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Learning dispatching rules via novel 
genetic programming with feature 
selection in energy‑aware dynamic 
job‑shop scheduling
Adilanmu Sitahong , Yiping Yuan *, Ming Li , Junyan Ma , Zhiyong Ba  & Yongxin Lu 

The incorporation of energy conservation measures into production efficiency is widely recognized as 
a crucial aspect of contemporary industry. This study aims to develop interpretable and high-quality 
dispatching rules for energy-aware dynamic job shop scheduling (EDJSS). In comparison to the 
traditional modeling methods, this paper proposes a novel genetic programming with online feature 
selection mechanism to learn dispatching rules automatically. The idea of the novel GP method is to 
achieve a progressive transition from exploration to exploitation by relating the level of population 
diversity to the stopping criteria and elapsed duration. We hypothesize that diverse and promising 
individuals obtained from the novel GP method can guide the feature selection to design competitive 
rules. The proposed approach is compared with three GP-based algorithms and 20 benchmark rules 
in the different job shop conditions and scheduling objectives considered energy consumption. 
Experiments show that the proposed approach greatly outperforms the compared methods in 
generating more interpretable and effective rules. Overall, the average improvement over the best-
evolved rules by the other three GP-based algorithms is 12.67%, 15.38%, and 11.59% in the meakspan 
with energy consumption (EMS), mean weighted tardiness with energy consumption (EMWT), and 
mean flow time with energy consumption (EMFT) scenarios, respectively. 

Industrial world is confronted with numerous challenges. While production criteria have traditionally been a 
significant factor in the decision-making process, contemporary global circumstances necessitate a heightened 
focus on environmental concerns. An increase in population growth, coupled with an upsurge in consumption 
rates and a decline in energy reserves, poses a significant threat of an impending energy crisis on a global scale1. 
Moreover, energy consumption is consistently accompanied by pollution, posing a significant threat to human 
well-being. The manufacturing sector is frequently identified as the primary consumer of energy and generator 
of environmental pollution. Therefore, manufacturing businesses must seek effective strategies to reduce energy 
usage and carbon pollution in their production processes. Enhancing energy efficiency through upgrading pro-
duction equipment is a viable option. However, the challenges of long research cycles and expensive investment 
costs present formidable obstacles that are not easily surmounted2. Several studies have demonstrated that energy 
consumption can be effectively reduced through the implementation of green scheduling, which involves the 
consideration of traditional scheduling objectives and environmental factors3,4. In sustainable manufacturing, 
the energy issue is taken into account at three levels: the product level, the machine level, and the production 
system level5. The present study centers on the production system level, with the aim of minimizing energy 
consumption without necessitating the re-engineering of machines or products.

The Job Shop Scheduling (JSS) problem has garnered significant attention from both academic and industrial 
circles due to its extensive practical implications in the fields of cloud computing and manufacturing. In practical 
scenarios, processes exhibit greater dynamism and susceptibility to interruptions, including but not limited to 
rush orders, cancellations, alterations in lot sizes, and machinery failures. The academic literature on scheduling 
has put forth various traditional optimization techniques such as dynamic programming6, branch-and-bound7, 
and meta-heuristics8 to address the dynamic job shop scheduling (DJSS) problem. These approaches cannot 
deal with unforeseen disruptions. In light of the mounting environmental pollution and energy conservation 
challenges confronting the manufacturing industry, it is imperative to contemplate the sustainability and energy 
utilization aspects of the manufacturing process. There is a limited body of literature that addresses the issue of 
dynamic energy-aware shop scheduling problems. Most existing studies have employed complete rescheduling 
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techniques, which may pose a risk of instability9,10. In addition, it is worth noting that scheduling issues in 
dynamic scenarios are considerably more complex than those in static scenarios. Furthermore, the time required 
to obtain an optimal or even a high-quality solution is substantial. Therefore, it is necessary to design product 
scheduling so that they can react immediately to any potential deviations.

The utilization of dispatching rules has demonstrated to be a promising heuristic strategy owing to its adapt-
able nature, low temporal complexity, and rapid response to dynamic conditions11. In each decision situation, 
the dispatching rule decides the job with the highest priority value to be scheduled next when a machine is free. 
Numerous artificial dispatching rules have been developed for diverse workshop environments thus far. The 
complex interconnections among diverse waiting procedures and job shop conditions make it challenging, if 
not unfeasible, to manually recognize all the underlying associations for constructing an effective dispatching 
rule. Due to the insufficient performance of human-made dispatching rules, certain scholars are endeavoring to 
devise a hyper-heuristic approach that can identify and acknowledge flexible rules for effectively addressing the 
challenges associated with Job Shop Scheduling12,13.

Genetic Programming (GP) has been effectively used as a data-driven strategy to learn complicated and 
effective dispatching rules for complex manufacturing situations14,15. When compared to other hyper-heuristics 
methods, GP has the advantages of flexible encoding representation, a powerful searching engine, and applica-
bility to a wide range of real-world applications. In recent decades, there has been a growing interest in utilizing 
GP-based heuristic methods to address scheduling issues in manufacturing processes. However, the sophisticated 
issue as energy aware shop scheduling in dynamic scenarios was seldom considered. On the other side, there 
have been substantial advancement in generating dispatching rules using GP methods for production scheduling. 
But most of these approaches prioritize algorithmic efficiency and generate rules that are excessively lengthy. 
Moreover, the efficacy of Genetic Programming in producing superior rules depends on the precise collection of 
terminal sets involving the most important job, machine, and job shop information. As the number of functions 
and terminals grows, the search space grows exponentially16. Preventing this exponential expansion of designed 
rules over generations is crucial for a number of reasons. First, the final tree offers benefits in terms of decreased 
computational cost, improved generalization, and simpler structure analysis. Second, simpler dispatching rules 
in compact mathematical structures are easier to understand the behavior compared with larger rules. Third, 
in practice, shortening evolving rules boosts their chances of being applied in industry, since smaller rules are 
easier for decision-makers to understand and apply in real-world production contexts17. For the above reasons, 
a feature selection approach is used to condense the GP search space in this research.

The utilization of feature selection techniques in the field of machine learning presents a feasible resolution 
to this hard problem. The technique has demonstrated successful implementation across a range of applications, 
covering tasks such as classification18, clustering19, and regression20. The integration of the feature selection pro-
cess with the tree-based GP technique enables directed exploration of potential regions within the search space by 
concentrating on the most significant terminals. To the best of our knowledge, the application of feature selection 
to multiple production schedule variants is mostly unexplored territory. There have been various drawbacks to 
these techniques, which are covered below:

(1) A common metric used by most feature selection approaches is the frequency with which each terminal 
appears in the best-evolving rule, which is then used to determine the terminal’s relative importance. The key 
negative aspect of this approach is that it might provide biased results because of the existence of redundant 
features.
(2) Feature selection methods reported in the literature usually adapt offline selection mechanisms or a 
selection checkpoint to obtain a set of selected features. In addition to requiring substantial time and coding 
effort, this offline selection method may lose some well-structured individuals evolved during the feature 
selection phase.
(3) Current approaches, which largely focus on rule interpretability through feature selection processes, do 
not consider the improvement in solution quality of scheduling rules in various job shop contexts.
(4) Existing feature selection methods in GP have been developed for traditional job shop scheduling such 
as job shop scheduling, flexible job shop scheduling, or dynamic job shop scheduling. Although this is rea-
sonable since these job shop environments are common types in scheduling, we believe that developing a 
feature selection approach that combined with GP in energy-aware dynamic job shop scheduling (EDJSS) 
may lead to better results.

Given the above, we propose an integration approach that combines a novel GP method with feature selec-
tion mechanism to design interpretable and effective rules for EDJSS. The main contributions of this article can 
be summarized as follows:

(1) Offer a three-stage GP framework-based online feature selection technique that incorporates information 
from both the chosen features and a set of diverse individuals in the feature selection process.
(2) Provide an integration strategy that combines a novel GP algorithm with an online feature selection pro-
cess to create concise and high-quality dispatching rules in EDJSS. The innovative GP technique, connected 
the amount of population variety with the stopping criteria and the elapsed time to progressively alter the 
searching area of the GP algorithm from exploration to exploitation.
(3) Evaluate the effectiveness of the suggested method in comparison to three GP-based algorithms and twenty 
representative rules from the existing research, considering three different scenarios: makespan with energy 
consumption (EMS), with mean weighted tardiness with energy consumption (EMWT), and mean flowtime 
with energy consumption (EMFT).
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The rest of the paper is organized as follow: In Sect. “Related work”, the literature review is presented. Sec-
tion “Problem formulation” describes the problem and formulates the mathematical model. Section “Proposed 
methods” details the proposed approach. Section “Experimental design” provides the experimental design. Sec-
tion “Results and discussion” provides the computational results and at the end there is conclusions and future 
recommendations.

Related work
Energy optimization of workshop scheduling.  Growing expenses and environmental awareness have 
led to a growing tendency to reduce energy consumption in conventional industrial processes. The Job-Shop 
Scheduling (JSS) problem is a well-known production scheduling problem that has been extensively studied 
in the literature. It is commonly observed in various real-world production systems that follow the job-shop 
layout21. The categorization of energy optimization research in job shop scheduling is based on three distinct 
groups, namely, objective research optimization, machining process optimization, and application of compre-
hensive methods. For the objective research optimization group, Giglio et al.22 presented a mixed-integer pro-
gramming model aimed at addressing an integrated lot sizing and energy-efficient job shop scheduling problem. 
Gong et al.23 formulated a mathematical model for multi-objective optimization based on the double flexible 
job-shop scheduling problem. The model takes into account various indicators such as processing time, green 
production, and human factors. Mokhtari et al.24 created a multi-objective optimization framework that includes 
three distinct objectives, namely, the total completion time, the overall system availability, and the combined 
energy cost of production and maintenance operations in the context of flexible job shop scheduling. Yin et al.25 
introduced a novel mathematical scheduling model with low-carbon emissions for the flexible job-shop set-
ting, which aims to maximize productivity while minimizing energy consumption and noise pollution. For the 
machining process optimization, an energy consumption model was put forth by Wu et al.26 to calculate the 
energy cost for a machine in various states. L. Zhang et al.27 have developed a new mixed-integer linear mathe-
matical model with the aim of optimizing machine selection, job sequencing, and machine on–off decision mak-
ing for enhanced efficiency. Xu et al.28 introduced a feedback control approach for addressing the production 
scheduling problem in the context of the comprehensive method application. This method takes into account 
both energy consumption and makespan. Y. Zhang et al.29, have proposed a novel approach to real-time multi-
objective flexible job shop scheduling. Specifically, they have developed a dynamic game theory-based two-layer 
scheduling method aimed at minimizing makespan, total workload of the machines, and energy consumption. 
In a speed scaling framework, Zhang et al.30 suggested a multi objective genetic algorithm to reduce the overall 
weighted tardiness and overall energy consumption for JSSP. In one-word, numerous efforts have been made to 
link the efficiency of conventional production scheduling with the total energy cos. Nevertheless, the models 
employed in these studies are deterministic, with a fixed number of jobs. Given that unforeseen disruptions are 
a common occurrence in many real-world settings, it is clear that static scheduling is insufficient to meet the 
demands of such environments. Instead, a more dynamic and responsive approach is needed.

The body of literature related to dynamic scheduling has extensively explored a multitude of works that 
address the impact of newly arrived jobs on diverse manufacturing systems. Many attempts ignored the cost of 
energy in favor of efficiency improvements for conventional scheduling issues. Within dynamic scenarios, the 
two most frequently employed strategies are complete rescheduling and schedule repair. Tang et al.31 employed 
an enhanced particle accumulation optimization algorithm to address a dynamic flexible flow shop problem 
with the objective of minimizing both makespan and energy consumption. This study differs from previous 
work on energy problems that it takes into account dynamic factors such as the arrival of new jobs and machine 
failures, rather than focusing solely on static problems. The study titled “Dynamic Scheduling of Multi-Task 
for Hybrid Flow-Shop Based on Energy Consumption” was presented by Zeng et al.32. It is deemed significant 
due to its incorporation of a time window for machine idle time as a constraint and the inclusion of makespan 
and energy consumption as objective functions. Although complete rescheduling may offer optimal solutions, 
it has the potential to cause instability and disruption to process flows, resulting in significant production costs. 
Conversely, schedule repair methods involve making revisions solely to a portion of the originally established 
schedule in response to changes in the manufacturing environment.

In summary, research has been conducted on energy-efficient scheduling problems in dynamic scenarios. 
The empirical evidence suggests that implementing a schedule repair strategy is a more viable approach for 
managing a dynamic manufacturing system in practical settings. However, there are still several limitations that 
need to be considered. An example of this is obtaining an updated schedule in a timely manner, particularly for 
manufacturing applications of large scale.

GP on the design of dispatching rules.  In contexts characterized by higher degrees of uncertainty and 
high load levels, dispatching rules are deemed more appropriate than predictive approaches. Over the course 
of recent decades, many different kinds of dispatching rules have been put forth in order to tackle various job 
shop scenarios and objective targets. The Genetic Programming (GP) approach serves as a hyper-heuristic 
method that enables the automatic design of novel dispatching rules through the manipulation of structural 
and parametric elements, without requiring extensive domain-specific knowledge. Furthermore, a comprehen-
sive comprehension of the behavior exhibited by the evolved rules through the utilization of GP’s tree-based 
programs can be attained. Specifically, the GP algorithm produces individuals in the form of trees, utilizing 
a set of terminals (for leaf nodes) and a set of functions (for non-leaf nodes). Figure 1 gives an example of a 
parse tree and the corresponding dispatching rule. In this program, the terminal set consist of the variables 
{DD, PT ,AT ,OWT , SL} , and the function are composed of {+, ∗,÷} , where ÷ is indicated by / . The priority of a 
job is calculated as (DD + PT) ∗ NOW

OWT ∗ SL , and is thus a linear combination of the processing time of the opera-
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tion (PT), the due date of the job (DD), the current time (AT), the waiting time of the operation (OWT), and the 
slack time of the job (SL). The crossover operator is a stochastic process that involves the random selection of a 
sub-tree from each parent, followed by their exchange to generate two offspring. A sub-tree from the parent is 
chosen at random by the mutation operator, and it is then replaced with a new created sub-tree. The process for 
evaluating the tree starts with the application of the operator at the root node of the tree to the values acquired 
through the recursive evaluation of the left and right subtrees.

Burke et al.11 have presented a taxonomy of hyper-heuristic methodologies that is predicated on their search 
mechanisms, which encompass the selection and generation of hyper-heuristics. Furthermore, a succinct sum-
mary of hyper-heuristic implementations for diverse scheduling and combinatorial optimization problems was 
also furnished. According to the authors, GP is a suitable approach for devising dispatching rules in dynamic 
scenarios, despite its infrequent utilization for directly addressing production scheduling issues. Nguyen et al.33 
have developed a unified framework for the automatic construction of dispatching rules using genetic program-
ming. The authors presented an in-depth analysis of the fundamental elements and pragmatic concerns that 
must be taken into account prior to constructing a GP framework aimed at producing scheduling heuristics 
for production. That article has demonstrated a notable increase in the amount of research efforts related to the 
automated design of scheduling heuristics after 2010. Branke et al.34 gave a summary of relevant research on 
genetic programming hyper-heuristics techniques designed to solve production scheduling issues in the same 
setting. Furthermore, GP methodology has been employed to develop scheduling heuristics for production 
scheduling problems that exhibit a wide range of discriminative features. For instance, the GP approach has 
been applied to address the job arrivals and machine breakdowns in a dynamic environment35. Also, the GP 
technique has been utilized to tackle the dual-constrained flow shop scheduling problem that includes both 
machines and operators36.

In addition to the aforementioned research, numerous research endeavors have been undertaken with the 
objective of enhancing the efficacy of the GP methodology through different techniques. Park et al.37 enhanced 
the robustness of the GP approach for the DJSSP by utilizing ensemble learning and employing various combina-
tion strategies. Zhou et al.38 presented a novel approach for the dynamic flexible job shop problem (DFJSP) using 
a surrogate-assisted cooperative coevolution GP technique. The aforementioned approach was discovered to 
improve the computational efficacy and the offline acquisition of knowledge of the hyper-heuristic, all the while 
preserving its overall performance. However, sustainability issues are not taken into account in these papers. 
And there is a limited number of academic papers that utilize GP algorithms for learning dispatching rules in 
the context of energy-aware dynamic scheduling problems.

Feature selection.  The process of identifying the optimal feature set is widely recognized as a significant 
area of investigation within the domains of machine learning and data mining39–41. Feature selection can effec-
tively decrease the search area, diminish data dimensionality, enhance interpretability of rules, and save time for 
training by carefully selecting important and noteworthy features. In EDJSS, a broad variety of workshop state 
characteristics (for example, the remaining time of each operation and the idle time of each machine) may be 
regarded as features to be included in the terminal set. It might be challenging to determine which features are 
beneficial for learning scheduling heuristics. Past research often included all possible features in the final ter-
minal set. Thus, the designed scheduling heuristics have a wide variety of features, making them challenging to 
understand. In addition, a large set of terminals with redundant or irrelevant attributes creates an increasingly 
large and noisy search space, hence diminishing the GP’s search power. Selecting key attributes for various sce-
narios is crucial in developing concise and understandable dispatching rules. The utilization of feature selection 
can serve as a viable approach to address the issue of job shop scheduling.

The feature selection techniques can be broadly classified into three categories, namely filter, wrapper, and 
embedding techniques33. For the most part, the following considerations prevent the aforementioned feature 
selection approaches from being directly applicable to job shop scheduling. First, in contrast to traditional 
machine learning occupations, the objective of job scheduling production is to assign priority to operations 
within a given waiting queue. Second, the acquisition of training data for job shop scheduling is limited to 
simulation models, whereas it is readily available in machine learning applications. Although GP has the capa-
bility to identify hidden associations among a subset of attributes, its efficacy and accuracy are limited. Previous 
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Figure 1.   A GP individual tree example and its corresponding dispatching rule.
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investigations have indicated that even the most superior individuals possess certain features that are irrelevant 
and redundant. Stated differently, the capacity of GP is restricted.

Nonetheless, the feature ranking technique commonly employed, as suggested by Friedlander’s study42, exhib-
its a constraint whereby certain features are inaccurately assessed due to their occurrence in the redundant prior-
ity function. Therefore, Mei et al.43 introduced a new feature selection methodology in the context of GP. This 
approach evaluates the significance of features by assessing their contribution to the priority function. Despite 
its ability to more precisely identify significant features, this novel approach needs a substantial investment of 
computational resources to generate a diverse set of high-quality individuals. Subsequently, Mei et al.44 developed 
an enhanced feature selection algorithm that incorporates niching and surrogate techniques to generate superior 
dispatching rules within the context of DJSS. The study employed a niching-based genetic programming algo-
rithm to initially generate a diverse set of high-quality individuals. Subsequently, an evaluation was conducted to 
determine the impact of the feature on the performance of high-quality rules, which was accomplished through 
the implementation of a weighted voting system. Ultimately, the chosen terminals were utilized to facilitate the 
development of optimal rules in subsequent runs of genetic programming. The methodology exhibits three 
significant limitations. First, this method continues to employ an offline feature selection mechanism, thereby 
incurring expensive computational costs. Second, even though the niching-based search framework has been 
shown to be more efficient in obtaining diverse rules compared to previous research, it requires further sophisti-
cated experimentation to fine-tune the parameters of the niche. Third, despite the feature selection method being 
able to adequately identify relative feature subsets, the program size of the developed rules remains insufficiently 
compact. A unique two-stage GPHH architecture with feature selection and individual adaptive techniques was 
put out by Zhang et al.45 for the flexible DJSS problem in a later study. This method divides the entire GP proce-
dure into two phases using a specified checkpoint. In the initial stage, a technique utilizing niching principles in 
conjunction with a surrogate module is employed to attain selected terminals. The replacement of the original 
terminal with the new one facilitates individual evolution after the generation of checkpoints during the second 
stage. The enhancement of rule performance was not taken into account, despite the fact that this feature selec-
tion framework was modified online and produced compact rules.

As previously mentioned, there is a growing body of academic research on the development of scheduling 
rules that incorporate feature selection or simplification. However, there remain gaps in the interpretability of 
the rules, and additional research is required to assess the influence of improved strategies on the effectiveness 
of the rules. Most importantly, few studies have considered both feature selection mechanism and rule quality 
improvement using GP algorithm for EDJSS. Therefore, this work aims at designing interpretable and high-
quality rules simultaneously for the EDJSS problem. The study aims to showcase the efficacy of the obtained 
dispatching rules in producing high-quality schedules for the model problem in diverse experimental scenarios 
by means of computational experiments.

Problem formulation
Problem description.  The Energy-Aware Dynamic Job Shop Scheduling (EDJSS) is a variant of the Job 
Shop Scheduling (JSS) problem that incorporates machine speed scaling. This approach allows for machines to 
operate at varying speed levels depending on the specific job being processed. A set of n jobs should be processed 
on a group of m machines in the shop. Each job follows a unique processing path, where the machines are uti-
lized and their order of operation may vary. Each job is assumed to have a basic processing time. The fundamen-
tal processing time inside a task for each operation is predetermined. A machine cannot be fully powered down 
unless all its scheduled operations have been completed.

Current research on energy-efficient production scheduling focuses on control of machine ON/OFF, speed 
scaling, and time-of-use-based pricing of electricity46. The majority of current research on time-of-use power 
pricing and machine ON/OFF management bases its conclusions on the unreasonable assumption that machines’ 
processing speeds are constant in today’s industrial environments. In certain manufacturing systems, the imple-
mentation of machine ON/OFF control may not be feasible due to the potential harm that may be inflicted upon 
the machines and the increased energy consumption associated with frequent restarts. The present paper employs 
a speed-scaling mechanism to aid in the modeling and coding process. Specifically, each machine is equipped 
with a finite and discrete speed set.

Mathematical model.  The following section introduces the energy-aware modelling for the production 
scheduling problem that occurs in a job shop floor considering dynamic job arrival. Table 1 presents the indexes, 
parameters, and variables utilized in the current model.

Objective functions and constraints:

(1)MS = max {Ci |i = 1, 2, · · · , n },

(2)MWT =

∑
i∈T

wi (Ci − Di)

|T|
,

(3)MFT =

∑
i∈C

fi

|C|
,
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S.t.

where i = 1, 2, · · · , n ; i′ = 0, 1, 2, · · · , n ; i  = i′ ; j = 1, 2, · · · , li ; j′ = 1, 2, · · · , li ; z = 1, 2, · · · , L.

where i = 1, 2, · · · , n ; i′ = 0, 1, 2, · · · , n ; i  = i′ ; k, k′ = 1, 2, · · · ,m ;  k  = k′ ; j = 2, · · · , li ; z = 1, 2, · · · , L.

where i = 1, 2, · · · , n ; i′ = 0, 1, 2, · · · , n ; i  = i′ ; k, k′ = 1, 2, · · · ,m ; k  = k′ ; j = 2, · · · , li ; z = 1, 2, · · · , L.

where i = 1, 2, · · · , n ; i  = i′ ; k = 1, 2, · · · ,m.

where i′ = 0, 1, · · · , n ; i  = i′ ; k = 1, 2, · · · ,m.

(4)

TEC = E1 + E2 + E3=

n�

i=1

li�

j=1

m�

k=1

L�

z=1

zijkz
tij

vz
PMkz+

m�

k=1

n�

i=0,h=1

yihkSTihkPSTk

+

m�

k=1


CkPSk −

n�

i=1

li�

j=1

L�

z=1

zijkz
tij

vz
PSk −

n�

i=0,h=1

yihkSTihkPSk


,

(5)Ci′j′ +
tij

vz
zijkz + STi′ikyi′ik ≤ Cij +

(
1− yi′ik

)
H ,

(6)Ci(j−1) +
tij

vz
zijkz + STi′ikyi′ik ≤ Cij + (1− γi′ik)H ,

(7)
tij

vz
zijkz + ST0iky0ik ≤ Cij +

(
1− y0ik

)
H ,

(8)
n∑

i′=0

yi′ik = 1,

(9)
n∑

i=1

yi′ik = 1,

(10)
L∑

z=1

zijkz = 1,

Table 1.   Notations of mathematical formulation.

i, h, i
′ Index of the jobs, i = 1, · · · n

j, j
′ Index of the operations

k, k
′ Index of the machines, k = 1, · · ·m

z Index of machine speed levels

li Total number of operations of job i ,li ≤ m

L Total number of speed levels of each machine

Oi,j j th operation of job i

ti,j Processing time of operation Oi,j

vz z th speed of each machine

PMkz Processing power of machine k when its machine speed is set to vz
PSk Standby power of machine k

PSTk Setup power of machine k

STihk Sequence-dependent setup time for processing job h immediately after job i  on the same machine k

STohk Setup time of job h on machine k when job h is the first job processed on machine k

Di Due date of the job i

H Large enough integer

Ci,j Completion time of operation Oi,j

Ci Completion time of machine k

Cmax Completion time of all jobs

wi The weight of the job i

fi The flowtime of job j

T Set of delayed jobs

C Set of completed jobs
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where i = 1, 2, · · · , n ; j = 1, 2, · · · , li ; k = 1, 2, · · · ,m.
Equation (1) denotes as the makespan, which refers to the maximum time taken for the completion of all 

jobs. Equation (2) represents the mean weighted tardiness of all jobs. Equation (3) is the mean flowtime of all 
jobs. Equation (4) represents the total energy consumption of all machines, which can be divided three distinct 
components: processing energy E1 , standby energy E2 , and setup energy E3 . Constraint (5) guarantees that an 
operation may be processed on a machine only after the proceeding operation and the required preparatory 
activity have been completed. Constraint (6) specifies the priority relationship for each job’s activities, such that 
the completion time of one operation must be greater than that of the previous operation, taking into account 
processing and setup durations. Constraint (7) outlines the precedence relation among the operations of a given 
job, specifically when that job is the initial one that begins processing on the machine. According to Constraint 
(8), a job is required to have a single predecessor, apart from the first job on the machine. Constraint (9) means 
that when a job has finished processing on a machine, one and only one different job can be selected for process-
ing next. According to Constraint (10), it is inferred that during the processing of an operation on a machine, 
only one speed setting can be chosen and it cannot be altered.

Proposed methods
Framework of proposed approach.  Based on the Zhang’s research45, which states the information of 
both the selected features and investigated individuals during the feature selection process can make a good con-
tribution on evolving interpretable rules. This paper proposes a novel GP algorithm with online feature selection 
to design interpretable and high-quality dispatching rules for EDJSS (The pseudo-code of the proposed algo-
rithm, Supplementary Information). The proposed strategy comprises of two crucial components, as follows:

(1) A three-stage GP framework is developed to extract information from selected features and promising 
individuals to evolve compact and interpretable rules.
(2) A novel GP approach involving dynamic diversity management is proposed to enable a gradual transi-
tion from exploration to exploitation. This novel GP employs a replacement strategy that combines penalties 
based on distance-like functions with a multi-objective Pareto selection based on correctness and simplicity.

Figure 2 illustrates the suggested three-stage GP framework. In stage 1, a new general methodology for GP is 
presented that considers dynamic diversity management, considering the stopping criterion and elapsed time, 
with the aim of obtaining a diverse set of good individuals for feature selection. A key component of this diver-
sity management strategy is the dynamic penalty system, which accounts for the degree of similarity between 
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Figure 2.   Flowchart of the proposed novel GP with online feature selection.
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individuals in the replacement phase. In this manner, a diversified collection of optimal dispatching rules can be 
constructed, which is essential for achieving high precision in feature selection. The feature selection approach is 
used in stage 2 to extract feature subsets for the various job shop scenarios based on the final population obtained 
in stage 1. At stage 3, the traditional GP approach is utilized to create more concise and high-quality rules based 
on the final population with individual adaptation and the terminals that have been chosen. It is worth noting 
that the initialization and mutation procedure is different from the standard GP. In the initialization procedure, 
the final population of stage 1 is employed as the initial population. Constructing trees incorporating only a 
random subset of the features, which in turn avoids redundant branches.

A novel GP method.  This novel GP presents a proposal that hypothesizes that incorporating diversity man-
agement into the stopping criterion and the elapsed time for execution could yield further advantages in the 
GP domain. A unique replacement phase was designed using this principle. The inclusion of a penalty in the 
replacement phase to prevent the survival of too similar individuals is one of the most crucial aspects of this 
replacement strategy. The concept of similarity is established on distance-related functions that are dependent 
on the problem, while the concept of excessive similarity is dynamic. A threshold distance is established initially 
to differentiate between penalized and unpenalized individuals. Subsequently, the threshold undergoes a linear 
reduction throughout the course of the evolutionary process, ultimately reaching a value of 0 upon completion 
of the optimization procedure. The application of a penalty function serves to enhance the survival of a range 
of solutions that may be less optimal but exhibit greater diversity. Simultaneously, the utilization of a dynamic 
threshold mechanism serves to concentrate the search efforts towards the most promising regions during the 
final stages of the optimization process.

The replacement strategy.  Algorithm 1 describes the pseudo-code of the suggested replacement approach in 
the GEP algorithm. The goal of the algorithm is to select the required number of survivors n to create a new 
population Pnew for the following generation. Originally, a group of candidates C is created by adding the current 
population P and offspring O . As the fitness in this study is to be decreased, the candidates with the lowest values 
are selected, eliminated from the pool of candidates, and employed to establish new populations. The candidates 
are then penalized further by calculating a threshold (D) value (line 4). Following the above initial procedures, 
n− 1 iterations are used to choose survivors from the candidate set to form the new population (see lines 5–15). 
At each iteration, the algorithm divides the candidates into the penalized set ( Cp ) and the on-penalized set ( Cnp ) 
(line 6). To be more explicit, every candidate whose distance to the closest survivor is less than the threshold D 
is categorized as either a penalty candidate or a non-penalized candidate. In the situation that there are candi-
dates that have not been punished, a multi-objective strategy that takes into account aspects such as fitness and 
simplicity is used to choose randomly dominated candidates, while penalized candidates are ignored (lines 7–9). 
Conversely, if all candidates are penalized, the algorithm selects the candidate with the greatest distance (line 
11). Under these circumstances, it may suggest that population variety is too constrained, therefore choosing the 
individual which is the farthest away appears more promising. The chosen candidate is then dropped from the 
list of candidates list and added to the new population.
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Phenotypic characterization of dispatching rules.  The threshold in Algorithm 1 is determined by the minimum 
required distance function, which is then used to discriminate between those who are penalized and those who 
are not. Throughout the course of evolution, the threshold value lowers linearly. This suggests that the acceptance 
of increasingly related individuals occurs with each cycle, shifting the emphasis from exploration to exploitation. 
Thus, in the last step of optimization, the dynamic threshold automatically leads the search in the direction of the 
most promising regions. The value of threshold D is determined in this study as follows:

where Dini is the initial distance value, DISave(P) is the average of the closest distance between individuals in a 
population P , Ne is the elapsed iterations, Ntotal is the stopping criterion.

The utilization of a distance measure, DIS(r1, r2) is required in the aforementioned threshold function to 
determine the distance between rules r1 and r2 . In contrast to conventional tree distance metrics such as ed2 
distance, it is feasible for two rules with distinct genotype structures to arrive at identical behavioral decisions in 
GP tree. Therefore, the distance measure should take into account differences in phenotypic behavior rather than 
genetic structure. The phenotypic characterization of dispatching rules used in this study is based on decision 
vector47, a list of all decisions taken by r in a given set of decision scenarios � . To get the ranking vector kref  , all 
candidate tasks are first ranked using the reference dispatching rules rref  . In order to produce the ranking vec-
tor kr , the rule r to be characterized is also applied to rank the tasks. Then, the next step is to get the index j of 
the tasks that have the greatest priority as determined by the reference rule rref  . Finally, the i th element of the 
characteristic vector is assigned the rank of the j th job in the ranking vector. The phenotypic characterization 
of rules is provided in pseudocode in Algorithm 2.

Feature selection.  This study adopts the feature selection concept in Mei’s research43, which posits that 
the significance of features is determined by their relevance to individual fitness and their contribution to indi-
viduals. Thus, we propose a feature selection mechanism involves three main steps. First, a diverse set of good 
individuals R̃ are selected from the final population at stage 1 based on the fitness value. Second, the contribu-
tion of each feature to the fitness of an individual in R̃ is evaluated, and if a feature contributes to that fitness, an 
individual in R̃ will vote for it. Ultimately, the feature is chosen if more individuals vote for it than against it. The 
pseudo code for the feature selection method is shown in Algorithm 3.

Contribution of features.  The contribution of each feature f  to an individual r̃  is quantified by Eq. (14), where 
fitness(̃r

∣∣f = 1) represents the fitness value of the rule r̃  that set the feature f  with the constant of 1. For exam-
ples, (PT +WINQ|PT = 1) = 1+WINQ . A positive value of Con

(
f , r̃

)
 indicates that eliminating the feature 

f  has a negative impact on the rule’s performance. Thus, the rule r̃  may provide voting weight to the measured 
feature.

Feature selection decision.  As the goal functions provided in this work are intended to be reduced, dispatching 
rules with lower fitness have higher voting weights. Therefore, a dispatching rule’s “voting weight” should be a 
monotonically decreasing function of its fitness. Equations (15), (16), (17) and (18) describes the calculation. 

(11)D = Dini −
Dini × Ne

Ntotal
,

(12)Dini = 0.5× DISave(P),

(13)DISave(P) =
1

|P|

∑|P|

i=1
DIS(P(ri), P\P(ri)),

(14)Con
(
f , r̃

)
= fitness(̃r

∣∣f = 1) − fitness
(
r̃
)
.
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Ultimately, the feature f  is selected if the weight voting for it is larger than the weight voting against it (see lines 
10 to 13).

Individual adaptation strategy.  During the third stage, the GP algorithm is employed alongside the 
selected features to facilitate the development of superior and understandable rules using promising individu-
als. Nevertheless, there exist unchosen features within the final population. Previous studies have proposed two 
representative individual adaptation strategies to tackle this issue45. A prevalent strategy is to assign a constant 
value of one to the unselected feature in the rule. One approach involves the replacement of individuals in the 
final population during stage one based on selected features, ensuring that only phenotypically similar individu-
als are retained. The findings derived from their study indicate that both approaches are proficient in acquiring 
information from the final population. The findings indicate that the first strategy exhibits greater potential for 
inheritance compared to the second. Thus, to decrease the computational expenses associated with producing 
behaviorally similar individuals, the initial approach involves discarding unchosen features while preserving 
the individual’s structure to the greatest extent feasible. The third phase of the process utilizes the conventional 
GP algorithm, with the exception of the initialization and mutation techniques. In the process of initialization, 
the original population is partitioned into two distinct parts. The first part encompasses prospective candidates 
produced by the innovative GP algorithm, whereas the latter part encompasses random candidates generated by 
the chosen attributes. The application of the standard subtree mutation involves the generation of randomized 
trees that exclusively utilize the chosen features.

Experimental design
Discrete event simulation model.  Previously, a number of GP-HH techniques for DJSS have been evalu-
ated using discrete event-based simulations43,48. The simulation parameters employed in this experimental setup 
is given as follows:

•	 The model simulates a job shop comprising of 10 machines.
•	 The arrival of jobs at the shop is a dynamic process that conforms to the Poisson distribution.

(15)w(r) = max

{
u(r)− umin

umax − umin
, 0

}
,

(16)u(r) =
1

1+ fitness(r)
,

(17)umax =
1

1+min
(
fitness(r)|r ∈ R

) ,

(18)umin =
1

1+max
(
fitness(r)|r ∈ R

) .
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•	 A period of 500 jobs is necessary for the system to reach a stable state before the data from the subsequent 
2000 jobs can be utilized.

•	 Each job comprises a sequence of 2 to 10 distinct operations.
•	 The average processing time of each operation is sampled from a uniform distribution with a lower bound 

of 25 and an upper bound of 100.
•	 Jobs are given weights 1, 2, or 4 with probability 0.2, 0.6, and 0.2.
•	 The due dates for jobs are determined using the Total Work Content approach, which incorporates different 

levels of tightness factors.

It is important to create a broad variety of scenarios representing various issue cases in order to evaluate 
the effectiveness of the rules that have been developed. According to earlier research, the tightness factor and 
machine usage are the crucial variables utilized to establish load circumstances, which have a major impact on 
rule performance29. Both low and heavy load cases are considered in this paper to evaluate the effectiveness of 
the developed dispatching rules. To do this, two or three values are set for α and μ in the job-shop simulation, 
ranging from 2 to 7 and 80% to 99%, respectively. During the training phase, each scenario in a training set is 
processed once by the simulator. In order to obtain accurate results from the simulation, 20 simulated replica-
tions are run to test the created rules. Table 2 details the parameters of the simulation scenarios represented by 
the tuple 〈p,α,µ〉.

Moreover, when evaluating the overall performance of each dispatching rules r , the fitness function is cal-
culated by Eq. (19), where f (r, s) is the value of scheduling objective, which is calculated by applying the rule r 
to a training instance s ∈ S , fref (s) denotes the target value, obtained by the reference rule in the same training 
instance. The best rule for a training instance s through all iterations is considered as refence rule in this article.

Algorithm parameters.  The Table 3 presents a comprehensive list of the terminal and function sets. The 
set of terminals utilized in the experiment comprises the typical characteristics employed in the existing research 
concerning GP-HH methodologies44,45,49. These features include a variety of aspects, including those related to 
jobs, machines, and workshop. The function set comprises of the four conventional mathematical operators 

(19)fitness(r) =
1

|S|

∑|S|

s=1

f (r, s)

fref (s)
.

Table 2.   Scenarios used in simulations for training and testing.

Parameter Description Training Test

p Mean processing time 25, 50 25, 50, 100

α Due dates tightness factor 3, 5, 7 2, 4, 6

µ Shop utilization level 85, 90, 95 80, 90, 99,

Scenarios × replications 18 × 1 27 ×20

Table 3.   The GP terminal and function sets.

Node name Description

NOW The current time

PT Processing time of the operation

NPT Processing time of the next operation

OWT The waiting time of the operation

NOIQ Number of operations in the current queue

NOINQ Number of operations in the next queue

WIQ Work in the current queue

WINQ Work in the next queue

MRT Ready time of the machine

ORT Ready time of the operation

NOR Number of operations remaining

WKR Work remaining (including the current operation)

DD Due date of the job

W Weight of the job

SL Slack time of the job

FDD Flow due date of the operation

Function set  + , –,  × , /, max, min
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+,−,× , / . The operator denoted by “/” is known to perform protected division, wherein the result obtained is 
one in the event of the denominator being zero. Also, the “max” and “min” functions are used.

Table 4 presents additional parameter settings of the algorithm.

Comparison design.  To substantiate the achievements of the proposed methodology (NGP-FS), three dis-
tinct algorithms have been considered for comparative analysis. The present study employs the standard genetic 
programming algorithm (SGP as the baseline approach, without incorporating feature selection. To examine the 
effect of the online feature selection mechanism on the regular GP, the SGP with feature selection technique, 
also known as SGP-FS, is compared. The novel genetic programming (NGP) is also compared to see whether 
dynamic diversity management in GP without feature selection improves the algorithm’s capacity to provide 
compact and superior dispatching rules. According to the quality of the solutions and the rules’ interpretability, 
all techniques are assessed and compared. Furthermore, an evaluation of the rule performance is conducted in 
comparison to the benchmark rules presented in Table 5.

Results and discussion
As previously stated, the efficacy of the NGP-FS method is evaluated by comparing it to the SGP, SGP-FS, and 
NGP approaches. The four GP-based approaches are compared using the three major performance indicators 
of test performance, mean rule length (number of nodes), and computing time. Larger values of the percent-
age change objective indicate superior performance, whereas lower value of mean rule length and computing 
time indicate better performance. The Wilcoxon rank sum test is used for statistical significance testing, with a 
significance threshold of 0.05. The algorithm was coded in Python 3.8, and the tests were conducted on a system 
with Intel(R) Xeon (R) CPUs at 3.40 GHz and 128 GB of RAM.

Table 4.   Parameter settings.

Parameter Value

Initialization Ramped-half-and-half

Population size 450

Maximal depth 8

Crossover/mutation rate 90%/20%

Selection Tournament selection (size = 5)

Number of generations in stage 1 and stage 3 50/50

Terminal/non-terminal selection rate 10%/90%

Table 5.   Benchmark dispatching rules.

Benchmark rules Descriptions

SPT Shortest processing time

EDD Earliest due date

FDD Earliest flow due date

LPT Longest processing time

FIFO First in first out

LILO Last in last out

CR Critical ratio

RR Raghu and Rajendran

MDD Modified due date

SL Slack

WATC​ Weighted apparent tardiness cost

COVERT Cost over time

PW Process waiting time

NPT Next processing time

WINQ Work in next queue

PT + WINQ Processing time + WINQ

2PT + WINQ + NPT Double processing time + WINQ + NPT

PT + WINQ + SL Processing time + WINQ + SL

SPT + PW + FDD Processing time + PW + FDD

2PT + WINQ + NPT + WSL 2Processing time + WINQ + NPT + waiting slack
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Training performance.  The statistical comparison of the proposed approach NGP-FS with the three algo-
rithms in terms of the three kinds of multiple-objectives is shown in Table 6. The symbols " + ", "–" and " = " within 
the results indicate that the corresponding outcome is noticeably better than, significantly worse than, or about 
equal to its counterparts, respectively. The performance of the evolved rule r on a given test is determined by 
calculating the percentage deviation from the reference rule. This expressed as 100 ·

(
1− fitness(r)

)
 . Figure 3a–c 

display the percentage deviation for the EMS, EMWT, and EMFT scenarios.
With regards to the evaluation of rule performance, it has been observed that the NGP-FS algorithm exhibits 

superior performance compared to all other algorithms for the three objectives that were analyzed. It is notewor-
thy that the SGP-FS algorithm exhibits poor performance across all scenarios. This result appears to be paradoxi-
cal as feature selection is commonly acknowledged as a viable approach to minimize irrelevant characteristics 
in GP algorithm, thereby improving the overall quality of the solution. The above observation suggests that the 
accuracy of feature selection may be influenced by the quality of the final population obtained in the first stage, 
despite the utilization of identical mutation processes and adaptation strategies for both SGP-FS and NGP-FS 
in the third stage.

The development of concise and readily understandable dispatching rules is also a crucial aspect of energy-
aware scheduling assignments. The utilization of simple dispatching rules confers benefits in terms of decreased 
computational costs and heightened generalizability. The changes in the mean rule size across generations are 
depicted in Fig. 4a–c under the EMS, EMWT, and EMFT, respectively. The results indicate that the SGP algorithm 
exhibits a tendency to generate significantly larger rules across all evaluated objectives in comparison to other 
algorithms. The findings are consistent with prior studies that have demonstrated that rules generated by the 
standard GP algorithm tend to be more extensive. Despite the utilization of the feature selection mechanism for 
eliminating redundant features in SGP-FS, the average rule size remains greater than that of NGP and NGP-FS 
across the three objectives. The NGP algorithm exhibits the second-lowest average rule size, indicating that the 
GP’s rule size is positively influenced by the dynamic management of diversity. Following the feature selection 
process, specifically after 50 generations, it has been observed that the evolved rules of NGP-FS exhibit greater 
compactness in comparison to those generated by the NGP. The NGP-FS algorithm has been proposed as a means 
to achieve small feature subsets while concurrently producing concise rules.

The results depicted in Fig. 5a–c demonstrate that the NGP algorithm requires a greater computational 
budget compared to the other algorithm across all three scenarios. The primary factor is that the replacement 
operator demands a greater degree of individual evaluation. Despite the lack of initial advantage in the first 50 
generations, the NGP-FS algorithm ultimately demonstrated comparable computational efficiency to both the 

Table 6.   Mean and standard deviation of the performance measures (training phase).

Measures Obj SGP SGP-FS NGP NGP-FS

Percentage deviation

EMS 105.52 ± 3.73 95.95 ± 10.89 115.66 ± 2.77 131.32 ± 2.21(+ , + , +)

EMWT 125.82 ± 14.36 122.43 ± 20.41 139.71 ± 11.9 156.58 ± 10.1(+ , + , +)

EMFT 98.16 ± 5.27 86.27 ± 7.6 111.37 ± 5.97 119.73 ± 4.48(+ , + , +)

Mean rule size

EMS 24.02 ± 2.35 19.63 ± 2.28 18.56 ± 2.87 16.29 ± 3.43(+ , + , +)

EMWT 26.34 ± 3.28 24.38 ± 3.11 21.09 ± 2.98 17.68 ± 2.56(+ , + , +)

EMFT 25.04 ± 3.89 20.26 ± 3.71 19.13 ± 1.59 13.43 ± 1.37(+ , + , +)

Computational time

EMS 141.39 ± 3.25 135.52 ± 2.86 155.27 ± 6.58 142.54 ± 3.51(+ , = , +)

EMWT 199.27 ± 3.63 190.25 ± 4.56 220.24 ± 4.16 205.47 ± 4.14(+ , = , +)

EMFT 123.42 ± 4.53 120.47 ± 4.25 130.24 ± 2.58 125.48 ± 2.36(+ , = , +)

Figure 3.   The percentage deviation of the GP algorithms for the EMS, EMWT, and EMFT scenarios in the 
training stage.



14

Vol:.(1234567890)

Scientific Reports |         (2023) 13:8558  | https://doi.org/10.1038/s41598-023-34951-w

www.nature.com/scientificreports/

SGP and SGP-FS algorithms after the feature selection stage. The suggestion put forth is that utilizing a restricted 
terminal set that includes selected features may result in more efficient rules as opposed to utilizing a vast feature 
set. Additionally, it should be noted that there is very little variation in the computational times of the SGP and 
SGP-FS, indicating that a chosen feature without accuracy cannot shorten the algorithm’s time for computation.

In conclusion, it can be inferred that the NGP-FS algorithm has the ability to generate efficient and concise 
dispatching rules within a reasonable computational timeframe, while also taking into account various scenarios 
that prioritize energy savings.

Test performance.  This section presents the outcomes of test scenarios for the EMS, EMWT, and EMFT to 
demonstrate the efficacy of the proposed approach. Table 7a–c present the mean and standard deviation values 
of the optimal dispatching rules generated by the four algorithms across 30 iterations for three distinct objec-
tives. Tests also show that the objective value of the best benchmarking rules for each scenario. Under the EMS 
scenarios, it has been observed that the NGP-FS algorithm exhibits superior performance as compared to the BR, 
SGP, and SGP-FS algorithms across all simulated instances. Especially when the instances increase in complexity, 
the disparity between them becomes more apparent, e.g. The benchmark rule 2PT + WINQ + NPT yielded an 
objective value that was 200% greater than the objective values obtained by the rules generated through NGP-FS 
in scenarios with parameters < 100, 2, 99% > and < 50, 2, 99% > . In 24 instances, NGP-FS yielded superior EMS 
outcomes in comparison to the NGP algorithm, while in 4 instances, no significant difference was observed. The 
rules generated through the utilization of the SGP-FS algorithm exhibit inferior performance in comparison to 
the rules formulated by other algorithms and benchmark rules.

In relation to the EMWT objective, the NGP-FS algorithm demonstrated superior performance in comparison 
to other methods across all 27 instances. It is notable to state that the difference in the efficacy of the NGP-FS 
algorithm is more pronounced in comparison to the other algorithms. In situations characterized by higher shop 
utilization rates and strict deadlines, the NGP-FS algorithm yields superior outcomes compared to the NGP and 
SGP. This indicates that the NGP-FS can generate rules that are competitive while adhering to the time restric-
tions. As anticipated, the rules created by SGP-FS exhibit inferior solution quality compared to the outcomes 
achieved by the remaining algorithms across all scenarios.

Figure 4.   The average rule size of the GP algorithms for the EMS, EMWT, and EMFT scenarios in the training 
stage.

Figure 5.   The computational time of the GP algorithms for the EMS, EMWT, and EMFT scenarios in the 
training stage.
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Scenarios RBR SGP SGP-FS NGP NGP-FS

(a) Mean and standard deviation of the EMS objective value of the considered algorithms in the testing phase

 (20, 2, 80%) 857.25 ± 12.79 (PT + WINQ) 854.14 ± 8.21 858.75 ± 5.66 846.37 ± 8.42 842.81 ± 6.17 (+ , + , + , +)

 (20, 2, 90%) 956.12 ± 20.25 (2PT + NPT + WINQ) 929.57 ± 10.27 939.65 ± 7.38 925.31 ± 18.25 924.54 ± 19.77 (+ , + , + , +)

 (20, 2, 99%) 813.15 ± 20.13 (PT + WINQ) 825.34 ± 10.56 837.57 ± 16.47 828.34 ± 13.34 734.88 ± 4.58 (+ , + , + , +)

 (20, 4, 80%) 892.34 ± 16.57 (PT + WINQ) 893.12 ± 11.58 897.34 ± 14.16 891.27 ± 13.78 887.24 ± 12.24 (+ , + , + , +)

 (20, 4, 90%) 920.57 ± 25.37 (PT + WINQ) 921.63 ± 17.41 925.58 ± 18.34 915.67 ± 27.81 916.52 ± 28.61(+ , + , + , =)

 (20, 4, 99%) 1129.34 ± 15.22 (COVERT) 1122.34 ± 3.3 1138.85 ± 25.15 1113.78 ± 18.67 1114.45 ± 15.28 (+ , + , + , =)

 (20, 6, 80%) 935.37 ± 21.09 (COVERT) 927.27 ± 11.57 933.58 ± 8.18 925.38 ± 17.35 921.21 ± 15.29 (+ , + , + , +)

 (20, 6, 90%) 898.25 ± 14.37 (PT + WINQ) 897.37 ± 11.24 899.62 ± 10.48 894.87 ± 15.16 892.54 ± 12.38 (+ , + , + , =)

 (20, 6, 99%) 917.25 ± 25.02 (SL/RO) 918.66 ± 15.27 919.27 ± 18.34 913.28 ± 12.28 915.37 ± 10.48 (+ , + , + , +)

 (50, 2, 80%) 884.28 ± 18.62 (PT + WINQ) 883.24 ± 4.69 885.19 ± 5.16 878.32 ± 5.15 875.27 ± 4.29 (+ , + , + , +)

 (50, 2, 90%) 975.51 ± 15.92 (PT + WINQ) 969.17 ± 8.56 972.29 ± 9.71 969.19 ± 4.31 965.18 ± 5.57 (+ , + , + , +)

 (50, 2, 99%) 1236.24 ± 56.21 (2PT + NPT + WINQ) 1223.78 ± 13.34 1245.56 ± 45.75 1175.73 ± 11.34 1115.48 ± 12.15 (+ , + , + , +)

 (50, 4, 80%) 847.25 ± 13.15 (2PT + NPT + WINQ) 847.37 ± 5.85 851.34 ± 10.62 837.14 ± 6.75 834.28 ± 5.23 (+ , + , + , +)

 (50, 4, 90%) 803.5 ± 38.27 (COVERT) 799.45 ± 20.26 810.26 ± 25.15 787.12 ± 20.10 785.14 ± 15.34 (+ , + , + , =)

 (50, 4, 99%) 877.97 ± 20.25 (RR) 875.15 ± 10.63 885.84 ± 12.16 880.63 ± 7.27 867.23 ± 10.34 (+ , + , + , +)

 (50, 6, 80%) 848.89 ± 30.45 (PT + WINQ) 845.52 ± 14.06 856.29 ± 13.81 842.87 ± 11.93 837.65 ± 14.34 (+ , + , + , +)

 (50, 6, 90%) 867.34 ± 19.78 (SL/RO) 869.29 ± 14.43 872.37 ± 11.67 860.25 ± 12.29 854.34 ± 13.26 (+ , + , + , +)

 (50, 6, 99%) 875.35 ± 13.38 (COVERT) 878.67 ± 7.88 882.34 ± 8.13 869.65 ± 6.08 864.21 ± 5.12 (+ , + , + , +)

 (100, 2, 80%) 961.67 ± 7.14 (2PT + NPT + WINQ) 958.97 ± 5.76 963.79 ± 5.28 941.18 ± 4.47 865.28 ± 3.68 (+ , + , + , +)

 (100, 2, 90%) 941.25 ± 25.94 (PT + WINQ) 938.15 ± 18.13 945.17 ± 17.99 926.48 ± 17.79 917.26 ± 16.52 (+ , + , + , +)

 (100, 2, 99%) 947.57 ± 22.46 (2PT + NPT + WINQ) 942.68 ± 13.57 952.49 ± 26.14 905.37 ± 12.21 853.23 ± 14.13 (+ , + , + , +)

 (100, 4, 80%) 935.54 ± 25.65 (PT + WINQ) 934.32 ± 3.48 940.14 ± 8.27 927.37 ± 6.28 871.57 ± 4.67 (+ , + , + , +)

 (100, 4, 90%) 842.83 ± 32.71 (COVERT) 840.18 ± 25.06 851.29 ± 21.28 829.16 ± 20.42 825.84 ± 20.28 (+ , + , + , +)

 (100, 4, 99%) 1301.55 ± 10.68 (PT + WINQ) 1283.67 ± 15.47 1302.47 ± 22.09 1162.28 ± 15.13 1056.42 ± 14.67 (+ , + , + , +)

 (100, 6, 80%) 827.26 ± 43.24 (COVERT) 822.71 ± 25.16 832.71 ± 36.30 811.06 ± 30.95 898.08 ± 32.16 (+ , + , + , +)

 (100, 6, 90%) 898.05 ± 75.36 (COVERT) 895.78 ± 14.26 815.48 ± 24.21 887.26 ± 18.81 881.27 ± 18.28 (+ , + , + , +)

 (100, 6, 99%) 842.34 ± 25.38 (SL/RO) 837.85 ± 4.87 849.92 ± 13.51 834.91 ± 8.29 832.35 ± 6.45 (+ , + , + , +)

(b) Mean and standard deviation of the EMWT objective value of the considered algorithms in the testing phase

 (20, 2, 80%) 1783.27 ± 85.48 (WATC) 1726.94 ± 87.61 1794.65 ± 121.26 1789 ± 99.34 1368.67 ± 71.27 (+ , + , + , +)

 (20, 2, 90%) 2389.42 ± 68.15 (PT + WINQ) 2374.36 ± 68.27 2383.19 ± 68.67 2364.22 ± 67.27 2329.45 ± 48.38 (+ , + , + , +)

 (20, 2, 99%) 2924.32 ± 78.31 (WATC) 2914.53 ± 85.25 2945.96 ± 98.67 2847.29 ± 105.28 2515.84 ± 23.56 (+ , + , + , +)

 (20, 4, 80%) 2687.66 ± 34.98 (WATC) 2699.39 ± 32.43 2713.47 ± 44.21 2616.48 ± 48.16 2459.24 ± 29.13 (+ , + , + , +)

 (20, 4, 90%) 3796.54 ± 19.58 (2PT + NPT + WINQ) 3834.67 ± 22.15 3867.49 ± 24.14 3791.94 ± 20.36 3579.29 ± 25.41 (+ , + , + , +)

 (20, 4, 99%) 3948.76 ± 25.48 (PT + WINQ) 3951.48 ± 20.95 3995.37 ± 28.31 3927.64 ± 33.78 3475.24 ± 20.28 (+ , + , + , +)

 (20, 6, 80%) 3589.76 ± 21.79 (COVERT) 3607.38 ± 24.13 3635.07 ± 32.95 3665.67 ± 28.37 3637.85 ± 27.12 (+ , + , + , +)

 (20, 6, 90%) 3837.95 ± 40.15 (COVERT) 3825.11 ± 50.48 3837.59 ± 64.37 3812.48 ± 75.05 3858.24 ± 64.27 (+ , + , + , +)

 (20, 6, 99%) 2795.61 ± 16.47(RR) 2784.29 ± 11.23 2894.82 ± 17.89 2737.33 ± 9.34 2331.11 ± 8.97 (+ , + , + , +)

 (50, 2, 80%) 2484.58 ± 16.87 (PT + WINQ) 2413.41 ± 15.26 2485.29 ± 2321 2378.52 ± 14.35 1957.39 ± 15.21 (+ , + , + , +)

 (50, 2, 90%) 1768.52 ± 24.19 (PT + WINQ) 1769.37 ± 25.48 1872.94 ± 47.58 1699.31 ± 23.57 1575.28 ± 12.96 (+ , + , + , +)

 (50, 2, 99%) 2395.77 ± 18.59 (COVERT) 2395.56 ± 39.71 2428.27 ± 41.82 2385.52 ± 27.65 1835.56 ± 19.24 (+ , + , + , +)

 (50, 4, 80%) 4558.98 ± 21.44 (2PT + NPT + WINQ) 4607.54 ± 21.64 4692.23 ± 28.26 4548.12 ± 24.19 4435.61 ± 24.24 (+ , + , + , +)

 (50, 4, 90%) 2514.67 ± 32.78 (COVERT) 2519.53 ± 37.79 2520.28 ± 35.27 2487.55 ± 31.72 2399.47 ± 25.67 (+ , + , + , +)

 (50, 4, 99%) 3256.67 ± 19.74 (SL/RO) 3255.25 ± 19.63 3267.64 ± 21.26 3150.47 ± 18.25 3138.33 ± 19.31 (+ , + , + , +)

 (50, 6, 80%) 2683.89 ± 12.21 (PT + WINQ) 2645.12 ± 15.17 2658.29 ± 18.35 2799.28 ± 13.72 2037.45 ± 12.13 (+ , + , + , +)

 (50, 6, 90%) 3667.31 ± 30.38 (SL/RO) 3660.37 ± 31.83 3665.37 ± 28.67 3560.25 ± 42.69 3454.15 ± 28.35 (+ , + , + , +)

 (50, 6, 99%) 1972.59 ± 14.72 (COVERT) 1989.37 ± 15.18 982.16 ± 11.23 869.45 ± 6.27 689.25 ± 8.74 (+ , + , + , +)

 (100, 2, 80%) 3651.37 ± 15.18 (2PT + NPT + WINQ) 3648.26 ± 15.24 3686.81 ± 15.27 3531.48 ± 34.61 3225.76 ± 15.28 (+ , + , + , +)

 (100, 2, 90%) 3526.65 ± 26.18 (PT + WINQ) 3518.15 ± 27.13 3545.45 ± 24.99 3326.21 ± 28.81 3117.46 ± 26.42 (+ , + , + , +)

 (100, 2, 99%) 2466.67 ± 15.86 (2PT + NPT + WINQ) 2452.68 ± 15.29 2487.59 ± 17.21 2385.71 ± 16.21 1983.65 ± 10.13 (+ , + , + , +)

 (100, 4, 80%) 2530.64 ± 24.61 (PT + WINQ) 2529.32 ± 20.35 2635.74 ± 22.59 2482.77 ± 27.14 2415.57 ± 18.27 (+ , + , + , +)

 (100, 4, 90%) 2442.83 ± 53.92 (COVERT) 2483.58 ± 57.06 2541.29 ± 58.47 2429.56 ± 42.47 2285.95 ± 41.18 (+ , + , + , +)

 (100, 4, 99%) 2539.55 ± 33.37 (PT + WINQ) 2533.17 ± 35.28 2618.37 ± 34.29 2429.78 ± 37.53 2176.42 ± 35.87 (+ , + , + , +)

 (100, 6, 80%) 1927.16 ± 16.05 (COVERT) 1928.81 ± 18.26 1999.87 ± 18.27 1911.26 ± 12.96 1618.48 ± 14.36 (+ , + , + , +)

 (100, 6, 90%) 2798.25 ± 18.17 (COVERT) 2795.78 ± 15.19 2815.48 ± 20.38 2687.26 ± 16.71 2481.47 ± 10.54 (+ , + , + , +)

 (100, 6, 99%) 2922.54 ± 37.56 (COVERT) 2917.85 ± 34.73 3149.92 ± 33.74 2834.91 ± 28.29 2232.55 ± 17.34 (+ , + , + , +)

Continued
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For the EMFT scenarios, according to Table 7c, the NGP-FS method continues to exhibit the highest objective 
values among the methods under consideration. However, the gap in rule performance is not deemed significant 
when compared to scenarios featuring MT and MWT objectives. Furthermore, the differences become greater 
in situations where there is a high level of shop utilization and a significant tightness factor in comparison to 
the other scenarios.

The experiment results reveal the subsequent findings: (1) The results indicate that the GP based methods 
outperform the manually designed dispatching rules in terms of robustness in the energy aware scheduling, as 
evidenced by the lower standard deviations achieved. Specifically, artificial dispatching rules exhibit inconsist-
ency in their outcomes when applied across diverse working conditions. (2) When dealing with various job 
shop settings, the suggested NGP-FS algorithm can produce high-quality rules with amazing small sizes in a 
reasonable computational time when compared to SGP, SGP-FS, NGP, and benchmark rules. (3) The objective 
values increase with the job shop scenarios become more complex under three objectives, which indicates that 
the complexity of workshop shows major impact on the energy aware scheduling while the processing time, 
standby power and processing power owns minor influence.

Feature analysis
Feature analyses.  The results of feature selection for the EMS, EMWT, and EMFT scenarios using the 
NGP-FS algorithm are presented in Fig. 6a–c, respectively. The data shown in the figures are based on 30 inde-
pendent runs. Each row of the matrix represents a run, while each column represents a feature. A point is drawn 
at the intersection of the selected feature f  and the i th run. For the EMS scenario, the feature PT, NPT, and 
WKR are selected in all 30 runs. This indicates that the processing time of operations in the EMS scenario has 
an important impact on the computation of job priorities. It is evident that minimizing idle times on machines 
with high unload power would be advantageous when allocating tasks to machines. This trade-off could poten-
tially result in a longer makespan and an uneven distribution of idle periods. In the meantime, the reduction of 
makepan has the potential to result in schedules characterized by decreased idle durations. In order to improve 
machine utilization, the idle times generated by the designed rules may be allocated equally across each machine. 
So, the machine prefers to select jobs with short processing time, less remaining processes, and low processing 

Table 7.   Mean and standard deviation of the (a) EMS, (b) EMWT and (c) EMFT objective value of the 
considered algorithms in the testing phase.

Scenarios RBR SGP SGP-FS NGP NGP-FS

(c) Mean and standard deviation of the EMFT objective value of the considered algorithms in the testing phase

 (20, 2, 80%) 461.21 ± 9.45 (PT + WINQ) 455.74 ± 3.07 459.27 ± 3.14 451.35 ± 2.37 435.57 ± 2.76 (+ , + , + , +)

 (20, 2, 90%) 442.89 ± 11.25 (2PT + NPT + WINQ) 438.68 ± 4.57 441.56 ± 5.34 433.63 ± 4.21 422.28 ± 3.58 (+ , + , + , +)

 (20, 2, 99%) 455.33 ± 12.42 (PT + WINQ) 355.68 ± 5.64 351.61 ± 5.39 315.27 ± 4.59 318.25 ± 3.31 (+ , + , + , +)

 (20, 4, 80%) 394.23 ± 7.19 (PT + WINQ 388.57 ± 5.14 392.25 ± 5.29 386.63 ± 3.13 381.23 ± 3.17 (+ , + , + , +)

 (20, 4, 90%) 438.62 ± 10.86 (PT + WINQ) 431.18 ± 5.42 434.69 ± 8.92 428.37 ± 7.65 422.42 ± 7.64 (+ , + , + , +)

 (20, 4, 99%) 498.67 ± 15.38 (PT + WINQ) 489.28 ± 7.13 494.23 ± 6.13 487.48 ± 5.17 465.15 ± 3.27 (+ , + , + , +)

 (20, 6, 80%) 328.52 ± 13.97 (PT + WINQ) 329.15 ± 4.49 339.60 ± 5.27 333.75 ± 3.15 328.75 ± 4.08 (+ , + , + , +)

 (20, 6, 90%) 405.79 ± 15.28 (PT + WINQ) 396.33 ± 16.01 401.75 ± 6.27 494.67 ± 6.15 485.84 ± 3.47 (+ , + , + , +)

 (20, 6, 99%) 634.84 ± 28.76 (PT + WINQ) 630.52 ± 6.35 633.34 ± 8.48 716.57 ± 4.17 556.21 ± 3.12 (+ , + , + , +)

 (50, 2, 80%) 451.85 ± 11.34 (PT + WINQ) 441.25 ± 6.93 447.69 ± 6.09 435.12 ± 6.25 425.26 ± 6.26 (+ , + , + , +)

 (50, 2, 90%) 589.62 ± 15.05 (PT + WINQ) 588.23 ± 5.57 585.49 ± 5.25 586.19 ± 2.74 575.38 ± 2.11 (+ , + , + , +)

 (50, 2, 99%) 695.27 ± 34.23 (2PT + NPT + WINQ) 687.36 ± 6.24 691.21 ± 5.32 685.12 ± 3.71 635.18 ± 3.27 (+ , + , + , +)

 (50, 4, 80%) 517.98 ± 45.24 (2PT + NPT + WINQ) 498.26 ± 4.95 515.23 ± 4.17 485.15 ± 3.94 480.69 ± 2.76 (+ , + , + , +)

 (50, 4, 90%) 531.16 ± 48.28 (PT + WINQ) 525.15 ± 5.79 528.15 ± 6.08 521.67 ± 4.88 512.66 ± 2.89 (+ , + , + , +)

 (50, 4, 99%) 727.57 ± 59.25 (PT + WINQ) 724.27 ± 9.73 725.24 ± 10.16 691.23 ± 7.13 628.58 ± 4.15 (+ , + , + , +)

 (50, 6, 80%) 458.19 ± 12.79 (PT + WINQ) 448.12 ± 8.15 456.29 ± 8.91 445.81 ± 8.12 437.25 ± 6.21 (+ , + , + , +)

 (50, 6, 90%) 597.11 ± 31.67 (PT + WINQ) 592.29 ± 14.43 596.17 ± 9.23 585.36 ± 7.19 574.37 ± 6.28 (+ , + , + , +)

 (50, 6, 99%) 795.25 ± 67.36 (2PT + NPT + WINQ) 789.37 ± 6.98 793.26 ± 7.27 786.35 ± 5.98 708.48 ± 5.12 (+ , + , + , +)

 (100, 2, 80%) 581.27 ± 45.48 (2PT + NPT + WINQ) 574.21 ± 6.27 583.29 ± 6.18 586.18 ± 5.62 575.86 ± 3.24 (+ , + , + , +)

 (100, 2, 90%) 741.55 ± 56.34 (PT + WINQ) 732.25 ± 7.27 738.47 ± 7.25 726.58 ± 6.71 718.46 ± 4.23 (+ , + , + , +)

 (100, 2, 99%) 932.17 ± 84.52 (2PT + NPT + WINQ) 912.38 ± 3.59 926.19 ± 4.23 898.27 ± 4.62 813.25 ± 2.73 (+ , + , + , +)

 (100, 4, 80%) 665.27 ± 43.35 (PT + WINQ) 651.12 ± 6.34 665.24 ± 6.15 640.27 ± 4.21 645.28 ± 4.20 (+ , + , + , +)

 (100, 4, 90%) 653.83 ± 62.71 (2PT + NPT + WINQ) 646.18 ± 7.08 651.29 ± 8.23 639.26 ± 7.12 627.34 ± 6.18 (+ , + , + , +)

 (100, 4, 99%) 915.34 ± 82.56 (PT + WINQ) 908.27 ± 8.26 912.47 ± 8.09 904.28 ± 7.58 856.12 ± 7.12 (+ , + , + , +)

 (100, 6, 80%) 637.45 ± 76.19 (PT + WINQ) 628.31 ± 8.09 632.78 ± 8.31 621.76 ± 7.25 598.48 ± 5.52 (+ , + , + , +)

 (100, 6, 90%) 768.34 ± 76.16 (PT + WINQ) 761.78 ± 14.27 765.25 ± 24.11 757.26 ± 8.23 725.17 ± 8.56 (+ , + , + , +)

 (100, 6, 99%) 956.54 ± 98.38 (PT + WINQ) 938.75 ± 7.48 952.92 ± 8.35 928.11 ± 7.34 858.16 ± 5.02 (+ , + , + , +)
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power. Moreover, the features NOINQ, NOR, and OWT are selected in more than half of the running times of 
the algorithm, indicating that they significantly contribute to the generation of optimal dispatching rules at least 
half of the time. It can also be seen that the feature FDD, W, and SL are selected only a few times, which indicates 
that these features are irrelevant or redundant in this scenario and may not contribute to the generation of best 
dispatching rules.

Figure 6b exhibits that PT and W are the most important features to reduce the EMWT scenarios. With the 
exception of these two features, WIQN, NOINQ, and NPT are likewise chosen in the majority of runs, indicat-
ing the importance of the workload information in the next queue to decreasing the EMWT scenarios. The 
fact that MRT, OWT, and FDD are often not chosen suggests that they have little bearing on the best developed 
rules for the EMWT. In contrast to the results of previous studies44, it has been observed that the attribute DD 
is not excluded from the irrelevant feature sets, and is chosen in over 40% of instances. This may be due to the 
scenarios considered energy consumption.

The significance of PT, NPT, WINQ, and WKR in relation to the EMFT scenarios is illustrated in Fig. 6c. The 
results indicate that PT and WKR were chosen consistently across all 30 runs, suggesting that jobs characterized 
by shorter processing times and lower remaining workloads are more likely to be prioritized for early processing. 
The selection of WINQ and NPT in the majority of runs suggests that the workload information in the subsequent 
queue is a crucial determinant for achieving the objective of the EMFT. The infrequent selection of WIQ, NOIQ, 
SL, and W features suggests that these characteristics may be redundant or irrelevant in EMFT scenarios and 
may not significantly contribute to the development of optimal evolved rules.

Rule analysis.  This study employs the numerical reduction technique as described by Nguyen43 to simplify 
the rules and enhance our understanding of their complexity and interpretability. The EMWT scenario is often 
used as an illustrative example due to its comparatively greater complexity in optimization as compared to other 
scenarios. The depth, size, and leaf size of the best rules as determined by 30 different runs of the four algorithms 
in the EMWT scenarios are shown in Table 8 along with their average and standard deviation. According to prior 
analysis, the algorithm based on NGP exhibits a significantly greater advantage than the algorithm based on SGP 
with respect to regular structure. Equations (20) and (21) illustrate two distinct rules derived by NGP and NGP-
FS for comparison. It should be noted that the size of rule 2 is smaller than that of rule 1. By way of comparison, it 
can be observed that rule 1 incorporates certain attributes, namely NOR, WIQ, and FDD, which are not deemed 
to be primary features. This suggests that the contribution of the actual component to the priority function in 
rule 1 is relatively less significant than that in rule 2. This could be the cause of rule 1’s inferior performance 
on training tests to rule 2’s. The NGP-FS technique, as proposed, effectively identifies crucial building blocks in 
comparison to the NGP approach by utilizing the vital attribute set. Ultimately, this leads to improved outcomes.

Figure 6.   The matrix plot of the feature selection results of the NGP-FS Algorithm for the EMS, EMWT, and 
EMFT scenarios.

Table 8.   Mean and standard deviation of the depth, size and leaves of the best rules obtained by the 30 runs of 
the four algorithms in the EMWT scenarios.

Algorithm Depth Size Leaves

SGP 7.7 ± 0.37 65.25 ± 20.13 33.28 ± 9.75

SGP-FS 7.6 ± 0.35 54.43 ± 18.67 32.17 ± 9.58

NGP 7.2 ± 0.28 19.34 ± 5.34 10.23 ± 2.18

NGP-FS 6.8 ± 0.34 16.56 ± 4.64 7.23 ± 1.57
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Conclusions and future work
The purpose of this study is to provide an integrative strategy to solve the energy-aware dynamic job shop 
scheduling issue that combines a novel genetic programming algorithm with feature selection (NGP-FS). This 
integrated approach used a diversity management technique for the GP algorithm to speed up the search process 
and enhance rule quality. Moreover, utilizing the feature selection technique, simpler and competitive rules with 
just significant features were developed. In this study, the NGP-FS approach was evaluated against three other 
algorithms (SGP, SGP-FS, NGP) in the context of energy consumption scenarios. The comparison was conducted 
based on three criteria: rule size, quality of designed rules, and computation time. Experimental results dem-
onstrate that the proposed method can generate more interpretable and high-quality rules for EDJSS, as well as 
accomplish high robustness against complex scenarios. The analysis of rules indicates that the NGP-FS possesses 
the capability to identify more significant building blocks for enhancing rule performance.

The suggested approach will be used in further research to analyze field datasets obtained from real-world 
manufacturing systems. The study aims to investigate the utilization of new rules embedded within field datasets 
as a means of addressing practical job-shop scheduling issues.

Data availability
All data generated or analyzed during this study are included in this published article.
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