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Sparse identification of Lagrangian 
for nonlinear dynamical systems 
via proximal gradient method
Adam Purnomo  & Mitsuhiro Hayashibe *

The autonomous distillation of physical laws only from data is of great interest in many scientific 
fields. Data-driven modeling frameworks that adopt sparse regression techniques, such as sparse 
identification of nonlinear dynamics (SINDy) and its modifications, are developed to resolve difficulties 
in extracting underlying dynamics from experimental data. However, SINDy faces certain difficulties 
when the dynamics contain rational functions. The Lagrangian is substantially more concise than the 
actual equations of motion, especially for complex systems, and it does not usually contain rational 
functions for mechanical systems. Few proposed methods proposed to date, such as Lagrangian-
SINDy we have proposed recently, can extract the true form of the Lagrangian of dynamical systems 
from data; however, these methods are easily affected by noise as a fact. In this study, we developed 
an extended version of Lagrangian-SINDy (xL-SINDy) to obtain the Lagrangian of dynamical systems 
from noisy measurement data. We incorporated the concept of SINDy and used the proximal gradient 
method to obtain sparse Lagrangian expressions. Further, we demonstrated the effectiveness of 
xL-SINDy against different noise levels using four mechanical systems. In addition, we compared 
its performance with SINDy-PI (parallel, implicit) which is a latest robust variant of SINDy that can 
handle implicit dynamics and rational nonlinearities. The experimental results reveal that xL-SINDy 
is much more robust than the existing methods for extracting the governing equations of nonlinear 
mechanical systems from data with noise. We believe this contribution is significant toward noise-
tolerant computational method for explicit dynamics law extraction from data.

Researchers have attempted to develop models that can capture real-world phenomena since the early modern 
history of humanity. Such models are desirable because they can be used to devise solutions to real-world prob-
lems. The process of refining the hypotheses, which should be falsifiable so that it can be meaningfully  tested1, 
from experimental data have been performed manually over the centuries; automation of these processes have 
long been of great interest to the scientific community.

Many attempts have been made to autonomously extract physical laws from data. With the abundance of data 
and inexpensive yet powerful hardware, deep learning-based methods have attracted considerable attention. The 
revolution of deep learning begins when LeCunn et al.2 and Krizhevsky et al.3 generalized the backpropagation 
algorithm for training multilayers networks. Deep learning has become popular in the robotics field due to its 
efficacy in solving complex robotic tasks and has been used extensively to model and control dynamical systems 
in recent  years4–6. Moreover, deep learning models can approximate physical quantities such as the  Hamiltonian7 
and  Lagrangian8 or mathematical quantities such as Koppman  Eigenfunctions9–11 from dynamical systems. Koo-
pman Eigenfunction is especially useful for nonlinear dynamical systems as it provides a framework to embed 
nonlinear dynamical systems into linear systems in an infinite Hilbert  space12,13.

Another variant of neural networks, graph neural network, has also been used to obtain the dynamics model 
of interacting  particle14. In this method, a deep learning model with a separable internal structure that provides 
an inductive bias was trained in a supervised manner. Xie et al. combine graph neural network and Koopman 
analysis to model the behavior of molecular dynamics in an unsupervised  manner15. One caveat is that, deep 
learning models act as black boxes; they do not provide insight into how the observational variables affect and 
relate to each other.

In contrast to neural network-based methods, recent trends favor parsimonious white-box modeling with the 
lowest complexity to describe experimental data. Ground breaking work by Schmidt and  Lipson16 demonstrated 
that it is possible to extract the governing mathematical expressions from observational data. Although symbolic 
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regression can be used to determine the nonlinear differential equations that describe the system behavior, this 
approach tends to be expensive. Sparse identification of nonlinear dynamics (SINDy)17 models the nonlinear 
differential equations of dynamics as a linear combination of nonlinear candidate functions and obtains a par-
simonious model through sparse  regression18,19.

Although SINDy offers many applications across different  fields20–23, it faces certain difficulties when the 
dynamics contain rational functions. The inclusion of rational functions in the library of candidate functions 
increases the size of the library significantly, making the sparse regression challenging. A modification of SINDy 
known as implicit-SINDy24, reformulates the SINDy problem into an implicit form to address this challenge; 
however this method is sensitive to noise due to non-convex optimization  procedure25. SINDy-PI was proposed 
to improve the performance of implicit-SINDy, in terms of noise robustness by reformulating the problem into 
a convex optimization problem.

Although SINDy-PI is substantially more robust than implicit-SINDy, it can only obtain the correct dynamical 
structure with a noise magnitude on a scale of up to 10−3 , which may not be sufficient for real-world applica-
tions. Furthermore, the predicted system may blow up when the denominator is equal to zero if an incorrect 
combination of denominator terms is discovered. Another SINDy variant that can identify rational functions is 
RK4-SINDy26 where it combines Runge-Kutta method with sparse identification method. Instead of reformulat-
ing the equation into implicit form, RK4-SINDy defines linear combination of nominators and denominators 
separately before combining the results. However, this method has only been tested on a rather simple rational 
equation. The possibility that incorrect denominators is found in more complex systems and may cause predic-
tion that blows up still exists.

The principle of least action is fundamental to many dynamical  systems27. This principle states that the trajec-
tory that is selected by the system minimizes a certain cost function. This cost function is the so-called action, 
which is defined as the integral of the Lagrangian for an input evolution over a certain period. The Lagrangian 
has a desirable property compared to the underlying differential equations in that it is a single scalar quantity 
that contains all information predicting the system behavior. In robotics, the derivation of the dynamics is often 
initiated with the Lagrangian of the systems.

Several techniques have been proposed to approximate the Lagrangian from data using polynomial basis 
 functions28,29. However, the approximation of the Lagrangian with polynomial basis functions is only useful for 
a particular trajectory of the system and is not likely to be generalized well across different initial conditions 
effectively. Lagrangian-SINDy30 is a SINDy-based method that is designed to extract the Lagrangian of the 
nonlinear dynamics and can retrieve the true form of the Lagrangian of several dynamical systems. Lagrangian-
SINDy first builds an expression of total energy, which turns out be a Koopman eigenfunction with eigenvalue 
� = 031, and adopts sparse regression by comparing the time derivative of the total energy to the net power that 
comes into the system.

However, the above paper noted that Lagrangian-SINDy is certain sensitive to noise and cannot recover 
the Lagrangian when the training data are corrupted by Gaussian noise even with a magnitude on the scale of 
10−7 . It was the remained challenge for this method. Because noise is always present in real-world systems, the 
development a method that is robust against noise is important for real-world applications.

In this study, we propose a method known as extended Lagrangian-SINDy (xL-SINDy), which can discover 
the true form of the Lagrangian and is more robust in the presence of noise than Lagrangian-SINDy and SINDy-
PI. Unlike Lagrangian-SINDy which discovers Lagrangian through Hamiltonian, xL-SINDy directly finds the 
Lagrangian which will be explained in the problem formulation section. We demonstrate the effectiveness of 
xL-SINDy against different noise levels and compare its robustness with that of SINDy-PI in physical simulations 
using four dynamical systems: a single pendulum, cart-pendulum, double pendulum, and spherical pendulum.

Results
New problem formulation for Lagrangian acquisition. We consider a Lagrangian expression in the 
structure of a linear combination of nonlinear candidate functions. Let q = (q1, q2, ..., qn) be the configuration 
of a system in generalized coordinates. The Lagrangian of the system is expressed as

where φk(q, q̇) , k = 1, ..., p is a set of nonlinear candidate functions and ck , k = 1, ..., p are the corresponding 
coefficients. We are interested in determining the value of c = (c1, c2, ..., cp) , in which we believe that most coef-
ficients are zero. The Lagrangian of the system satisfies the Euler–Lagrange equations given by

where 
(

∇q

)

i
≡ ∂

∂qi
 . We consider three different scenarios: active systems where the external input τ ext of the 

system is provided (case I), passive systems where no external input is present at all (case II), and passive systems 
but with prior Lagrangian knowledge of a simpler system that forms a constituent of the system is provided (case 
III). The summary of the problem formulation is shown in Fig. 1.

In case I, by substituting Eq. (1) into Eq. (2) yields

(1)L =

p
∑

k=1

ckφk(q, q̇),

(2)τ ext =
d

dt
∇q̇L−∇qL,
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where τ pred is the predicted value of the external input τ ext given a set of coefficients c = (c1, c2, ..., cp) . The time 
derivative ddt can be expanded further using the chain rule, resulting in the terms q̇ and q̈ expressed as

where Mk = ∇⊤
q̇ ∇q̇φk , Nk = ∇⊤

q ∇q̇φk , and Ok = ∇qφk . The Lagrangian of the system can be obtained by mini-
mizing the cost function J(c) = �τ ext − τ pred(c)�

2
2.

However, in the case of where no external input is present (case II), we will just end up minimizing the 
residual cost function J(c) = � − τ pred(c)�

2
2 . It can be observed from Eq. (4) that τ pred(c) is in the form of a 

linear combination of coefficients c . Thus, the minimization of this residual cost function is equivalent to the 
determination of a sparse null space, which is an arduous task when using current optimization methods.

Instead, Eq. (4) can be modified so that we can solve for q̈pred , which is expressed as

where q̈pred represents the predicted value of the acceleration q̈ and (·)−1 represents the matrix inverse. In practice, 
the Moore-Penrose pseudo-inverse32 is used to calculate Eq. (5) to avoid numerical instability. The cost function 
J(c) = �q̈ − q̈pred(c)�

2
2 is defined to learn the Lagrangian of the system.

Owing to the inverse operation, the cost function is non-convex with respect to the variable c , which means 
that the optimization process does not always converge to the global minimum. We empirically found that there 
is a tendency where more candidate functions correlate to a learning process that hardly converges. For example, 
we tested this computation method to discover a double pendulum with different numbesr of candidate functions 
in the library. As it can be seen in Fig. 2, even only at 12 candidate functions, the value of the loss function did 
not even reach a single digit even after 500 epochs. At 20 candidate functions as shown in Fig. 3, the loss func-
tion hardly decreased even following a lengthy iteration suggesting that the learning process converged to a local 
minimum . Therefore, this case is only used when no prior knowledge is available and the system is not complex, 
such as in a single pendulum. It is preferable for the external input τ ext to be provided for more complex systems, 
such as a multidegree-of-freedom system. When no external input is provided, prior Lagrangian knowledge of a 

(3)τ pred =
d

dt

p
∑

k=1

ck∇q̇φk −

p
∑

k=1

ck∇qφk ,

(4)

τ pred =

( p
∑

k=1

ck∇
⊤
q̇ ∇q̇φk

)

q̈ +

( p
∑

k=1

ck∇
⊤
q ∇q̇φk

)

q̇−

( p
∑

k=1

ck∇qφk

)

=

p
∑

k=1

ck

(

∇⊤
q̇ ∇q̇φkq̈ +∇⊤

q ∇q̇φkq̇ −∇qφk

)

=

p
∑

k=1

ck
(

Mkq̈ +Nkq̇ −Ok

)

,

(5)

0 =

p
∑

k=1

ck
(

Mkq̈ +Nkq̇ −Ok

)

,

−

( p
∑

k=1

ckMk

)

q̈ =

p
∑

k=1

ck
(

Nkq̇ −Ok

)

,

q̈pred =

(

−

p
∑

k=1

ckMk

)−1 p
∑

k=1

ck
(

Nkq̇ −Ok

)

,

Figure 1.  Block diagram of the proposed method (xL-SINDy). Depending on the case of the problem, a 
different cost function is constructed. Once the cost function is defined, the cost function is minimized by using 
the proximal gradient descent method.
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simpler system that forms a constituent of the larger system can be used to boost the learning process (case III) 
which will be explained in the following paragraph.

The Lagrangian for multidegree-of-freedom nonrelativistic systems can be described as 
L =

∑

i Ti −
∑

i Vi =
∑

i (Ti − Vi),where Ti and Vi are the kinetic and potential energies of each constituent 
of the system, respectively. As the total Lagrangian of the system is the sum of the Lagrangians of its constitu-
ents, it is reasonable to assume that the nonlinear terms that appear in each constituent also appear in the total 
Lagrangian of the  system30.

Given the prior knowledge of a constituent of the system, one of the several terms that appear in the total 
Lagrangian of the system is selected and labeled as φl(q, q̇) . The Lagrangian of a system is not unique; many 
forms of the Lagrangian can satisfy the Euler-Lagrange equation for a particular system. For example, L′ = kL , 
where k is a constant, satisfies the Euler-Lagrange equation. By multiplying Eq. (1) with k = 1

cl
 , Eq. (1) can be 

modified as follows:

where c′k =
ck
cl

 . At this point, the variable c′k becomes the coefficient of interest. We can redefine ck := c′k for 
simplicity of notation. The Euler-Lagrange equation of the system can be expressed as

(6)
L = φl(q, q̇)+

p
∑

k = 1
k �= l

c′kφk(q, q̇),

Figure 2.  The value of loss function versus the number of candidate functions in the library for a double 
pendulum after 500 epochs of learning using the computation described in case II (non-convex loss function).

Figure 3.  The value of loss function versus the number of epoch iteration for a double pendulum with 20 
candidate functions using the computation described in case II (non-convex loss function).
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We define the following notation:

where ϒ left and ϒright represent the left-hand side and right-hand side of Eq. (7), respectively. It is possible to 
obtain the true Lagrangian of the system by minimizing the cost function J(c) = �ϒ left −ϒright(c)�

2
2 . In general, 

more than one option is available for φl to construct ϒ left . In practice, all of these must be tested individually, 
and the one yielding the best model must be selected.

Performance verification on different dynamical systems. We evaluated xL-SINDy using four ideal 
dynamical systems, as illustrated in Fig. 4. First, we tested xL-SINDy when the dynamical systems were excited 
by external inputs τ ext = f (sinωt, cosωt) , where ω is a random frequency. The process that was used for the 
model learning is described by the computation of case I.

Furthermore, we tested the case of passive systems in which no external input τ ext was provided. For the 
single pendulum, we assumed that no prior knowledge was available. Therefore, we used the computation that is 
described for case II. The systems of the cart pendulum, double pendulum, and spherical pendulum have a single 
pendulum as one of their constituents or are more complex versions of a single pendulum. Thus, assuming that 
the Lagrangian of the single pendulum had already been obtained, we could use the computation described for 
case III to bootstrap the learning process.

We collected the training data for each system by performing a simulation with 100 initial conditions for a 
period of 5 s each and a measurement frequency of 100 Hz. The initial conditions for all experiments were sam-
pled under a uniform distribution between a certain threshold for each dynamical system. After obtaining the 
analytical form of the Lagrangian, we created a validation dataset to test the obtained model by calculating the 
predicted states for accuracy evaluation. We computed the Euler-Lagrange equation using the obtained model, 

(7)
−

d

dt
∇q̇φl +∇qφl =

d

dt

p
∑

k = 1
k �= l

ck∇q̇φk −

p
∑

k = 1
k �= l

ck∇qφk .

(8)

ϒright =
d

dt

p
∑

k = 1
k �= l

ck∇q̇φk −

p
∑

k = 1
k �= l

ck∇qφk

=

p
∑

k = 1
k �= l

ck
(

Mkq̈ +Nkq̇ −Ok

)

,

(9)
ϒ left = −

d

dt
∇q̇φl +∇qφl

= −Ml q̈ − Nl q̇+Ol ,

Figure 4.  Dynamical systems used to verify xL-SINDy. From upper left to bottom right: A single pendulum, a 
cart pendulum, a spherical pendulum, and a double pendulum. For all systems, the length of the rod is L = 1.0 
m, the mass of all pendulums except for the cart pendulum are m = m1 = m2 = 1.0 kg, and the gravitational 
acceleration is g = 9.81 m/s2 . For the cart-pendulum, the mass of the cart is mc = 1 kg and the mass of the 
pendulum is mp = 0.5 kg.
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retrieved the differential equation of the system, and integrated the equations for comparison with the actual 
validation data. Moreover, we tested the proposed method using training data that were corrupted by zero-
mean white Gaussian noise N (0, σ) on magnitudes of different scales in the range of 10−8 <= σ <= 10−1 . In 
the case of active systems, the Gaussian noise is only added to the measurement of state variables of the system. 
We assume that the function of the external inputs over time is known such as the case when external inputs 
are given from a computer. Finally, we compared the performance of xL-SINDy on several passive dynamical 
systems with noisy training data to that of SINDy-PI33.

The Lagrangian values that were obtained for each system are summarized in Table 1 for the active systems 
and in Table 2 for the passive systems. The performance of xL-SINDy compared to the true model in our simula-
tion experiments on a cart pendulum, double pendulum, and spherical pendulum is presented at Fig. 5 for the 
active systems and at Fig. 6 for the passive systems, along with the comparison with SINDy-PI and for different 
noise levels. It can be observed from Tables 1 and 2 that xL-SINDy exhibited better performance in extracting 
the correct structure when external inputs were provided. It included fewer incorrect additional terms in the 
model than when no external input was provided.

Regarding the performance of xL-SINDy compared to SINDy-PI, presented in the second column of the plot 
in Fig. 6, when the noise magnitude was σ = 2× 10−2 , it can be observed that SINDy-PI already started to devi-
ate from the true models in all three dynamical systems. xL-SINDy still predicted accurate models at the same 
noise magnitude. It should also be noted that the model estimate of xL-SINDy was reasonable despite incorrect 
additional terms being included in the Lagrangian, as can be observed from the example of the cart pendulum 
under a noise magnitude of σ = 6× 10−2 . This indicates that the model estimate is potentially usable, even when 
an incorrect Lagrangian structure is discovered.

Single pendulum. In an active system, the correct Lagrangian structure–one without additional or missing 
terms compared to the true Lagrangian form–could be obtained in the presence of a noise magnitude of up to 
σ = 1× 10−1 . In a passive system, the correct Lagrangian structure could be obtained with a noise magnitude 
of up to σ = 6× 10−2 . Although the obtained coefficients differed from those of the true model, the ratio of the 
coefficients between the two terms was close compared to the true model.

Cart pendulum. According to Tables 1 and 2, xL-SINDy could recover the correct structure of the Lagrangian 
in the presence of a noise magnitude of up to σ = 1× 10−1 with external input and a noise magnitude up to 
σ = 4× 10−2 without external input. In contrast, SINDy-PI could only recover the correct structure with a 
noise magnitude of up to σ = 5× 10−3 . Therefore, xL-SINDy was eight times more robust than SINDy-PI in the 

Figure 5.  Comparison against true model when external excitation is provided. Training data consists of 
100 initial conditions in a time period of 5 s each. Validation (extrapolation beyond the training data set) is 
conducted for 5 s afterward. The results shown are taken randomly from one of the initial conditions from the 
training data set for the cart pendulum, double pendulum, and spherical pendulum.
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presence of noise for the cart pendulum. Moreover, SINDy-PI sometimes predicted a model that blew up with 
a large noise magnitude, as indicated in the second column of Fig. 6. This is because it predicted the denomina-
tor terms incorrectly. Unlike SINDy-PI, xL-SINDy addresses the Lagrangian instead of the actual equation of 
motion. As there is no denominator in the Lagrangian, xl-SINDy still provides reasonable predictions, even 
though incorrect additional terms are included in the Lagrangian.

Double pendulum. According to the experimental results, xL-SINDy identified the correct structure with a 
noise magnitude of up to σ = 10−1 in both active and passive cases, whereas SINDy-PI could extract the correct 
structure of the equations of motion with a noise magnitude of only up to σ = 10−2 . Hence, xL-SINDy was 10 
times more robust against noise than SINDy-PI in this experiment. As can be observed from the summary table, 
xL-SINDy was quite robust for the double pendulum compared to the other dynamical systems. A possible rea-
son that xL-SINDy was more robust for the double pendulum is the chaotic signal that is caused by the double 
pendulum. The double pendulum yields an entirely different signal path for every initial condition owing to its 
inherently chaotic nature, thereby creating rich training data.

Spherical pendulum. In this experiment, xL-SINDy was robust up to σ = 2× 10−2 for both the active and 
passive system cases. In contrast, SINDy-PI was only robust up to σ = 1× 10−3 . Thus, xL-SINDy was 20 times 
more robust against noise than SINDy-PI. It can be observed from the second column of Fig. 5 and Table 2 that, 
although the correct structure could be obtained for the spherical pendulum at σ = 2× 10−2 , the performance 
of xL-SINDy was inferior for an active system. This is because in a passive system, a Lagrangian that is multiplied 
by a constant is still a valid Lagrangian. Thus, provided that the ratio between each coefficient is the same as that 
of the true model, the obtained model is also correct. However, in an active system, the Lagrangian is unique 
because an external constraint exists. Therefore, although the correct structure is obtained, if the coefficients do 
not closely match those of the true model, a less accurate long-term prediction ability will be exhibited.

Discussion
It can be concluded from the simulation results that xL-SINDy is more robust in obtaining the correct Lagrangian 
structure if an external input is provided to the system. Although xL-SINDy can obtain the correct Lagrangian 
structure in the presence of greater noise, it does not guarantee accurate long-term prediction ability. This is 
because the Lagrangian of the system is unique when external input is provided; thus, mismatched coefficients 
will result in a deviation in the long-term prediction. In contrast, this will not be a problem if no external input 
is provided because the Lagrangian is not unique. Provided that the ratio between each coefficient is close to that 

Figure 6.  Comparison against true model and SINDy-PI when no external excitation is provided. Training data 
consists of 100 initial conditions in a time period of 5 s each. Validation (extrapolation beyond the training data 
set) is conducted for 5 s afterward. The results shown are taken randomly from one of the initial conditions from 
the training data set for the cart pendulum, double pendulum, and spherical pendulum.
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of the true model, an effective long-term prediction model can still be established. However, in the absence of an 
external input, xL-SINDy is slightly less robust in determining the correct Lagrangian structure.

We used passive cases as the baseline for xL-SINDy to compare it with other models. A comparison of xL-
SINDy, SINDy-PI, and Lagrangian-SINDy is presented in Fig. 7. The experimental results demonstrate that xL-
SINDy outperformed the other methods in terms of noise robustness in all three dynamical systems that were 
used for comparison. Moreover, xL-SINDy can overcome the challenges faced by Lagrangian-SINDy; xL-SINDy 
can discover the correct Lagrangian expression for idealized nonlinear dynamical systems in the presence of 
a substantially higher noise magnitude. Furthermore, xL-SINDy successfully extracts the Lagrangian in cases 
where Lagrangian-SINDy fails to do so, such as the non-actuated spherical  pendulum30. Although the obtained 
coefficients may not be exactly the same as those of the true models, the ratio between the coefficients of each 
term is close to that of the true models.

There is a couple of reasons why xL-SINDy is much more robust than Lagrangian-SINDy. As previously 
mentioned, Lagrangian-SINDy finds the Lagrangian through the total energy which coincides with the Hamil-
tonian in mechanical systems. Lagrangian-SINDy involves two different regression where it first compares the 
change of total energy with the external input of the systems, and extract Lagrangian through reverse Legendre 
transformation. In contrast, xL-SINDy directly finds the Lagrangian through the Euler-Lagrange equation which 
is straightforward. Furthermore, to find the sparse solution, Lagrangian-SINDy used a combinatorial search of 
all possible subsets of regression in the case of active systems and Singular Value Decomposition (SVD) in the 
case of passive systems. Since no regularization is enforced in the optimization methods, the results are more 
sensitive to noise. On the other hand, xL-SINDy is formulated so that the optimization problem is a convex 
problem, thus finding a sparse solution can be done using the convex optimization method with ℓ1 regularization.

Although SINDy-PI is also found to be robust against noise of up to a certain magnitude, xL-SINDy is 8 to 20 
times more robust against noise. SINDy-PI attempts to seek an expression of dynamics that may contain rational 
functions. For this purpose, SINDy-PI reformulates the problem into an implicit form and it requires the library 
to include candidate functions of the states and the time derivative of the system states. Consequently, SINDy-PI 
must also include the q , q̇ , and q̈ variables to construct terms in the library. Unlike SINDy-PI, which deals with 
the actual equation of motion, xL-SINDy deals with the Lagrangian that only requires the q and q̇ variables to 
construct the terms in the library. Hence, xL-SINDy naturally contains fewer terms in the library to obtain the 
same order of a family function (e.g., second order of polynomial functions).

Table 1.  Extracted Lagrangian when external inputs are provided. All results are obtained with the 
computation described in case I. *Terms highlighted with bold font are extra terms that are not supposed to be 
included in the Lagrangian. All numbers are rounded to 3 decimal places.

Noise magnitude Single pendulum Cart pendulum Double pendulum Spherical pendulum

True model 0.500θ̇2 + 9.810 cos θ

0.250θ̇2 + 0.750ẋ2

+ 0.500ẋθ̇ cos θ

+ 4.905 cos θ

19.620 cos θ1 + 9.810 cos θ2

+ 1.000θ̇1 θ̇2 cos θ1 cos θ2

+ 1.000θ̇1 θ̇2 sin θ1 sin θ2

+ 1.000θ̇1
2
+ 0.500θ̇2

2

0.500φ̇2 sin2 θ + 0.500θ̇2

+ 9.810 cos θ

σ = 0 0.5θ̇2 + 9.78 cos θ

0.25θ̇2 + 0.75ẋ2

+ 0.5ẋθ̇ cos θ

+ 4.89 cos θ

19.45 cos θ1 + 9.72 cos θ2

+ 0.99θ̇1 θ̇2 cos θ1 cos θ2

+ 0.99θ̇1 θ̇2 sin θ1 sin θ2

+ 0.99θ̇1
2
+ 0.5θ̇2

2

0.5φ̇2 sin2 θ + 0.5θ̇2

+ 9.76 cos θ

σ = 10−3 0.5θ̇2 + 9.78 cos θ

0.25θ̇2 + 0.75ẋ2

+ 0.5ẋθ̇ cos θ

+ 4.88 cos θ

19.31 cos θ1 + 9.65 cos θ2

+ 0.99θ̇1 θ̇2 cos θ1 cos θ2

+ 0.99θ̇1 θ̇2 sin θ1 sin θ2

+ 0.99θ̇1
2
+ 0.49θ̇2

2

0.5φ̇2 sin2 θ + 0.5θ̇2

+ 9.8 cos θ

σ = 2× 10−2 0.49θ̇2 + 9.66 cos θ

0.24θ̇2 + 0.72ẋ2

+ 0.48ẋθ̇ cos θ

+ 4.69 cos θ

17.52 cos θ1 + 8.76 cos θ2

+ 0.99θ̇1 θ̇2 cos θ1 cos θ2

+ 0.89θ̇1 θ̇2 sin θ1 sin θ2

+ 0.89θ̇1
2
+ 0.45θ̇2

2

0.31φ̇2 sin2 θ + 0.31θ̇2

+ 6.09 cos θ

σ = 6× 10−2 0.44θ̇2 + 8.73 cos θ

0.17θ̇2 + 0.53ẋ2

+ 0.36ẋθ̇ cos θ

+ 3.32 cos θ

10.72 cos θ1 + 5.42 cos θ2

+ 0.55θ̇1 θ̇2 cos θ1 cos θ2

+ 0.55θ̇1 θ̇2 sin θ1 sin θ2

+ 0.55θ̇1
2
+ 0.27θ̇2

2

− 0.66φ̇2 sin2 θ − 0.06θ̇2

− 1.94 cos θ

+ 0.08θ̇ φ̇

− 0.03φ2∗

σ = 10−1 0.36θ̇2 + 7.19 cos θ

0.11θ̇2 + 0.36ẋ2+

0.24ẋθ̇ cos θ

+ 2.03 cos θ

5.18 cos θ1 + 2.66 cos θ2

+ 0.26θ̇1 θ̇2 cos θ1 cos θ2

+ 0.26θ̇1 θ̇2 sin θ1 sin θ2

+ 0.26θ̇1
2
+ 0.13θ̇2

2

0.04φ̇2 sin2 θ + 0.04θ̇2

+ 1.59 cos θ

− 0.1θ̇φ sin θ

− 0.22φ2∗
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Table 2.  Extracted Lagrangian when no external input is provided. For the single pendulum, the result is 
obtained with a computation described by case II, while the rest are obtained with a computation described 
by case III with the knowledge of the Lagrangian of a single pendulum. *Terms highlighted with bold font are 
extra terms that are not supposed to be included in the Lagrangian. All numbers are rounded to 3 decimal 
places.

Noise magnitude Single pendulum Cart pendulum Double pendulum Spherical pendulum

True Model 0.500θ̇2 + 9.810 cos θ

0.250θ̇2 + 0.750ẋ2

+ 0.500ẋθ̇ cos θ

+ 4.905 cos θ

19.620 cos θ1 + 9.810 cos θ2

+ 1.000θ̇1 θ̇2 cos θ1 cos θ2

+ 1.000θ̇1 θ̇2 sin θ1 sin θ2

+ 1.000θ̇1
2
+ 0.500θ̇2

2

0.500φ̇2 sin2 θ + 0.500θ̇2

+ 9.810 cos θ

σ = 0 0.295θ̇2 + 5.797 cos θ

1.000θ̇2 + 2.975ẋ2

+ 1.984ẋθ̇ cos θ

+ 19.755 cos θ

19.620 cos θ1 + 9.750 cos θ2

+ 1.000θ̇1 θ̇2 cos θ1 cos θ2

+ 0.999θ̇1 θ̇2 sin θ1 sin θ2

+ 1.000θ̇1
2
+ 0.499θ̇2

2

1.000φ̇2 sin2 θ + 1.000θ̇2

+ 19.630 cos θ

σ = 10−3 0.268θ̇2 + 5.252 cos θ

1.000θ̇2 + 2.975ẋ2

+ 1.984ẋθ̇ cos θ

+ 19.756 cos θ

19.508 cos θ1 + 9.755 cos θ2

+ 1.000θ̇1 θ̇2 cos θ1 cos θ2

+ 0.999θ̇1 θ̇2 sin θ1 sin θ2

+ 1.000θ̇1
2
+ 0.499θ̇2

2

1.000φ̇2 sin2 θ + 1.000θ̇2

+ 19.630 cos θ

σ = 2× 10−2 0.334θ̇2 + 6.540 cos θ

1.000θ̇2 + 2.993ẋ2

+ 1.994ẋθ̇ cos θ

+ 19.534 cos θ

19.545 cos θ1 + 9.770 cos θ2

+ 1.000θ̇1 θ̇2 cos θ1 cos θ2

+ 0.999θ̇1 θ̇2 sin θ1 sin θ2

+ 1.000θ̇1
2
+ 0.499θ̇2

2

1.000φ̇2 sin2 θ + 1.000θ̇2

+ 19.600 cos θ

σ = 6× 10−2 0.557θ̇2 + 10.938 cos θ

1.000θ̇2 + 1.696ẋ2

+ 1.136ẋθ̇ cos θ

+ 18.082 cos θ

− 0.121ẋ
2
cos θ

+ 1.463 cos
3 θ

∗

19.541 cos θ1 + 9.753 cos θ2

+ 0.999θ̇1 θ̇2 cos θ1 cos θ2

+ 0.999θ̇1 θ̇2 sin θ1 sin θ2

+ 1.000θ̇1
2
+ 0.496θ̇2

2

0.130φ̇2 sin2 θ + 1.000θ̇2

+ 2.350 cos θ

− 0.790θ̇2 sin θ

− 0.430θ̇2 cos θ
∗

σ = 10−1

0.085θ̇2 + 1.540 cos θ

− 0.129θ̇ sin θ

+ 0.551 sin
2 θ

− 0.019θ2
∗

1.000θ̇2 + 1.562ẋ2+

1.050ẋθ̇ cos θ

+ 19.504 cos θ

− 0.143θ̇2 cos θ
∗

19.381 cos θ1 + 9.679 cos θ2

+ 0.998θ̇1 θ̇2 cos θ1 cos θ2

+ 0.992θ̇1 θ̇2 sin θ1 sin θ2

+ 1.000θ̇1
2
+ 0.495θ̇2

2

− 0.2φ̇2 sin2 θ + 1.000θ̇2

+ 5.12 cos θ

− 1.100θ̇2 sin θ

− 0.560θ̇2 cos θ

− 0.055φ̇2
sin 2θ

∗

Figure 7.  Comparison of the maximum level of manageable noise between xL-SINDy, Lagrangian-SINDy, and 
SINDy-PI. The maximum manageable noise is defined as the maximum noise level before an incorrect model 
structure is discovered. xL-SINDy provides the most robust performance against noisy training data in all 
simulations of three different dynamical systems.
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A further advantage of xL-SINDy over SINDy-PI is that xL-SINDy can provide greater coverage of various 
terms with fewer coefficient parameters in the actual equation of motion. This is owing to the inherent nature 
of the Lagrangian formulation. For example, let us consider a Lagrangian that contains only one term, which 
is expressed by

If we substitute this into the Euler-Lagrange formula, we obtain an equation of motion that contains three dif-
ferent terms, as follows:

As can be observed from the above equation, although three different terms appear in the equation of motion, 
all of them correspond to the same coefficient c0 . This is not the case with SINDy-PI because it requires three 
different coefficients to represent the different terms in the equations of motion. Hence, it would be easier to learn 
the model using xL-SINDy than using SINDy-PI with fewer parameters, while maintaining the same amount of 
coverage of possible terms in the actual equations of motion. This is one reason that xL-SINDy is more robust 
than SINDy-PI.

Another reason that xL-SINDy is more robust than SINDy-PI is the performance of the learning process. 
SINDy-PI uses the sequential threshold least-squares  method33, the basic concept of which is to run the least-
squares method and remove terms with low coefficients sequentially (hard thresholding). However, we experi-
mentally determined that the sequential least-squares method often fails to remove non-relevant terms if the 
training data are corrupted. Thus, the concept of hard thresholding from the sequential least-squares method 
was combined with soft thresholding from the Lasso regression with the proximal gradient method. It was found 
that this approach achieved better performance in removing non-relevant terms with a higher level of noise. As 
shown in Table 3, although xL-SINDy had more terms in the library than SINDy-PI, xL-SINDy still outperformed 
SINDy-PI with a higher level of noise for the double and spherical pendulums.

Finally, SINDy-PI may encounter a problem when an incorrect combination of the denominator terms is 
discovered. In a rational function, when the denominator is zero, its value blows up, which was the case for 
SINDy-PI for the cart and spherical pendulums according to our experimental results. In contrast, xL-SINDy 
only contains rational terms because it is a Lagrangian mechanical function. Therefore, it minimizes the pos-
sibility of the model blowing up owing to incorrect terms.

As with other learning-based methods, xL-SINDy introduces several hyperparameters during the learning 
process, such as the sparsity constraint � , learning rate α , tolerance for the cost function, and cut-off threshold 
in the hard-thresholding process. Hyperparameter tuning is also vital for the learning outcome, particularly the 
initial values of the learning rate α and sparsity constraint � . At present, the hyperparameter tuning process is 
performed manually through trial and error.

One major limitation of xL-SINDy is the difficulty in designing the library. Prior knowledge of the systems 
is essential to deciding what candidate functions we should include in the library. A large number of candidate 
functions in the library are more likely to be sufficient, but it makes the sparse optimization more challenging 
and less robust against  noise33. Hence, balancing this trade-off is crucial for the outcome of the learning process.

A better mechanism for handling a large library is necessary for applying xL-SINDy to more complex systems 
with a higher degree of freedom. One possible means of addressing a large number of libraries is the library-
bootstrapping method, as in the case of Ensemble-SINDy34. In this method, many smaller libraries are created by 
sampling terms without replacement from the original library and several different models are learned separately. 
Once the learning process is complete, all terms with a low probability of inclusion are removed. This process 
can be repeated until sufficient results are obtained.

The presence of external non-conservative forces acting on the systems were not considered in this study. In 
real-world scenarios, non-conservative forces of varying degrees, such as damping or friction, are always present. 
The consideration of such external forces in the model is important to apply xL-SINDy to real systems. One major 
difficulty of incorporating non-conservative forces is that our model is based on the Lagrangian formula, and the 
Lagrangian formula does not take into account non-conservative forces. Thus, to include non-conservative forces, 
a different model of non-conservative forces need to be included in the final Euler-Lagrange equation. A possible 
means of incorporating non-conservative forces is to use the generalized Rayleigh dissipation  function35. Similar 
to the Lagrangian, the Rayleigh dissipation function is a single scalar quantity that can be incorporated into the 
Euler-Lagrange equation. The generalized Rayleigh dissipation function can be modeled as a linear combination 
of candidate functions, and the Lagrangian and Rayleigh dissipation functions can be learned simultaneously. 
However, this will also mean that the number of candidate terms in the library and coefficient will be exceed-
ingly large, and the extraction of sparse solutions with the presented optimization method in this paper is still 
challenging. Thus, we will consider handling non-conservative forces as our future work. In addition, our group 
works also on distributed neural integrator for inducing synchronized oscillations in unknown mechanical 
systems as non-while box  approach36. The combination of while box modeling and black box modeling can be 
an interesting direction of the research.

(10)L = c0φ0(q, q̇).

(11)

0 =
(

c0∇
⊤
q̇ ∇q̇φ0

)

q̈ +
(

c0∇
⊤
q ∇q̇φk

)

q̇

−
(

c0∇qφk
)

= c0

(

∇⊤
q̇ ∇q̇φkq̈ +∇⊤

q ∇q̇φkq̇ −∇qφk

)

.
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Materials and methods
Sparse regression with proximal gradient method. The proposed learning method for obtaining the 
Lagrangian is depicted in Fig. 8. The corresponding code is available from https:// github. com/ AdamP urnomo/ 
Exten ded- Lagra ngian- SINDy- xL- SINDy-. First, the problem was formulated, as described in the section called 
New Problem Formulation for Lagrangian Acquisition. Given a dynamic system, time-series data were gathered 
from several initial conditions regarding {ti , q(ti), q̇(ti), q̈)(ti , τ ext(ti)}Ni=1 . Subsequently, a library of candidate 
functions was constructed.

In general, the optimization problem becomes more difficult when the library of candidate functions is larger. 
This is particularly true when several candidate functions may behave in a similar manner, such as functions of 
the trigonometric family. It is important to construct a library that is sufficient but not excessively large so that 
the optimization problem remains tractable. However, it is also preferable not to include trivial terms that satisfy 
the Euler-Lagrange equation, regardless of the trajectories, such as L = qnq̇ . Technically, although trivial terms 
do not affect the system behavior, it is better to remove them so that unnecessary complexity in the library can 
be reduced. A different cost function should be defined depending on the case.

As mentioned previously, we believe that the correct solution is sparse, in which most coefficients are zero. 
Therefore, we added the ℓ1 regularization term to the cost function for the sparsity  constraint18, which is expressed 
as

where � is a sparsity-promoting parameter that must be carefully tuned. Several methods that can be used to 
solve LASSO include coordinate descent  method37, sub-gradient  methods38, proximal gradient  method39, and 
Least-Angle  Regression40. The accelerated proximal gradient descent  method39 was used in this study to mini-
mize the composite cost function that is defined above. Given an initial point c0 , the update step of the proximal 
gradient descent is defined as

where ci is the coefficient c at iteration i, α is the learning rate, and proxℓ1(·) is the proximal operator for the ℓ1 
norm. The ℓ1 norm penalty term is a separable sum of the components of its input and a proximal operator is 
used to minimize this term. The proximal operator for the ℓ1 norm is well defined separately for each component 
of the input and is expressed as follows:

where k is the kth entry of input vector β . For case III, if other terms are known that appear in the Lagrangian but 
are not used to construct ϒ left , we do not impose a penalty on these terms by not applying the proximal operator 
in Eq. (15) for the index k corresponding to these terms.

We initialized the values of the coefficient c , learning rate α , and ℓ1 norm penalty parameter � . The learning 
process was performed in several stages, with 100 epochs and a batch size of 128 for each stage, until the cost 

(12)J ′(c) = J(c)+ ��c�1,

(13)v = ci−1 +
i − 2

i + 1

(

ci−1 − ci−2
)

,

(14)ci = proxℓ1(v − α∇J(v)),

(15)[proxℓ1(β)]k = sign(βk)max(|βk| − �, 0),

Figure 8.  Diagram of the sparse regression using proximal gradient method. The Combination of soft threshold 
from proximal gradient method, and hard threshold at the end of the learning stage accelerates the learning 
process.

Table 3.  Comparison of the size of the library.

Method

Dynamical system

Cart pendulum Double pendulum Spehrical pendulum

xL-SINDy 55 87 59

SINDy-PI 90 40 49

https://github.com/AdamPurnomo/Extended-Lagrangian-SINDy-xL-SINDy-
https://github.com/AdamPurnomo/Extended-Lagrangian-SINDy-xL-SINDy-
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function reached the defined tolerance value, as illustrated in Fig. 1. The ideal tolerance value is 10−3 . However, 
convergence to this value may not be possible in the presence of noise and the tolerance value must be relaxed; 
otherwise, the algorithm will never stop. In general, the number of candidate functions in the library is initially 
large, and we should attempt to eliminate as many non-relevant candidate functions as possible during the first 
learning stage. Therefore, we initially set the value of � to be quite high, between 1-5.

It is important to note that each candidate function may have a different magnitude scale. The ℓ1 norm 
penalizes all terms equally, regardless of the magnitude scale, resulting in more candidate functions with smaller 
magnitude scales being penalized. It may or may not be necessary to perform scaling in the first learning stage, 
where the value of � is high, by multiplying each candidate function by the scaling term sk in Eq. (1) for cases I 
and II, or Eq. (6) for case III, depending on the differences in the magnitude scale of each candidate function. 
Moreover, the learning rate is an important hyperparameter, particularly during the first learning stage. A high 
learning rate in the initial stage may cause the relevant terms to be penalized, thereby preventing the model from 
obtaining the true Lagrangian of the system. The learning rate was set to α <= 10−5 during the initial stage.

We performed hard thresholding at the end of every learning stage by removing the index k from Eq. (1) or 
(6), where ck < threshold . This step effectively reduced the number of candidate functions that were considered 
in the learning process, which means that the convergence is much faster than when hard thresholding is not 
performed. Subsequently, we verified whether or not the cost function reached the tolerance. If this is the case, we 
proceed to the next learning stage. Owing to fewer candidate functions following the previous hard thresholding 
process, the value of � can be decreased and the learning rate α can be increased to accelerate the learning process. 
The rates of the increment α and decrement � are also significant. If α is increased too rapidly, the optimization 
process may take longer to converge, and if � is decreased too rapidly, it may not be possible to eliminate all 
non-relevant terms. A tuning process is required to determine the most appropriate rate for increasing α and 
decreasing � . This step was repeated until the cost function reached the tolerance value. The learning process 
generally requires approximately three or four stages for the tolerance value to be reached. Once the tolerance 
value was reached, the value of the coefficient was computed using Eq. (1) for cases I and II or Eq. (6) for case 
III, and the analytical form of the Lagrangian of the system was obtained.

Learning of single pendulum. The state of a single pendulum is described by [θ , θ̇ ] , and the Lagran-
gian expression of a single pendulum is expressed by L = 1

2mθ̇2 +mg cos θ . The true Lagrangian expression 
that was obtained by substituting the parameters in Fig. 4 is shown in the second row and second column of 
Table 1. We created a polynomial combination of {θ , θ̇ , cos θ , sin θ} up to the second order, excluding trivial 
terms such as θ̇ and θ θ̇ , to construct a library of 12 candidate functions. Training data with the initial conditions 
of [−π < θ < π , 0] were created.

The initial values of the hyperparameters were α = 10−5 and � = 0.1 . The cut-off threshold was 10−2 for 
the initial learning stage and 10−1 for the subsequent learning stages. In the subsequent learning stages, α was 
increased by a factor of two and � was decreased by a factor of 10. The training converged in three stages for a 
noise magnitude of σ <= 10−3 and four stages for higher magnitudes with a relaxed tolerance value.

Learning of cart pendulum. The state of the cart pendulum is represented as [θ , θ̇ , x, ẋ] , and the Lagrangian 
with numerical coefficients that was obtained using the parameters in Fig. 4 is presented in the second row and 
third column of Table 1. A polynomial combination of {θ̇ , cos θ , sin θ , x, ẋ} up to the third order was constructed 
to create a library of 55 candidate functions. In this case, we excluded the term θ because it does not appear in 
the Lagrangian of a single pendulum system. Training data with the initial conditions of [−π < θ < π , 0, 0, 0] 
were created.

The Lagrangian of a single pendulum contains θ̇2 and cos θ . Hence, both terms also appear in the Lagrangian 
of the cart pendulum. Both θ̇2 and cos θ were tested to construct ϒ left , as described in Eq. (9), and the term θ̇2 
yielded better results. The initial values of the hyperparameters were α = 10−5 and � = 1 . The cut-off threshold, 
increment of α and decrease in � were the same as in the previous case. The training converged in three stages 
for a noise magnitude of σ <= 2× 10−2 and four stages for higher magnitudes with a relaxed tolerance value.

Learning of double pendulum. Given the state of a double pendulum, [θ1, θ2, θ̇1, θ̇2] and the system 
parameters in Fig. 4, the expression of the Lagrangian with numerical coefficients is shown in the second row 
and fourth column of Table 1. We first separated the sets of trigonometric terms {cos θ1, sin θ1, sin θ1, sin θ2} 
and non-trigonometric terms {θ̇1, θ̇2} to construct a library of candidate functions. We created a polynomial 
combination of up to the second order for each set, resulting in 14 and 5 candidate functions, respectively. 
Subsequently, we generated cross-terms between the two sets, thereby creating 70 candidate functions, form-
ing a total of 89 candidate functions in the library. Training data were created under the initial conditions of 
[−π < θ1 < π ,−π < θ2 < π , 0, 0] . Both constituents of the double pendulum are single pendulums. Hence, 
there were four options for construction. Both θ̇1

2 and θ̇2
2 yielded equally good results.

The results are presented in Tables 1 and 2 display the values with θ̇1
2 that are used to construct ϒ left . The 

initial values of the hyperparameters were α = 5× 10−6 and � = 1 . The cut-off threshold, increment of α and 
decrease in � were the same as in the previous cases.

Learning of spherical pendulum. The state of the spherical pendulum is represented as [θ ,φ, θ̇ , φ̇] , and 
the true Lagrangian expression is displayed in the second row and fifth column of Table 1. As in the case of 
the double pendulum, we first separated the trigonometric terms {cos θ , sin θ} and non-trigonometric terms 
{θ̇ ,φ, φ̇} , created polynomial combinations for both sets up to the second order, and added cross-terms between 
the two sets. In total, the library contained 59 candidate functions. The training data were created with the initial 
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conditions of [π/3 < θ < π/2, 0, 0,π ] . We deliberately selected high values of θ and φ̇ for the initial conditions 
because the equation of motion contained 1

sin θ  , which may blow up for a small value of θ.
A spherical pendulum is a higher-dimensional analog of a single pendulum; therefore, we can consider the 

Lagrangian of a spherical pendulum as the sum of the Lagrangian of the pendulum in the θ̂ and φ̂ directions. We 
used θ̇2 and cos θ to construct ϒ left because the Lagrangian of a single pendulum in the θ̂ direction was already 
known. The initial values of the hyperparameters were α = 1× 10−5 and � = 1 . The cut-off threshold, increment 
of α and decrease in � were the same as in all previous cases (Supplementary Information).

Data availability
All codes used to perform the analyses are available from the repository.
 https:// github. com/ AdamP urnomo/ Exten ded- Lagra ngian- SINDy- xL- SINDy-.
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