been investigated as alternatives 
to commercial Nafion. A new family of coordination polymers known as metal–organic frameworks (MOFs) 
has been identified that is made up of metal clusters attached to organic ligands that have a three-dimensional 
crystalline  structure11. MOFs have various applications such as storage, separation, and catalysis and are also 
used as biological carriers in  medicine12–15. Among the various applications, a large number of MOFs have shown 
good potential for proton and ion  conduction16–18. MOFs have a high proton conductivity due to their highly 
flexible design, free surface, and high  porosity11,19. The ZIF belongs to the large family of MOFs and is made by 
connecting a divalent metal ion (often  Zn2+) to four imidazole anionic linkers. It has characteristics like a very 
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high surface area, great thermal and chemical stability, and a flexible and controllable  structure20,21. The imidazole 
ring’s presence, according to Zhang  group22, increased proton conductivity.

Therefore, nanocomposite membranes, which are a combination of MOFs and polymers, are one of the 
bright perspectives in  PEMFC11; because the good properties of MOFs incorporated in the polymer lead to the 
production of new nanocomposite membranes. Numerous reports on the production of new nanocomposite 
membranes that combine polymer and various MOFs such as ZIF-823–26, UIO-6627,28, HKUST-129, CPO-27-Mg30, 
MIL -53-Al30, MIL-101 (Cr)31,32, and MOF-80833, have been performed.

For instance, SPEEK/sulfonated-MIL-101 (Cr) composite membranes were constructed by Li et al.32. When 
compared to a pure SPEEK membrane with a conductivity of 156 mS/cm at 75 °C and 100% relative humidity 
(RH), the research findings revealed that the newly developed composite membrane exhibited a significantly 
higher proton conductivity of 306 mS/cm at the same temperature and humidity conditions, which represents an 
increase of 96.2%. Maiti et al.34 utilized molecular dynamics simulations to investigate the potential advantages of 
incorporating Propylsulfonic acid-functionalized graphene oxide (PrSGO) into a blend of SPEEK and sulfonated 
poly(benzimidazole) (SPBI) to enhance several material properties, including glass transition temperature (Tg), 
mechanical strength, proton conductivity, and fuel cell performance. Notably, the XSPEEK/SPBI/PrSGO nano-
composite membrane containing 4 wt. % PrSGO showed a significant increase in proton conductivity, achieving 
a value of 170 mS/cm at 100% RH and 90 °C. The proton conductivity of the novel ZIF-8@geraphen oxide (GO)/
Nafion nanocomposite membranes was measured by Yang et al.35. They discovered that the novel membrane’s pro-
ton conductivity was 280 mS/cm at 120 °C and 40% RH. The SPEEK/ZIF-8/carbon nanotube(CNT) (ZCN) nano-
composite membranes were studied by Sun et al.24. At 120 °C and 30% RH, the SPEEK/ZCN-2.5 nanocomposite 
membrane’s proton conductivity was 50 mS/cm. In a different report, Wu et al.27, combined S-UiO-66@GO with 
SPEEK. They discovered that at 70 °C (95% RH) and 100 °C (40% RH), respectively, the proton conductivity of 
the SPEEK/S-UiO-66@GO-10 composite membrane obtained 268 mS/cm and 165.7 mS/cm. In their study, Kim 
et al.36 investigated the potential of using phenylsulfonic-acid functionalized and unzipped graphite nanofiber 
 (SO3H-UGNF) to develop a nanohybrid membrane by incorporating it with SPEEK for a PEFC operating under 
low RH conditions. Their findings revealed an optimized SPEEK/SO3H-UGNF (1 wt%) nanohybrid membrane 
that exhibited improved properties such as excellent proton conductivity, increased power density, and greater 
durability when compared to the SPEEK membrane. Vinothkannan et al.37 The study presents a hybrid membrane 
architecture composed of poly arylene propane biphenyl (FPAPB) and SPEEK blended with Iron oxide  (Fe3O4) 
anchored functionalized graphene oxide  (Fe3O4-FGO), which improves proton conductivity, water absorption, 
and ion exchange capacity while maintaining dimensional stability. The peak proton conductivity of the aligned 
quadratic hybrid membrane is 11.13 mS/cm at 120 °C and 20% RH, outperforming the pristine SP membrane 
and Nafion-112 membrane while exhibiting lower gas permeability.

In a separate study, Rao et al.38 fabricated composite membranes comprised of UIO-66-NH2@GO/Nafion. 
Their research demonstrated that the proton conductivity of these membranes reached 303 mS/cm when tested 
under conditions of 90 °C and 95% relative humidity. Barjola et al.24, conducted measurements to determine 
the conductivity of protons in novel membranes such as SPEEK/ZMix, (ZMix is made by combining ZIF-7 and 
ZIF-8), SPEEK/Z8 (ZIF-8), and SPEEK/Z7 (ZIF-7). The results of their study indicated that at a temperature of 
120 °C, the proton conductivity for these new membranes was reported to be 8.5 mS/cm, 2.5 mS/cm, and 1.6 mS/
cm, respectively. Zhang et al.39, have developed new composite membranes composed of sulfonated poly arylene 
ether ketones (SPAEKs) and Imidazole-MOF-801 (Im-MOF-801). These membranes exhibit high proton conduc-
tivity, with a value of 128 mS/cm at 90 °C and 100% RH. Notably, the composite membrane’s proton conductivity 
significantly surpassed that of SPAEKs polymer operating under identical conditions. Duan et al.40 developed the 
use of a bi-functionalized MOF based on amino-sulfonic acid, along with a sulfonate nano fiber (SNF)- PAEK 
membrane. The modification method employed in the study was a one-step process. The results showed that the 
MNCS@SNF-PAEK-1.5 membrane exhibited the highest proton conductivity of 188 mS/cm, which holds great 
promise in improving the performance of PEMs by utilizing the MOFs and sulfonated polymers.

Compared to other composite membranes composed of ZIFs, ZIF-90 demonstrates an exceptional level of 
chemical flexibility, primarily attributed to the presence of an aldehyde group. This functional group plays a 
crucial role in enhancing the membrane’s water retention capability, resulting in remarkable performance char-
acteristics, such as superior thermal and chemical stability, heightened proton conductivity, and increased water 
uptake. Consequently, ZIF-90 surpasses previously published ZIF-8 and ZIF-7 membranes in these  aspects41,42. 
Sulfonated poly (1, 4-phenylene ether-ether-sulfone) (SPEES) is a sulfonated aromatic polymer that exhibits 
robust mechanical, thermal, and chemical stability, while being relatively cost-effective to  produce43–46. Despite 
the numerous features of the SPEES membrane, its proton conductivity is currently insufficient to achieve the 
desired efficiency for PEMFCs. Consequently, there has been a significant focus on addressing these limitations 
and improving proton conduction in PEMFCs through various efforts and developments.

In this paper, with the goal of improving the conductivity of proton, the properties of the SPEES membrane 
with ZIF-90 nanostructure have been modified. In order to, the first step, ZIF-90 was synthesized. So, the dif-
ferent amount of made ZIF-90 was added to SPEES membranes. The final step involved measuring a number of 
characteristics, including water uptake, proton conduction, and fuel cell performance.

Experimental
Materials. All materials are bought from Sigma Aldrich and Merck and used in the same purity. Poly (1, 
4-phenylene ether-ether-sulfone) (PEES) and 2-Imidazole carboxyldehyde (ICA) were provided by Sigma-
Aldrich. Trioctylamine (TOA), Zinc nitrate (Zn  (NO3)2.6H2O), ethanol, concentrated sulfuric acid (purity, ˃ 
98%), dimethyl acetamide (DMA) and dimethyl formaldehyde (DMF) were purchased from Mercke company.
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Synthesize of ZIF‑90. The ZIF-90 nanostructure has been synthesized according to the  procedure47. In 
summary, in this method, 0.75 mmol of zinc nitrate cluster and 2.10 mmol of 2-imidazole carboxyhydride linker 
are solved separately in 50 mL and 100 mL of DMF, respectively. In the third step, 1.96 ml of trioctylamine is 
dissolved separately in 50 mL of DMF solvent at ambient temperature. So the zinc nitrate metal cluster is slowly 
added to the ICA organic linker. In the final step, trioctylamine is added to the solution. Finally, the product is 
centrifuged and after washing for several with ethanol solvent and the end is dried in a vacuum oven at 80 °C 
for 12 h.

Sulfonation of PEES. According to the reference, SPEES was obtained through the postsulfonation of 
PEES (Fig. 1)48. In briefly 20 mL of 98% concentrated sulfuric acid, 2 g of PEES polymer is dissolved at room 
temperature. After 12 h at 25 °C, the solution dissolves on a magnetic stirrer. Then, for extracting the sulfonated 
polymer, uniform solution is added slowly and dropwise to cold deionized water (containing ice). This action 
results in the precipitation of the sulfonated polymer. The produced polymer is washed with deionized water to 
neutralize the pH (pH = 7). The produced polymer is dried in a vacuum oven at 100 °C. The titration method was 
used to determine the sulfonation degree (DS) of SPEES in this work. The DS was calculated to be around 68%.

Construction of nanocomposite membranes. Solution-casting was used to produce the nanocompos-
ite membranes. Proton exchange composite membranes have been used in a variety of works using the solution 
casting  approach43,49,50. First, to create a perfectly homogeneous yellow solution, 0.2 g of SPEES polymer is dis-
solved in 2 mL of DMAc solvent at 60 °C and placed on a magnetic stirrer. The mixture of different percentages 
of nano-ZIF-90 (0.5–7 wt%) in 1 mL DMAc is spread by ultrasonic for 30 min. The above solution containing 
ZIF-90 nanoparticles is added to the yellow solution containing SPEES and placed on a magnetic stirrer for 
4 h until completely homogeneous. The prepared solution is poured on a petri dish and dried in a multi-step 
process. It is dried in an oven at 80 °C for 24 h to evaporate the solvent and create a uniform dry polymer film 
after being first placed at room temperature for 24 h. In final for several steps, it is rinsed in deionized (DI) 
water to remove excess solvent. The SPEES/ZIF-90/x nanocomposite membranes with x: 0.5 wt. %, 1 wt. %, 2 
wt. %, 3 wt. %, 4 wt. %, 5 wt. % and, 7 wt. % loading of ZIF-90 are marked as SPEES/ZIF-90/0.5, SPEES/ZIF-
90/1, SPEES/ZIF-90/2, SPEES/ZIF-90/3, SPEES/ZIF-90/4, SPEES/ZIF-90/5 and SPEES/ZIF-90/7 respectively. 
The membranes thickness were at around 70 µm.

Characterization. The ZIF-90 nanostructure’s successful synthesis was confirmed by FT-IR, XRD, and  N2 
adsorption analyses. The BELSORP MINI II adsorption instrument manufactured by Microtrac (Japan) meas-
ured the Langmuir surface area, specific Brunauer–Emmett–Teller (BET), pore volume, and pore size distribu-
tion. The 8400S model was subjected to Fourier transform infrared spectroscopy (FTIR) analysis (Germany). 
The X-ray diffraction (XRD) analysis was conducted using the Bruker D8 and GNR Explorer diffractometers 
from Italy, utilizing Cu Kα radiation. With a resolution of 4  cm−1 and a region of 600–4000  cm−1, Bruker Equi-
nox 55 was used to perform the ATR-FTIR spectra. The morphology of the SPEES/ZIF-90 nanoocomposite 
membranes was seen using a TESCAN MIRA 3 field emission scanning electron microscope (FESEM). The 
morphology-phase atomic force microscopy (AFM) JPK NanoWizard II model manufactured by BRUKER 
was utilized to examine the membrane morphology. On a LINSEIS, analyses using thermogravimetric analysis 
(TGA) were carried out under atmosphere at a heating rate of 10 °C/min. DSC analyses were obtained using 
the Q600 (USA) at a rate of 10 °C/min in a  N2 atmosphere. Mechanical parameters of the dry membranes were 
used by Santam STM-50 model with the velocity of 10 mm.min−1. Using a potentiostat–galvanostat Metrohm 
called the PGSTAT303N, proton conductivity measurements were performed. The conductivity of proton (σ) 
was obtained from the following  relation50:

Here L represents the membrane thickness (cm), R is the resistance obtained from the Nyquist curve (ohm), and 
S is the membrane surface area  (cm2).

The slope of the Arrhenius plots can be operated to determine the Activation energy  (Ea) by following relation:

Here, A is the Arrhenius constant, R is gas constant (8.314 J/mol.K) and T was the temperature (Kelvin).

(1)σ =

L
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,

(2)6 = A exp
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−
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,

Figure 1.  Schematic of PEES sulfonation. (White: Hydrogen, Yellow: Sulfur, Red: Oxygen, Gray: Carbon).
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The water uptake (WU)) is obtained from the difference between dry  (Wdry) and wet weight  (Wwet) (after 
24 h of immersion in water) of the membrane from Eq. (3) that using the method reported in  references50,51.

The IEC value of the membrane was deter defined mined by the conventional titration method as reported 
 elsewhere49,50.

where  MNaOH was the molar concentration of NaOH solution (0.1 M),  VNaOH was the volume of NaOH solution 
(L) and  WM was the weight of a dry sulfonated polymer (SPEES (g)). Degree of SPEES sulfonation depends on 
the IEC and is described by the following  relation50.

For investigation the oxidation stability of membranes, Fenton test was done based on the procedure explained 
by Grot and  LeClech52,53. The weight loss percentage in membrane can be calculated according to:

The creation of membrane electrode assemblies (MEAs) is necessary to investigate the PEMFC’s final perfor-
mance. The catalyst ink is first prepared by dissolving the specified quantity of 20 wt. % Pt-C powder in isopropyl 
alcohol/water and a SPEES solution. A carbon fiber fabric with a microporous layer and a loading of 0.5 mg/
cm2 will be painted with catalyst ink. The second step involves drying the prepared electrodes between 80 °C 
and 120 °C. To create the electrode-membrane assembly, the prepared electrodes and membrane were squeezed 
at 50 kg/cm2 for 5 min at 120 °C. Finally, the potential was held constant at 0.5 V for 6 h until the temperature 
reached 80 °C in order to activate the produced MEAs. Finally at flow rates 300/500 mL/min of hydrogen/Oxygen 
were inserted into the anode and cathode electrodes.

Results and discussions
Characterization of ZIF‑90. Figure 2a displays the X-ray diffraction (XRD) pattern of ZIF-90. The promi-
nent XRD peaks of the ZIF-90 structures are completely set with the standard patterns learned from simulations 
expressing their successful syntheses, as shown in Fig. 2a. The pattern of peaks observed at 2θ = 7.28°, 10.46°, 
12.74°, 15.08°, 16.46°, 18.08°, 19.64°, and 22.28°, corresponding to the intensities of (011), (200), (112), (022), 
(013), (222), (114), and (233) crystallographic planes, respectively, agrees with the single crystal data of simu-
lated ZIF-90. The crystal structure of ZIF-90 has been successfully formed, according to the XRD pattern.

As shown in Fig. 2b, the purity and bonding characteristics of the ZIF-90 structure produced using the 
FT-IR spectrum are examined. The peaks at 3417  cm−1 and 3282  cm−1 in Fig. 2b are connected to the aromatic 
stretching vibration’s N–H and C–H bonds. The peaks in the region of 1674  cm−1 and 2852  cm−1 are the tensile 
vibrations of the C = O aldehyde group and the C–H in the aldehyde group, respectively. While the peaks in the 
region of 1361  cm−1, 1415  cm−1, and 1456  cm−1 are related to the C–H, C = C, and C = N flexural vibration of 
the ring, respectively, the peaks located in the 600–1500  cm−1 region are related to the total tensile or flexural 
vibrations of the imidazole ring. These peaks confirm the ZIF-90 structure, which is in line with earlier  studies11.

The nitrogen adsorption and desorption isotherm at − 196 °C (77 K) is depicted in Fig. 2c. Additionally, the 
measured ZIF-90 nanostructure properties are compiled in Table 1 and include the BET contact surface, pore 
volume, and pore diameter. The present study reports a measured BET surface area of 1180  m2/g for ZIF-90. The 
adsorption/desorption isotherms exhibit a classification of Type I according to IUPAC standards. This indicates 
that the primary pores of the adsorbent substance fall within the micro range. A review of the data demon-
strates that ZIF-90’s  N2 adsorption/desorption isotherm accurately reveals the structure of the sample that was 
synthesized using the available  sources11,19. The crystal structure of ZIF-90 is also displayed in Fig. 2d ZIF-90 
(as synthesized). The Crystallographic Cambridge Data Centre (CCDC) offers access to the Crystallographic 
Information Files (CIFs) for the structure of ZIF-90 (https:// www. ccdc. cam. ac. uk/).

Physicochemical properties of the SPEES/ZIF‑90/x nanocomposite membrane. Figure  3a 
depicts the bonding and structure nature of the SPEES/ZIF-90/x nanocomposite membranes produced with 
the ATR-FT-IR spectrum. According to Fig. 3a, the peak located at 3420–3430  cm−1 corresponds to the tensile 
vibrations of the O–H bond of the –SO3H group in the SPEES membrane. The peak located in the 2851  cm−1 
region corresponds to the C-H tensile vibrations of the aldehyde group and the peak located in 1676  cm−1 cor-
responds to the tensile vibrations of the C = O bond in the aldehyde group of the ZIF-90. The peaks located in the 
area 1360  cm−1 and 1417  cm−1 are related to the bending vibrations of C-H and C = C of the imidazole ring. The 
peaks at 709  cm−1, 1006  cm−1 and 1078  cm−1 correspond to the S–O, O = S = O bond, respectively. The presence 
of these peaks indicates the formation and approval of the ZIF-90 structure in the SPEES/ZIF-90 nanocomposite 
membranes with different percentages of ZIF-9047,50.

In Fig. 3b indicates the X-ray diffraction pattern of the SPEES, SPEES/ZIF-90/3, SPEES/ZIF-90/5 and SPEES/
ZIF-90/7 membranes. The broad crystalline peak in the XRD pattern is visible in the 2θ = 19° (related to the  SO3H 
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Figure 2.  (a) XRD pattern, (b) FT-IR spectra of synthesized ZIF-90, (c)  N2 adsorption (filled marks) and 
desorption isotherm (blank marks) at 77 k for ZIF-90, (d) Crystal structure of ZIF-90. (Purple: Zinc, White: 
Hydrogen, Blue: Nitrogen, Red: Oxygen, Gray: Carbon).

Table 1.  Properties of the synthesized ZIF-90. *Calculated at P/P0 = 0.99.

BET surface area  (m2/g) Langmuir surface area  (m2/g) Mean pore diameter (nm) Total pore volume (cc/g)*

1180 1270 3.52 0.568

Figure 3.  (a) ATR-FTIR spectra, (b) XRD of SPEES/ZIF-90/x nanocomposite membrane.
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group) for the SPEES membrane, which corresponds to the relevant  reference54. As shown in the Fig. 3b, the 
broad peak is visible in all membranes. The intensity of peak width is reduced by increasing the ZIF-90 content in 
SPEES/ZIF-90/x nanocomposite membranes. This may be due to the presence and effect of ZIF-90 nanostructure 
on SPEES membranes. On the other hand, the presence of ZIF-90 in SPEES/ZIF-90/x nanocomposite membranes 
with 2θ = 7° and 2θ = 12° peaks has been  shown47.

In Fig. 4, exhibits the cross-sectional images of the FESEM-AFM corresponding to the SPEES/ZIF-90/3 
and SPEES/ZIF-90/5 membranes. Figure 4a shows the FESEM image of the SPEES/ZIF-90/3 nanocomposite 
membrane, which shows the uniform distribution of ZIF-90 on the basic membrane. The cross-section of the 
SPEES/ZIF-90/3 has suitable morphology. Figure 4b shows the accumulation of ZIF-90 nanostructure on the 
surface of SPEES/ZIF-90/5 nanocomposite membrane with 5 wt. % of ZIF-90. Figure 4c,d presents the AFM 
surface image of the SPEES/ZIF-90/3 and SPEES/ZIF-90/5 nanocomposite membranes. The lighter regions on 
the image correspond to the hydrophilic groups, while the darker regions correspond to the hydrophobic parts 
of the membrane. The nanocomposite membranes demonstrate a homogeneous distribution of the ionic chan-
nels on the lighter regions. The bright spots observed in the SPEES/ZIF-90/3 membrane, as depicted in Fig. 4c, 
suggest that the membrane possesses desirable hydrophilic properties.

Thermal, chemical and mechanical properties of nanocomposite membranes. In the Fig. 5a 
displays the TGA of the SPEES, SPEES/ZIF-90/1, SPEES/ZIF-90/3 and SPEES/ZIF-90/5 membranes. The 
breakdown of the  SO3H functional group is what causes the first weight loss in the 290–370 °C temperature 
 range24,50,55. Due to the main polymer chains degrading, the second weight loss occurred at a temperature of 
about 480 °C. With the presence of ZIF-90 in nanocomposite membranes, the intensity of temperature decrease 
slope is reduced. All membranes produced up to 290 °C have thermal stability. Also in the Fig. 5b shows the 
trend of  Tg changes of the SPEES, SPEES/ZIF-90/1, SPEES/ZIF-90/3 and SPEES/ZIF-90/5 membranes. The  Tg in 
the SPEES membrane is reported about 218.2 °C50. The glass temperatures of the SPEES/ZIF-90/1, SPEES/ZIF-
90/3 and SPEES/ZIF-90/5 nanocomposite membranes are 212.5 °C, 227.5 °C and 233.6 °C respectively. With 
increasing percentage of ZIF-90, the amount of  Tg has increased.

The stress–strain relationship between the membranes for SPEES, SPEES/ZIF-90/1, SPEES/ZIF-90/3, and 
SPEES/ZIF-90/5 is shown in Fig. 5c. The maximum applied tensile strength and the elongation at break for 
various membranes are also shown in Fig. 5d. The curves show that the force applied to the SPEES/ZIF-90/3 
membrane, with a value of 51.385 MPa, results in the greatest resistance. With more ZIF-90 present, however, 

Figure 4.  FESEM-AFM image of cross-section of the (a,c) SPEES/ZIF-90/3,and (b,d) SPEES/ZIF-
90/5membranes.
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Figure 5.  (a) TGA, (b)  Tg results of SPEES, SPEES/ZIF-90/1, SPEES/ZIF-90/3 and SPEES/ZIF-90/5 
membranes, (c) Stress–Strain curve, (d) The trend of changing the maximum tensile strength applied and 
Elongation at break in different membranes, (e) Chemical stability of nanocomposite membranes.
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the amount of elongation decreases. These findings demonstrate how the addition of ZIF-90 can significantly 
enhance the thermal, chemical, and mechanical characteristics of nanocomposite membranes.

Differences in chemical stability of different membranes are indicated in Fig. 5e. The results indicate that the 
rupture time and weight loss versus increasing percentage of ZIF-90. For a 3 wt. % of ZIF-90, the weight lost 
relative to the SPEES polymer membrane is halved and the rupture time is increased by 2 h, and the claim of 
increased chemical stability can be proved by the presence of 3 wt. % ZIF-90. Increasing the values by more than 
5 wt. % ZIF-90 reduces the chemical stability that may be due to the accumulation of ZIF-90.

Proton conductivity of nanocomposite membranes. The properties of the SPEES membrane and the 
SPEES/ZIF-90/x nanocomposite membranes were compared in the WU, IEC and proton conductivity.

As shown in Table 2, with increasing the ZIF-90 content to 3 wt. %, the amount of water uptake has increased 
from 38.61% to 68.79% at the 25 °C and the other tempratures. So that SPEES/ZIF-90/3 nanocomposite mem-
branes is reported with the highest amount of water uptake in the different temprature. In fact, high porosity and 
surface area and existing aldehyde group of ZIF-90 is caused to trap water molecule in the pores. The reduction in 
the percentage of water uptake can be attributed to the accumulation of ZIF-90, as evidenced by the increase in its 
concentration by over 3 wt. %. The IEC of a membrane shows how many acid groups there are in every gram of 
the sample and how many ionizable functional groups are present in the membrane. According to Table 2, with 
the increase in ZIF-90 content by 7 wt. %, the IEC has decreased from 1.73 meq/g to 1.589 meq/g. This decrease 
is due to enhanicng the presence of ZIF-90 nanostructure and reduction of  SO3H groups and increasing of elec-
trostatic interactions between the polymer acidic group and the ZIF-90 functional group (aldehyde group)56–58.

The conductivity of Proton is one of the effective parameters for evaluating PEMFC performance. Several 
elements, including water uptake, IEC, and type of nanoparticles, have an impact on the proton conductivity 
of nanocomposite membranes. In Fig. 6a shows the proton conductivities of SPEES and their nanocomposite 
membranes at 25 °C with various percentages of ZIF-90. The proton conductivity of SPEES/ZIF-90/x nanocom-
posite membranes effectively increases when compared to that of the SPEES membrane, as shown in Fig. 6a. In 
other words, ZIF-90 is essential for improving the conductivity of protons in nanocomposite membranes. The 
aldehyde group and imidazole ring also enhance Grotthus’ mechanism by facilitating proton transfer at proton 
hopping sites. Comparing the results, the SPEES/ZIF-90/3 membrane performed better than other membranes 
with proton conductivities of 105 mS/cm and 75 mS/cm (at 25 °C and 98% and 70% RH, respectively). However, 
proton conductivity is decreased by blocking proton transport channels at concentrations greater than 5 wt. % 
ZIF-90. On the other hand, Fig. 6b,c shows the proton conductivity of nanocomposite membranes at various 
temperatures. The conductivity of protons has increased with temperature because their mobility has improved. 
SPEES/ZIF-90/3 nanocomposite membranes had conductivities of 105 mS/cm and 160 mS/cm at 25 °C and 
90 °C, respectively, according to a comparison of the various nanocomposite membranes. These numbers are 
greater than the 21 mS/cm and 55 mS/cm proton conductivities of SPEES. This data leads us to assume that 
the MOFs nanostructure does have a long-term impact on improving proton conductivity on MOF/polymer 
nanocomposite membranes.

Time-stability is another important parameter in the PEMs. Figure 6d illustrates the proton conductivity 
lifetime plots of SPEES/ZIF-90/3 membrane at 95 °C and 98% RH. The SPEES/ZIF-90/3 nanocomposite mem-
branes showed stable proton conductivity after 180 h. The  SO3H group of polymer, -CHO group and imidazole 
ring of ZIF-90 nanostructure trigger the good hydrogen bonding, trapping the water in the pores and so proton 
conductivity remains Table.

Table 3 compiles an overview of the literature on Nafion 117 and various sulfonated aromatic polymers’ ability 
to form nanocomposite membranes with proton conductivity. The analysis of the data revealed that the SPEES/
ZIF-90/3 nanocomposite membrane’s proton conductivity performed better under the same conditions than the 
other results mentioned. The increase in water uptake at various temperatures at the membrane’s interface, which 
can lead to stability in the proton transfer pathways, and the even distribution of the ZIF-90 nanostructure are 
both responsible for this increase.

Fuel cell performance. As shown in Fig. 7, the current density-potential (I-V) and current density-power 
density curves of nanocomposite membranes made of SPEES and SPEES/ZIF-90/3 at 70 °C and 90 °C and 70% 

Table 2.  WU and IEC of the nanocomposite membranes.

Membrane IEC (meq/g)

WU (wt. %)

25 °C 40 °C 60 °C 80 °C

SPEES 1.73 38.61 48.46 56.1 61.4

SPEES/ZIF-90/0.5 1.701 48.93 57.62 65.18 70.38

SPEES/ZIF-90/1 1.68 57.84 67.34 73.96 79.06

SPEES/ZIF-90/2 1.651 63.83 72.76 80 85.1

SPEES/ZIF-90/3 1.621 68.79 77.69 84.9 89.29

SPEES/ZIF-90/4 1.611 64.03 72.73 80.13 85.03

SPEES/ZIF-90/5 1.598 59.35 68.03 75.13 79.93

SPEES/ZIF-90/7 1.589 49.12 57.33 64.45 69.55
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Figure 6.  (a) Proton conductivity of nanocomposite membranes at 25 °C, (b) at different temperature and 98% 
RH, (c) at different temperature 70% RH, (d) time stability of SPEES/ZIF-90/3.

Table 3.  Proton conductivity of nanocomposite membrane developed on some sulfonated aromatic polymers 
and Nafion 117 membrane.

Membranes Filler loading (wt. %) T (°C) RH (%) Ϭ (mS/cm) Ref

SPEES/ZIF-90 3 90 98 160 This work

Sulfonated poly(arylene ether sulfone) – 80 100 146 59

Sulfonated poly(arylene ether sulfone) – 80 100 117 60

Sulfonated poly(arylene ether sulfone)s – 120 100 65 61

Sulfonated polysulfone – 80 100 43 62

Sulfonated poly(arylene sulfone) – 25 100 38 63

SPEEK/ZIF-8 2.5 120 30 25 23

Sulfonated polysulfone/phosphatoantimonic acid – 80 100 20 64

HKUST-1/Nafion 2.5 25 100 18 29

Sulfonated poly(arylene ether sulfone)/ GO 0.5 90 100 17.1 65

PSU/sPSU/NH2-MIL-53 5 70 100 17 66

CPO-27-Mg/Nafion 3 50 100 11 30

MIL-53-Al /Nafion 3 50 100 9.8 30
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RH and 98% RH, respectively. The SPEES/ZIF-90/3 membrane’s maximum current densities at 0.5 V, 98% RH, 
70 °C, and 90 °C were 0.89 A/cm2 and 1.07 A/cm2, respectively. According to Fig. 7a,b, the maximum power 
density of the SPEES/ZIF-90/3 nanocomposite membrane at 90 °C increased from 0.41 W/cm2 at 70% RH to 
0.52 W/cm2 at 98% RH..

The SPEES/ZIF-90/3 nanocomposite membrane (Fig. 7) had the best performance in terms of polarization 
curves (160 mS/cm at 90 °C and 98% RH), which may be because it is more capable of absorbing water and 
conducting protons. One of the key elements that affects how well produced membranes perform in the end is 
proton conductivity, which rises with increasing relative humidity from 70% RH to 98% RH.

Reporting the open circuit voltage (OCV) of the PEMFC for 100 h, as shown in Fig. 7c, allowed for the 
determination of the long-term stability of the SPEES/ZIF-90/3 nanocomposite membrane at 90 °C and 98% 
RH. Referring to its high WU (89% at 80 °C) and high mechanical stability, the OCV in the PEMFC constituted 
by the SPEES/ZIF-90/3 nanocomposite membrane practically maintained a constant quantity after 100 h (ten-
sile strength: 51.385 MPa). The final result was a nanocomposite membrane (SPEES/ZIF-90/3) that performed 
exceptionally well over an extended period of time.

Conclusion
One of the intriguing and successful possibilities for improving membranes and boosting the effectiveness of 
polymer membranes in fuel cell performance is the use of metal organic frameworks (MOFs). In this research, 
we produced a new Polymer/MOF nanocomposite membrane for use in PEMFC by using this technique. In 
comparison to a SPEES-based membrane, the SPEES/ZIF-90/3 nanocomposite membrane demonstrated supe-
rior proton conductivity of up to 160 mS/cm under 90 °C and 98% RH. This enhanced conductivity is believed 
to be due to the membrane’s effective water uptake properties, which are attributed to the ZIF-90 nanostruc-
ture. Furthermore, the SPEES/ZIF-90/3 nanocomposite membrane exhibited exceptional thermal, chemical, 

Figure 7.  Polarization curves of SPEES and SPEES/ZIF-90/3 membranes at (a) 70 °C and (b) 90 °C at 70% RH 
and 98% RH (c) Fuel cell life time plots of SPEES/ZIF-90/3 nanocomposite membranes at 90 °C and 98% RH.
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and mechanical stability. The excellent proton conductivity of the SPEES/ZIF-90/3 nanocomposite membrane 
resulted in improved PEMFC performance at 90 °C compared to the standard SPEES membrane. Consequently, 
the SPEES/ZIF-90/3 nanocomposite membrane emerged as a promising candidate for PEMFC applications. The 
membrane’s superior water uptake and proton conductivity led to superior PEMFC performance, resulting in 
current densities and power densities of 1.07 A/cm2 and 0.52 W/cm2, respectively, outperforming the SPEES 
membrane at 90 °C (Supplementary Information).

Data availability
The datasets used and/or analyzed during this paper are publicly available from corresponding author.
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