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Simple combination of multiple 
somatic variant callers to increase 
accuracy
Alexander J. Trevarton 1*, Jeffrey T. Chang 2 & W. Fraser Symmans 3

Publications comparing variant caller algorithms present discordant results with contradictory 
rankings. Caller performances are inconsistent and wide ranging, and dependent upon input data, 
application, parameter settings, and evaluation metric. With no single variant caller emerging as a 
superior standard, combinations or ensembles of variant callers have appeared in the literature. In this 
study, a whole genome somatic reference standard was used to derive principles to guide strategies 
for combining variant calls. Then, manually annotated variants called from the whole exome 
sequencing of a tumor were used to corroborate these general principles. Finally, we examined the 
ability of these principles to reduce noise in targeted sequencing.

Scientists and clinicians who want to identify mutations and other variants in DNA face a wide selection of vari-
ant caller algorithms that employ various different approaches. However, discordance and inconsistency exist 
between bench-marking publications that compare the performances of variants callers. Reported performances 
may range widely in part due to differences in bench-marking datasets, variant caller parameter settings, and 
evaluated output metrics. Publications presenting novel variant  callers1–7 typically show their own caller perform-
ing favorably compared to other callers. With no single variant caller emerging as a superior standard, combina-
tions or ensembles of variant callers have appeared in the literature. Ensemble  approaches8–17 aim to increase 
confidence in called variants, better differentiate low variant allele frequency (VAF) variants from artefacts and 
noise, and generate more accurate variant calls for further downstream analysis. Published ensembles differ 
by the number and types of callers combined, and by method of combination; and across this range, ensemble 
approaches generally out-perform single variant callers. Despite demonstrated improvements in performance, 
there has not been wide-spread uptake of ensemble approaches by scientists and clinicians, potentially due to 
uncertainties in how to choose callers or combine calls. We posited that users may be more willing to improve 
their variant calling pipelines using simple combinations that are easy to implement and require no further 
software installations on top of the variant callers. We sought to find generalizable heuristics that are simple 
enough to spread by word-of-mouth, and thus do not necessitate this paper being read by a wide audience. 
Goode et al.18 reported that a 2/3 majority consensus of the callers MuTect, JointSNVMix2 and SomaticSniper 
outperformed a 3/3 complete intersection. Brienen et al.19 described a strategy of using “at least two” of four 
variant callers. In this paper, we report that majority consensus remains advantageous in combinations larger 
than three variant callers, when applied to whole genome sequencing (WGS), whole exome sequencing (WES), 
and targeted amplicon sequencing data. Based on our results, we found that the specific callers used is not critical 
and recommend a consensus strategy consisting of at least three callers, where variants found by n − 1 callers are 
accepted. While this study is limited to the datasets here utilized, we expect that these strategies will be tested 
for generalizability in other datasets over time.

Results
Whole genome sequencing. Seven variant callers, with different types of core algorithms (Table 1), were 
applied to a somatic reference  standard20. Six of these variant callers were used to call single nucleotide vari-
ants (SNVs), and four were used to call indels. 25.4% of indels were called by all four indel callers, with 4.6% of 
reference indels not called by any caller. 87.8% of SNVs called by all six SNV callers, with only 0.4% of reference 
SNVs not called by any caller. Intersections between variant callers are visualized approximately in Fig. 1. Fig-
ure 2 plots the precision, sensitivity, and F1 accuracy measure (the harmonic mean of precision and sensitivity) 
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of each variant caller and variant caller combination when indels were called. Figure 3 plots the F1 measure of 
variant caller combinations applied to SNVs, under various intersection thresholds. The intersection threshold 
is the minimum number of callers a variant must be called by in order to be accepted.

Figure 3B,D show median and maximum F1 increasing as the number of combined callers increases. In 
Fig. 3A, the highest median F1 is obtained by accepting variants called by n − 1 callers. Figure 3C shows that for 
most caller combinations, the highest F1 measure is obtained at a threshold of n − 1. In Fig. 3A,B, data points 
are blue if the combination contains MuSE and, when 3 or more callers are combined, has a minimum caller 

Table 1.  Variant callers applied to WGS somatic reference standard.

Caller Variant types Core algorithm type Reference

MuSE SNVs Markov chain model 1

Mutect SNVs Allele frequency analysis 2

Mutect2 SNVs and indels Haplotype analysis 3

Pindel Indels Pattern growth approach 4

SomaticSniper SNVs Joint genotype analysis 5

VarDict SNVs and indels Heuristic threshold 6

VarScan SNVs and indels Heuristic threshold 7

Figure 1.  Intersections between reference variants and indels (left) and SNVs (right) called by variant callers. 
Ellipse and overlapping area sizes are approximately proportional to variant counts.

Figure 2.  WGS indel caller performance.
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intersection threshold of n − 1, n − 2, n − 3 or n − 4. The observed bimodal distribution in F1 measures can be 
elucidated by this simple categorization.

Whole exome sequencing. Figure 4A plot precision, sensitivity and F1 measures, when variants were 
accepted when called by a minimum intersection threshold (from 7 to 1) of 7 combined SNV callers. Figure 4B,C 
show the effect on F1 measure of increasing the number of combined variant callers, when callers are added in 
either ascending or descending order by individual caller performance.

Amplicon sequencing. The noise returned by any single caller will not entirely overlap with a different 
caller, therefore noise should be reduced by accepting the intersections of combined callers. Counts of the 
remaining false positives are given in Table 2, when accepting calls made by a minimum number of callers. False 
positive counts were also totaled after removing the noisiest caller. However, this did not dramatically increase 
noise at minimum intersection thresholds n, n − 1, or n − 2.

Conclusions
In summary, the simple heuristics developed during this study for SNV calling are:

1. Multiple variant caller combination increases accuracy.
2. Accept variants called by n − 1 callers, where n is the total number of callers. That is, sensitivity is maintained 

by keeping the positives that are only (false) negative in a single caller.
3. Without prior knowledge of which variant callers are best suited to a dataset, accuracy may be increased by 

increasing the number of combined callers.
4. Removal of the worst performing caller from a combination does not necessarily increase accuracy

In contrast, indel calling requires more judicious selection and combination of variant callers:

Figure 3.  WGS SNV caller performance. (A) F1 measures for every possible combination of 1 to 6 SNV callers, 
grouped by minimum caller intersection thresholds n, n − 1, n − 2, n − 3 and n − 4, where n is the total number 
of callers combined. The intersection threshold is the minimum number of callers a variant must be called by 
in order to be accepted. Data points are blue if the combination contains MuSE and, when 3 or more callers 
are combined, has a minimum caller intersection threshold of n − 1, n − 2, n − 3 or n − 4. (B) The same F1 
measures, at every minimum intersection threshold, grouped according to the number of total combined callers. 
Data points are blue if the combination contains MuSE and accepts variants not 3 or more callers are combined) 
has a minimum caller intersection threshold of n − 1. Data points are blue if the combination contains MuSE 
and, when 3 or more callers are combined, has a minimum caller intersection threshold of n − 1, n − 2, n − 3 or 
n − 4. (C) F1 measures by minimum intersection thresholds for combinations of 3, 4, 5 and 6 callers, showing 
the change in F1 as threshold lowers. (D) Maximum F1 measures for 1–6 combined callers.
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1. Combination of two indel callers increases accuracy above that of either caller alone.
2. Accept variants called by both callers.
3. Addition of a third or fourth variant caller does not necessarily increase accuracy.

Methods
Whole genome sequencing. We aimed to combine a reasonably low number of variant callers while still 
covering a broad range of conceptual calling approaches by selecting callers representative of the 6 types of core 
variant callers algorithms identified in Xu’s 2018 review of somatic variant  callers21. The ‘machine learning’ core 
type was excluded when initial exploration suggested that variants called were overly dependent on data used for 
training, also termed ‘batch effects’22. A widely-used indel caller,  Pindel4, was added as it takes a pattern growth 
approach unlike any of the 6 core algorithm types described by Xu. To prevent over-fitting and to enable replica-
tion, default parameters were used and parameter fine-tuning was avoided.

In their 2016 paper “A somatic reference standard for cancer genome sequencing”20, Craig et al. reported high 
coverage (99x) whole genome sequencing of a matched metastatic melanoma cell line (COLO829) and normal 
by Illumina HiSeq. We aligned the FASTQ files sequenced by Illumina to human genome version hg19/GRCh37 
using BWA-MEM23, and called variants using the seven variant callers listed in Table 1.

Variants from the resultant VCF files were retained if their ‘FILTER’ field entry was either “PASS” or “.” and 
variant allele depth was > 3, and variant allele frequency > 0.02. This low stringency filtering was intended to 
remove some random “stochastic noise” without also removing the “deterministic noise" (noise/false positives 
systematically introduced by variant callers). The threshold was chosen after examination of a density histogram 
plotting variant allele depth of the caller that called the most variants, Pindel. The variants called by each caller 
were compared to the indels or SNVs of the Craig et al. reference standard using  VCFtools24 and RTG  tools25. 

Figure 4.  WES SNV caller performance. (A) Precision, sensitivity and F1 measures, when variants were 
accepted as positive when called by a minimum intersection threshold (from 7 to 1) of 7 combined SNV callers. 
The intersection threshold is the minimum number of callers a variant must be called by to be accepted. (B) F1 
measures by minimum intersection threshold for caller combinations that increase in size as additional callers 
are added, ordered from worst to best performing callers. Minimum caller intersection thresholds range from 
n to n-6, where n is the total number of callers in that combination. SS SomaticSniper. (C) F1 measures by 
minimum intersection threshold for caller combinations that increase in size as additional callers are added, 
ordered from best to worst performing callers.
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Counts of true positives (TP), false positives (FP) and false negatives (FN) were used to calculate Precision 
TP/(TP + FP) and Sensitivity TP/(TP + FN) and their harmonic mean, the F1 measure. This study emphasizes 
maximizing F1, however maximizing sensitivity and minimizing false negatives may be preferred in clinical 
contexts such as biopsies of low tumor content, or investigation of specific implicated genes. We did not test for 
caller accuracy on low or very low frequency variants. All possible combinations of variant callers were tested, 
and variants were accepted if called by, or by more than, a minimum intersection of callers. That is, a minimum 
caller intersection threshold was applied to only accept calls made by at least a minimum of the number of call-
ers. If n is the total number of combined callers, then this minimum intersection ranged between 2 to n. Every 
intersection threshold was tested in every possible combination of callers.

Whole exome sequencing. The COLO829 somatic reference standard was produced from a cancer cell 
line, and lacks the complexity and heterogeneity of a bulk tumor sample. Therefore, we manually  annotated26 
read alignments pileups from the WES of a matched triple negative breast cancer sample (Supplementary 
Table 1). A sample of random locations were annotated as either containing a somatic, germline or no variant, or 
being ambiguous. 19 locations contained a somatic variant, and 1145 locations contained no variant. Because of 
this class imbalance, we generated another manually annotated reference by first filtering for locations with > 20 
reads, > 5 variant reads, < 25% variant allele frequency in the matched germline normal sample and > 20% variant 
allele frequency called by at least two variant callers. A sample of these locations were manually annotated with 
108 locations being labelled as containing a somatic variant, and 142 locations containing no variant which were 
treated as positives and negatives respectively in this WES reference set.  Strelka27, a variant caller excluded from 
our previous WGS analysis due to its involvement in the pipelines used to create the WGS reference standard, 
was now added to the pool of variant callers. Somatic variant calls made by each caller are available in Supple-
mentary Information as VCF files. Precision, sensitivity and F1 measures were calculated when variants were 
accepted as positive when called by more than a minimum number of the 7 SNV callers, and are plotted in Fig. 4.

Amplicon sequencing. While the higher coverage of targeted amplicon sequencing can uncover lower 
frequency variants, PCR error increases background noise. PCR errors appearing in sequencing reads can look 
similar to real variants, making it difficult to manually annotate amplicon sequencing. Therefore, our study 
of variant caller combination in amplicon sequencing was focused on selectivity, and reduction of noise. We 
decided to utilize only somatic variant callers capable of calling both SNVs and indels. The five selected callers 
were: Mutect2, NextGene, Strelka2, VarDict and VarScan2. NextGene (SoftGenetics) is a software that includes 
a variant caller function tuned to the ThunderBolts Cancer Panel.

We evaluated the level of background noise by applying amplicon sequencing, using the ThunderBolts Cancer 
Panel (Bio-Rad), to ten germline normal samples. True germline allele frequencies can only be 0.5 (heterozygous) 
or 1 (homozygous). Noise variants called by each caller with frequency outside of 0.4–0.6 (heterozygous) or 0.9–1 
(homozygous) were intersected. The noise returned by any single caller will not entirely overlap with a different 
caller, therefore by combining callers and accepting their intersections, a large amount of noise will be discarded. 
Counts of the remaining false positives are given in Table 2, when accepting calls made by a minimum number 
of callers. Somatic calls, as made in the previous WGS and WES analyses, had germline calls and shared noise 
subtracted, while no calls were subtracted from these germline calls.

Table 2.  Counts of false positives called from 10 germline samples by a combination of 5 or 4 callers, across a 
range of minimum intersection thresholds.

GL1 GL2 GL3 GL4 GL5 GL6 GL7 GL8 GL9 GL10

n = 5 callers
Minimum intersection

 n 0 0 0 0 0 0 0 0 0 1

 n − 1 0 0 0 1 1 1 1 1 1 3

 n − 2 1 4 5 2 2 3 4 4 5 10

 n − 3 18 26 20 12 18 15 15 17 17 44

 n − 4 167 119 109 128 79 112 84 95 95 161

n = 4 callers
Minimum intersection

 n 0 0 0 0 0 0 0 0 0 1

 n − 1 0 0 1 1 1 1 1 1 1 3

 n − 2 2 4 5 2 2 3 4 4 5 10

 n − 3 100 102 97 70 72 95 78 92 63 101

Additional counts by 4 callers, at minimum intersection

 n 0 0 0 0 0 0 0 0 0 0

 n − 1 0 0 1 0 0 0 0 0 0 0

 n − 2 1 0 0 0 0 0 0 0 0 0
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Data availability
The WGS somatic reference standard of Craig et al. analysed during the current study are available in the 
National Center for Biotechnology Information database of Genotypes and Phenotypes (NCBI dbGAP, accession 
number phs000932, https:// www. ncbi. nlm. nih. gov/ proje cts/ gap/ cgi- bin/ study. cgi? study_ id= phs00 0932. v1. p1) 
and the European Bioinformatics Institute European Genome-phenome Archive (EBI EGA, accession number 
EGAS00001001385, https:// ega- archi ve. org/ studi es/ EGAS0 00010 01385). The WES and amplicon sequencing 
datasets generated and analysed during the current study are not publicly available due to research participant 
privacy but are available from the corresponding author on reasonable request.
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