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Large scale proteomic studies 
create novel privacy considerations
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Iain R. Konigsberg 5, Betty A. Gorbet 4, Leslie A. Lange 5, Katherine A. Pratte 1,  
Katerina J. Kechris 5, Matthew DeCamp 5, Marilyn Coors 5, Victor E. Ortega 6, 
Stephen S. Rich 3, Jerome I. Rotter 7, Robert E. Gerzsten 8, Clary B. Clish 9, 
Jeffrey L. Curtis 10, Xiaowei Hu 3, Ma‑en Obeidat 11, Melody Morris 11, Joseph Loureiro 11, 
Debby Ngo 11, Wanda K. O’Neal 12, Deborah A. Meyers 13, Eugene R. Bleecker 13, 
Brian D. Hobbs 14,15,16, Michael H. Cho 14,15,16, Farnoush Banaei‑Kashani 17 & 
Russell P. Bowler 1*

Privacy protection is a core principle of genomic but not proteomic research. We identified 
independent single nucleotide polymorphism (SNP) quantitative trait loci (pQTL) from COPDGene 
and Jackson Heart Study (JHS), calculated continuous protein level genotype probabilities, and 
then applied a naïve Bayesian approach to link SomaScan 1.3K proteomes to genomes for 2812 
independent subjects from COPDGene, JHS, SubPopulations and InteRmediate Outcome Measures 
In COPD Study (SPIROMICS) and Multi‑Ethnic Study of Atherosclerosis (MESA). We correctly linked 
90–95% of proteomes to their correct genome and for 95–99% we identify the 1% most likely links. 
The linking accuracy in subjects with African ancestry was lower (~ 60%) unless training included 
diverse subjects. With larger profiling (SomaScan 5K) in the Atherosclerosis Risk Communities (ARIC) 
correct identification was > 99% even in mixed ancestry populations. We also linked proteomes‑
to‑proteomes and used the proteome only to determine features such as sex, ancestry, and first‑
degree relatives. When serial proteomes are available, the linking algorithm can be used to identify 
and correct mislabeled samples. This work also demonstrates the importance of including diverse 
populations in omics research and that large proteomic datasets (> 1000 proteins) can be accurately 
linked to a specific genome through pQTL knowledge and should not be considered unidentifiable.

Nearly four decades ago Jeffreys et al.1 recognized that patterns of simple tandem-repetitive regions of DNA 
were specific for individuals and could be used for identifying specific individuals or close relatives. Although 
initially controversial, the DNA-fingerprinting technique was rapidly and widely adapted by forensic scientists 
and within a decade was in the public’s vernacular. Soon thereafter the results of the Human Genome Project were 
 published2,3 and it is now recognized that there are millions of single nucleotide polymorphisms (SNP) which 
can distinguish individuals within large populations. Identifying individuals by genomics is a rising concern 
in research because advances in genotyping and sequencing have resulted in large genetic databases (dbGaP; 
GEO; EMBL-EBI) for both research and commercial use. The existence of newer genotyping technologies and 
large genomic databases has created concerns among policy makers regarding discrimination in health insur-
ance and employment and resulted in new laws that address genetic information (e.g., the Genetic Information 
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Non-discrimination Act of 2008) as well as privacy protection efforts such as the Global Alliance for Genomics 
and Health, which has created frameworks to ensure responsible and secure sharing of genomic and health-
related data. A key feature of these policies in the United States is that they explicitly addressed genomic (single 
nucleotide, sequence, transcriptome, epigenomic, and gene expression) data only. Despite these policies, there 
have been multiple instances of “deidentified” personal information linked back to individual genetic  profiles4, 
including well publicized individuals such as Henrietta  Lacks5. There have also been methods proposed which 
can link expression data to genotype through  eQTLs6.

Although lagging behind genotype and sequencing advances by 5–10 years, exponential technological 
advances in high throughput proteomics are leading to the creation of similar large databases with sensitive 
personal information. Concurrently there are studies which demonstrate that many  proteins7,8 have genetic 
quantitative trait loci (QTLs), but current practice is to consider these datasets as deidentified data. In this 
manuscript we show that even limited proteome profiles without peptide sequencing can be linked to specific 
individuals by using prior independent knowledge of these QTLs and we provide a bioinformatic solution which 
obfuscates reidentification, yet still preserves at least some biomarker-phenotype relationships. These findings 
suggest an immediate need to change policy regarding non-genomic data used for research or commercial use.

Methods
Study populations. All study participants provided written informed consent approved by institutional 
review boards (IRBs). COPDGene and Jackson Heart Study (JHS) cohorts were randomly split into training 
and testing datasets and training subjects were not included in the testing cohort. Other independent cohorts 
used for testing included Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS) 
and Multi-Ethnic Study of Atherosclerosis (MESA). Race was self-reported. Characteristics of subjects used for 
training and test are shown below with summary demographics in Table 1. This manuscript was approved by 
the publication committees of the cohorts listed below as well as the NHLBI Trans-Omics for Precision Medi-
cine (TOPMed). All research was performed in accordance with relevant guidelines/regulations and informed 
consent was obtained from all participants and/or their legal guardians. Research involving human research 
participants was performed in accordance with the Declaration of Helsinki.

COPDGene. The NIH-sponsored multicenter Genetic Epidemiology of COPD (COPDGene (ClinicalTrials.
gov Identifier: NCT01969344)) enrolled 10,263 non-Hispanic white (NHW) and Black (AA) individuals from 
January 2008 until April 2011 (Phase 1) who were aged 45–80 with ≥ 10 pack-year smoking history and no exac-
erbations for > 30 days and 457 age and gender matched healthy individuals with no history of smoking were 
enrolled as  controls9. Subjects were genotyped using an Illumina HumanOmni  Express10. 1184 subjects from the 
enrollment visit (P1) participated in an ancillary study in which they provided p100 (BD) fresh frozen plasma 
used for SomaScan 1.3K proteomic profiling which measured 1305 proteins. An additional 547 independent 
subjects, who only had SomaScan profiling at a 5-year follow up visit (P2) and not used in the training dataset, 
were used as an independent testing cohort. 5292 also had SomaScan 5K (v4.0) proteomes using plasma from 
a P2 visit and were randomly split into training and testing to assess whether scaling improved identification 
accuracy. COPDGene has been approved by the BRANY IRB.

Jackson Heart Study (JHS). The NIH-sponsored (ClinicalTrials.gov Identifier: NCT00005485) enrolled 5306 
African American residents living in the Jackson, MS, metropolitan statistical area (MSA) of Hinds, Madison, 
and Rankin Counties. 2055 gave consent for genetic research and also had SomaScan 1.3K proteomic profiling. 
Genotypes were extracted using TOPMed whole genome sequencing Freeze 8 to create a synthetic Illumina 
HumanOmniExpress genotype panel. The Jackson Heart Study (JHS) Institutional Review Board (IRB) Working 
Group (WG) is responsible for Overseeing and monitoring all JHS Institutional Review Board (IRB) activities 
Facilitating collaborative communications and transfer of information among the IRBs regulating the JHS: Jack-
son State University, University of Mississippi Medical Center, and Tougaloo College.

Table 1.  Characteristics of training cohort and independent testing cohorts with SomaScan 1.3K. SD standard 
deviation, SPIROMICS SubPopulations and InteRmediate Outcome Measures In COPD Study, JHS Jackson 
Heart Study, MESA Multi-Ethnic Study of Atherosclerosis.

Cohort

Training Testing

COPDGene JHS SPIROMICS COPDGene JHS MESA

Proteomes 1184 1028 258 547 1027 948

Genomes 2638 9970 3406 5308

Gender (% female) 50.1% 60.4% 46.5% 46.6% 61.6% 52.8%

Age (± SD) 61.6 ± 9.1 56.0 ± 12.9 60.0 ± 9.2 67.9 ± 8.5 55.2 ± 12.6 60.7 ± 9.7

Race/ethnicity (self-reported)

White, non-Hispanic 87% – 71% 91% – 35%

Black, non-Hispanic 13% 100% 23% 9% 100% 34%

Asian, non-Hispanic – – 5% – – 11%

Hispanic – – – – 19%
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SPIROMICS. The NIH-sponsored Subpopulations and Intermediate Outcome Measures in COPD study 
(SPIROMICS) study (ClinicalTrials.gov Identifier: NCT01969344)11 enrolled 2984 subjects who were genotyped 
using the Illumina HumanOmniExpress genotyping  platform12 of which 258 subjects underwent SomaScan 
1.3K proteomic profiling using Visit 1 plasma. Additional SomaScan 7K data (version 4.1) were available for 
2401 subjects from visit 1, 2, 4, and 5 (5132 total samples with proteomes). SPIROMICS has been approved by 
by the IRB at the University of North Carolina at Chapel Hill.

MESA. The NIH-sponsored Multi-Ethnic Study of Atherosclerosis (MESA) study (ClinicalTrials.gov Identi-
fier: NCT00005487) recruited 6418 participants from four race/ethnic groups: Caucasian, African American, 
Hispanic, and Chinese. Whole genome sequencing (WGS) was performed at the Broad Institute of MIT and 
Harvard. SomaScan proteomics 1.3K profiling was performed at the Broad Institute and Beth Israel Proteom-
ics Platform (HHSN268201600034I). The MESA study was approved by its six participating IRBs  (see13) which 
include University of Washington, University of Vermont (biospecimen repository), Columbia University, Johns 
Hopkins University, Northwestern University, University of California, Los Angeles, University of Minnesota, 
and Wake Forest University.

ARIC. The Atherosclerosis Risk in Communities (ARIC) study initially enrolled 15,792 participants aged 
45–64 years at four study centers in the United States: Washington County, MD; Forsyth County, NC; northwest-
ern suburbs of Minneapolis, MN; and Jackson, MS between 1987 and 1989, aiming to investigate cardiovascular 
disease and its risk factors. Participants have undergone nine clinical visits. For current analysis, proteomic pro-
files were obtained from SomaLogic, via SomaScan 5K (v4.0) assay using freshly frozen blood plasma collected 
at ARIC visit 2 (1990–1992). Genotyping was performed using Affymetrix 6.0 array and imputed using TOPMed 
Freeze 5b datasets Details of genotyping and imputation quality control methods were previously  described14. 
242 out of 250 selected SNPs were obtained in both race groups, of which 176 were imputed in AA and 175 
were imputed in EA. There were 2874 AAs and 9345 EA that genotypes available, therefore were included in the 
prediction analyses. The ARIC study has been approved by Institutional Review Boards (IRB) at all participating 
institutions: University of North Carolina at Chapel Hill IRB, Johns Hopkins University IRB, University of Min-
nesota IRB, and University of Mississippi Medical Center IRB.

Proteome profiling. Proteomic profiles for 1305 proteins were generated using SomaScan v 1.3K (Soma-
Logic, Boulder, Colorado). Description of the SomaScan 1.3K assay is further described  in15. Normalization 
follow SomaLogic’s guidelines for data processing encompass three sequential levels of normalization, namely 
Hybridization Control Normalization (Hyb) followed by Median Signal Normalization (Hyb.MedNorm) and 
Interplate Calibration (Hyb.MedNorm.Cal). There are no missing data on the platform. SomaScan 5K v4.0 
(4776 proteins) was performed by SomaLogic and we used Adaptive Normalization by Maximum Likelihood 
(anmlSMP). For pQTL discovery, we used a rank-based inverse normal transformation to align protein levels to 
a normal distribution; however, for estimating genotype probabilities and associations with smoking, we used 
log transformed protein values.

Statistical analyses. pQTL discovery by protein wide association study (pWAS). COPDGene had geno-
typing for 691,764 SNPs without imputation. Genotype for these SNPs in JHS were called using TOPMed whole 
genome sequence. Only SNPs with minor allele frequencies (MAF) greater than 5% in the sample population 
were included for analysis. Both datasets were aligned to GRCh38. SNP-by-proteins associations were assessed 
in separately in both the COPDGene and JHS discovery cohorts using linear regression assuming an additive 
model by genotype. Analysis was performed using the R package ‘MatrixEQTL’ (version 2.2)16. Each model as-
sessed direct association between protein level and genotype, with no adjustment for covariates. Protein quan-
titative trait loci (pQTLs) were considered significant at FDR corrected p-value < 0.05. The pQTL assessments 
in JHS and COPDGene were performed independently. After merging the two sets of pQTLs from the two 
training cohorts, we reduced the set to obtain a list of uniquely associated protein and SNP combinations. For 
each unique protein in the pQTL set, we kept only the highest significance SNP pQTL as determined by the p-
value for the training cohorts (Fig. 1). When the two training cohorts had different top SNPs (often in linkage 
disequilibrium), we chose the SNP from the cohort with the lowest p-value. This first-level reduction produces 
a set of unique proteins, but in some cases, multiple proteins may be associated with the same SNP. If a SNP was 
associated with multiple proteins, we used only the protein with the highest protein association for that SNP. This 
process ensured that each protein and each SNP appear only once in our pQTL sets.

Bayesian modeling. For predicting the probability of genome matching we use a Naïve Bayesian method 
(Fig. 2) which estimates the probability of observing genotype vector g using the genotype specific mean (µ) and 
standard deviation (σ) estimated from training data. This is similar to an approach used in genotype estimation 
from  eQTLs6. To combine the training estimates from COPDGene and JHS we used the GaussianNB model 
from scikit-learn (version 0.23.2) for this  estimation6. During training, we use the partial_fit method to calculate 
µ and σ parameters on a single dataset. The same method can be used to update parameters µ and σ, allowing us 
to train a model on multiple datasets by sharing the trained model. Since each SNP is biallelic, we calculate three 
probabilities corresponding to the three possible genotypes.

using a Gaussian naïve Bayes framework, where we define three normal probability distribution functions

P(g|x) ∝ P(g) · P(x|g)
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which describe the distribution of protein levels for each of the three genotypes (Fig. 3a), where μg and σg are the 
estimated mean and variance respectively of the protein levels x for subjects with genotype g. Under the naïve 
Bayes framework, we estimate the probability of the subject possessing each of the three genotype classes, given 
an observed protein level (Fig. 3b). By repeating this process for each of the N protein/SNP pairs, we obtain 
the probability of each genotype class for the top 100 SNPs. We calculate the odds of each genotype being the 
true genotype, and then using the known genotype values g1…gN for each subject, we can compute the odds of 
observing the correct or “true” genotype vector gtrue for a subject as the product of the odds of observing the 
individual true genotype values.

For each subject with proteome data, we calculate the odds of the genotype vector of every genotyped subject 
in the dataset. Assuming one of the genotyped subjects within the dataset is the true identity Strue with observed 
protein levels xtrue we take the genotype with the highest odds given the observed protein values as the “match” 
for this subject. If the genotype with the highest odds of match (top 1) belongs to the subject whose protein levels 
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Training

COPDGene P1
1,184 subjects with proteomics 

and genomes

JHS Split 1
1,028 subjects with proteomics 

and genomes

778 proteins with pQTL 
SNPs

372 proteins with pQTL 
SNPs

Supplemental Table 1: 
591 protein QTLs

Discover by 
association using 

Matrix eQTL

Merge 
and filter

Supplemental Table 2: 
Rank and op�mize 

number of protein QTLs

Tes�ng

SPIROMICS V1
258 subjects with proteomics
2,638 subjects with genotype

COPDGene P2
547 subjects with proteomics
9,970 subjects with genotype

MESA
948 subjects with proteomics
5,308 subjects with genotype

JHS Split 2
1,027 subjects with proteomics
3,406 subjects with genotype

Table 2: 
Testing Accuracy

Figure 1.  Strategy for identifying protein-QTL SNP combinations (training) and testing accuracy of proteins 
for identifying the subject by association with genotypes file.
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were observed, we consider this a match. We also tested whether the true match was among the three highest 
odds (top 3) and 1% highest odds (in top 1%).

Associations with smoking. A T-test was used to assess whether proteins (log transformed) were associated with 
current smoking (smoking cigarettes in the past 30 days).

Software and packages. All analyses were run in R (version 3.6.11) and Python (version 3.7). The code used in 
this manuscript is available on GitHub (https:// github. com/ Bowle rLab/ reide ntify_ code).

Figure 2.  Naïve Bayes approach to estimate posterior probability of a subject matching genotype predicted by 
protein levels.

Figure 3.  (A) Beeswarm showing the protein distributions for sICAM-1, which have been log transformed 
and stratified by genotype in COPDGene and JHS training sets. In this example AA is the major genotype. (B) 
Probability function for genotype by protein value for sICAM-1.

https://github.com/BowlerLab/reidentify_code
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Results
Model training and parameter optimization. Our first training attempts at model training used only 
COPDGene subjects, which were mostly subjects with predominant European ancestry. This analysis identified 
778 proteins with at least one pQTL SNP. To test the accuracy of protein measurements to predict genotypes, 
every proteome was assigned a probability of proteome matching genome (Fig. 4). The accuracy of the method 
was determined by how many times a subject with a proteome had the true genome assigned the highest prob-
ability of a match as the first choice, top three choices, or top 1% of the dataset. This method demonstrated 
excellent testing accuracy in identifying independent subjects of European ancestry in COPDGene, MESA, and 
SPIROMICS (83–92%); however, testing accuracy in subjects with predominantly African ancestry was signifi-
cantly lower (61–76%). Therefore, we retrained our models using additional African-Ancestry subjects from JHS 
subjects. In the JHS training data set we identified 372 proteins with at least one pQTL SNP. We then combined 
the COPDGene and JHS training pQTLs for a total of 591 proteins with at least one pQTL SNP (Supplemental 
File 1). Using these combined COPDGene and JHS training set we significantly improved the matching accu-
racy in African American subjects (Fig. 5) which improved accuracy to ~ 90%, which is similar to accuracy in 
European ancestry subjects.

Next, we sought to determine the minimum number of protein-pQTL pairs that were necessary to match a 
proteome to a genome. First, we ranked protein-pQTL pairs by p-value and then retested using only smaller sub-
sets of the strongest protein-pQTL pairs (Supplemental Table 1). Using the 1.3K assay overall accuracy plateaued 
at around 100 of the most significant protein-pQTLs pairs but including all nominally significant protein-pQTLs 
pairs led to slightly lower accuracy, suggesting that these lower significance pairs were introducing more noise 
than signal and accuracy and having additional protein information is not informative for matching to genomes.

Testing accuracy of matching proteome to genome across diverse, independent cohorts. Using 
the top 100 protein-pQTL SNPs from the training data using (COPDGene and JHS training subjects), we then 
tested prediction accuracies in 4 cohorts (SPIROMICS, MESA, JHS, COPDGene) using independent subjects 
that had not been used for training, including accuracies based on race and ethnicity (Table 2). The true match 
was among the highest odds for most subjects (> 85%) in the cohorts and populations, except for COPDGene 
and Black Americans in MESA. If we took the top 1% of highest odds, the true match was among the highest 
odds for most subjects (> 85%) in all cohorts and populations.

To determine whether newer and larger proteome assays were more or less accurate at identifying genetic 
profiles, we randomly split 5292 COPDGene subjects (71% NHW and 29% AA) who had SomaScan v4.0 5K 
data (4776 proteins) into training and testing groups using a 50/50 train-test split (Supplemental Table 2) to 
generate a new list of protein-pQTL pairs (Supplemental File 2). We also used these novel protein-pQTL pairs 
to match 11,761 proteomes (8987 NHW and 2774 AA subjects) with 12,219 genomes (9345 NHW and 2874 
AA subjects) and from the ARIC cohort. With as few as 100 proteins, identification accuracy improved to > 99% 
(Table 3) and accuracy in subjects with African ancestry was similar to those with predominantly European 
ancestry although accuracy was still slightly higher in European Ancestry compared to African Ancestry subjects 
(99% versus 98%). Accuracy was similarly > 98% in ARIC, even when > 92% genotype imputation was needed in 

Figure 4.  Probability that a proteome matches a given genome in the test dataset. In this example, 100 proteins 
are used to identify probable genotype at 100 pQTL SNPs. Most proteome profiles were associated with the 
correct genotype profile (orange circle) with near 100% probability of being correctly linked (Subject 1 and 
2). The rest of the proteome profiles typically were represented in the top 1% of highest probability genotypes 
matches (top 26 of 2698) as demonstrated by Subject 3. The blue circles probability of genotype profile matching 
from incorrect subjects. The box plots show the 25–75 percentile range with the median and the whiskers 
represent 1.5 interquartile distance. The X-axis is plotted on a log scale.
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Figure 5.  Training with data from diverse populations improves testing accuracy in African Americans (AA). 
(A) First attempts at training with only 13% AA subjects in SPIROMICS resulted in lower testing accuracy in 
independent AA compared to non-Hispanic White (NHW) subjects. (B) After training with both COPDGene 
and JHS subjects, identification accuracy significantly improved in AA subjects and similar to that of other 
races.

Table 2.  Accuracy of matching proteome profiles to genetic profiles using 150 proteins from SomaScan 1.3K 
data.

Testing Cohort Subgroup

% correctly identified

Top 1 (%) In top 3 (%) In Top 1% (%)

COPDGene

Overall 85.0 89.0 97.8

NHW 86.0 89.6 98.4

AFA 75.5 83.7 91.8

JHS AFA 85.8 91.5 98.1

MESA

NHW 97.3 98.5 99.5

AFA 87.9 91.2 96.7

Chinese-American 98.6 100 100

Hispanic 97.2 99.7 99.7

SPIROMICS

Overall 93.4 98.5 99.2

NHW 92.4 97.8 98.9

AFA 96.7 100 100

Other 92.9 100 100

Table 3.  Training and testing accuracy of matching proteome to genome for SomaScan 5K data.

Cohort

Training Testing

COPDGene (N = 2646 genomes) COPDGene (N = 9970 genomes) ARIC (N = 12,219 genomes)

Ancestry
European American 
(N = 1877 proteomes)

African American 
(N = 769 proteomes)

European American 
(N = 1870 proteomes)

African American 
(N = 776 proteomes)

European American 
(N = 8987 proteomes)

African American 
(N = 2774 proteomes)

# Proteins
Top 1 
(%)

In top 
3 (%)

In top 
1% 
(%)

Top 1 
(%)

In top 
3 (%)

In top 
1% 
(%)

Top 1 
(%)

In top 
3 (%)

In top 
1% 
(%)

Top 1 
(%)

In top 
3 (%)

In top 
1% 
(%)

Top 1 
(%)

In top 
3 (%)

In top 
1% 
(%)

Top 1 
(%)

In top 
3 (%)

In top 
1% (%)

20 85.56 93.61 99.15 60.73 76.20 96.62 83.90 92.09 98.66 60.05 77.32 97.55 52.77 70.54 96.44 35.63 52.34 80.52

40 99.04 99.63 99.89 94.93 97.66 99.48 97.97 98.93 99.63 94.59 97.68 99.74 94.08 97.28 99.71 86.87 94.41 99.24

60 99.52 99.79 99.89 97.92 98.83 99.48 98.72 99.30 99.63 97.29 98.84 99.74 97.36 98.88 99.78 94.27 97.56 99.76

100 99.79 99.89 99.89 98.83 99.09 99.48 99.36 99.52 99.63 98.45 99.23 99.74 98.83 99.49 99.80 96.75 98.81 99.95

150 99.84 99.89 99.89 99.09 99.22 99.48 99.47 99.63 99.63 98.84 99.48 99.87 99.05 99.53 99.80 97.61 98.90 99.86

All 96.27 96.86 98.61 98.83 99.22 99.61 97.97 98.93 99.63 94.59 97.68 99.74 99.02 99.63 99.80 97.13 98.71 99.81
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ARIC. Adding additional protein-pQTL information beyond the top 150 tended to slightly decrease accuracy, 
most likely due to additional noise.

Using the same proteins described above, we show that we can identify individuals even without genetic 
databases using either the SomaScan 5K (COPDGene) or 7K (SPIROMICS) data. We show this by calculating 
Euclidean distances in N-dimensional space and show that this distance is the shortest for the same subjects 
over years compared to unrelated individuals (Supplemental Fig. 1). This demonstrates that the proteome by 
itself is mostly closely related to the proteome of the same across time. In the JHS cohort there were 314 subjects 
with proteome profiles and first-degree relatives in the genomic dataset. Among those 125 (39.8%) had at least 
1 sibling in the top 1% of matches and 85 folks (27.1%) had all siblings in the top 1% of matches (Supplemental 
Fig. 2). This demonstrates that a proteome can help identify first degree relatives.

Genome privacy protection through proteome transformation. Since we have shown that meas-
urement of selected proteins with strong pQTLs can provide genetic information similar to a SNP, we reasoned 
that removing the pQTL effects on the proteome would inhibit the ability to reidentify a subject. One method 
that accomplishes this is to adjust each protein measurement by subtracting the population mean for that geno-
type (Fig.  6). This method has the advantage in that if the subject’s genotype and the correction factors are 
known, it is simple to recapitulate the actual protein measurements. In both testing cohorts, subtracting the 
genotype effect abolished the ability to identify subjects (Fig. 7).

Can genotype adjustment preserve biomarker‑phenotype associations? To test if adjusting for 
genotype affects associations between biomarkers and phenotypes, we first identified two proteins, sICAM-5 
and DERM, which were significantly associated with smoking status in both the COPDGene and SPIROMICS 
testing cohorts. Next, we assessed the association before and after adjustment for genotype. In both cohorts, 
associations with smoking status did not change significantly after genotype adjustment (Supplemental Table 3). 
Using logistic elastic net we are also able to demonstrate that using 67 proteins from COPDGene 5K data, one 
can predict sex with > 99% sensitivity and specificity (Supplemental File 3 and 4). In SPIROMICS subjects we can 
also use elastic net to identify self-reported African American race and percent genetic African Ancestry (Fig. 8). 
The correlation between protein ancestry score and genetic ancestry score was 0.98.

Using the matching algorithm to identify mislabeled samples in existing datasets.. In all our 
efforts to match proteomes with genomes, our matching accuracy seemed to plateau around 99.8%, even for 
the platforms with > 5000 proteins. In nearly all cases in which there was not a correct match of proteome to 
genome, the proteome had a nearly 100% probability of matching to a different genome. This suggests that either 
the proteome or genome has been mislabeled likely due to a swap of sample during the chain of custody from 
research subject to data generation. We assessed the extent and causes of poor matching by using SomaScan 
7K data from SPIROMICS, in which of 18 of 5132 (0.2%) of proteomes did not exactly match their genome. In 
8 of 18 proteomes the subject had multiple visits which generated proteomes, many of which matched to the 
same genome of a different person’s DNA, suggesting that the DNA was mislabeled and came from a different 
person. In 4 of 18 proteomes, all but one of the proteomes matched correctly to the genome and the mismatched 
proteome had a corresponding mismatched sample from the same visit. This suggests that a plasma sample was 
swapped between two subjects at a single visit (see examples Fig. 9). For 6 of 18 subjects who had mismatched 
genomes and proteomes, there was only one proteome and genome in the database and therefore we could not 
determine whether it was the proteome or genome that was mislabeled.

Figure 6.  Poisoning data by adjusting protein values for genotype. (A) sICAM histograms showing normal 
probability distribution functions for sICAM-1, which have been log transformed. In this example AA is the 
major genotype. (B) Adjusting protein levels by recentering the mean on each genotype group abolishes the 
genotype effect on sICAM-1 measurements.
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Figure 7.  Removing the mean protein-pQTL effect abolishes the ability of matching a proteome to a genome. 
Shown are accuracy of matching algorithm with (red) and without (blue) removing mean pQTL effect as well as 
the probably of a random guess matching (grey).

Figure 8.  The proteome can accurately predict the percentage of genetic African Ancestry. In SPIROMICS, 
pooled genetic ancestry was calculated using genotypes as described (PMCID: PMC6090900). Using SomaScan 
7K data we used elastic net to create an Ancestry PC1 (African ancestry) protein score and then used 
independent subjects to determine the correlation between the percent genetic African ancestry with protein 
ancestry. The correlation between protein ancestry score and genetic ancestry score was 0.98.
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Discussion
De-identification of data is a key concept for shared research and privacy protection but is not yet used in large 
scale proteomic studies. While small proof of concept studies have suggested that mass spectrometry can iden-
tify missense variants (minor allelic peptides) which can suggest specific  SNPs17, this approach has not yet been 
used across large scale cohort studies nor with non-mass spectrometry proteomic data. This study is the first 
to demonstrate on a large scale that proteomic data are not identity protected because an individual proteome 
can be matched to a specific genome with high accuracy even without protein sequence information. The key 
identifying features in the proteome are the effects of common pQTLs, which link a measured protein level to 
a specific genotype. Furthermore, we show that identification only requires a small number of proteins (as few 
as 60–100 selected proteins) to link an individual protein profile to a single genetic profile among thousands of 
subjects and that it is accurate even with imputed genotypes. Additionally, our results suggest that using diverse 
subjects for selecting the most influential proteins improves overall accuracy, particularly among those with 
African ancestry and underscores the importance of including diverse subjects in Omics research. We show 
that proteomic data can identify behavioral features (e.g., smoking) even after removing the features that allow 
matching to genomes. The ability to accurately identify someone by linking their proteome to a genome, identify 
risk for protein related disease such as alpha-1 antitrypsin  deficiency18, infer sex, genetic ancestry, or relatedness 
and also characterize other characteristics such as body fat, renal function, fitness, smoking, alcohol consump-
tion, diabetes, cardiovascular  risk19, and  age20 implies that proteomic data should have at least the same (if not 
more rigorous) privacy protections as genetic and genomic datasets.

The two main technological breakthroughs that have facilitated accurately matching an individual proteome 
to a specific genome are improvement in high throughput proteomic technologies and large scale pQTL studies. 
Until the last few years, there were no proteomic platforms that could simultaneously and accurately measure 
more than 100 proteins and there was little known about which of those proteins had strong pQTLs. While our 
study used three different SomaScan platforms, lack of privacy (de-identification) should be implied for any 
platform that can simultaneously measure thousands of proteins even when mass spectrometry is not used. The 

Figure 9.  How the matching technique can be used to identified mislabeled omics data. (A) two subjects (1 and 
2) were enrolled at the same clinical center at a baseline visit. Their plasma proteomes matched (P = 1) a different 
subject’s genome at baseline from the same clinical center, but their plasma proteomes matched the correct 
genome at subsequent visits. Another example of this is two subjects (3 and 4) from a different clinical center 
who appear to have their plasma samples swapped at their year 1 visit. This suggests that plasma samples were 
swapped at a single clinical center during a single visit and should be relabeled. (B) A subject (Subject A) who 
has multiple visits in which the proteomes were all mapping consistently to the genome of a different person 
(Subject B). This suggests that the DNA sample that was used for genotyping was swapped and that the DNA 
genotype data from Subject A should be labeled as coming from Subject B. Note that the x-axis for all the figures 
are shown on a log-scale because the probability all the unrelated a proteome matching to an unrelated genome 
is essentially zero (e.g., P <  1040).
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logical continuation of this principle is that proteomic data could be used to discriminate based on identifying 
the sex of a subject, ancestry, or paternity. A protein profile could even be used to identify close relatives for 
forensic purposes.

The ability to link proteomes to genomes is not always a bad thing, particularly when cleaning data. For 
instance, we used matching to identify when genomes or proteomes are likely to have been mislabeled in large 
cohort databases. When more than 2 omics data sets are available from subjects, use of multiple pairwise match-
ing can even pin-point which data entry is mislabeled. In our work we demonstrate examples of both plasma 
and DNA samples that are likely to have been swapped and have proposed corrections to the labeling of data. 
When used in a judicious manner, this matching technique can give confidence and improve the quality of 
multi-omic databases.

De-identification and privacy protection by informatics is a growing field. We acknowledge that our proposed 
privacy-preserving measures are only applicable when Naïve Bayes (NB) is used for profiling and we recognize 
the large body of emerging literature on alternative data obfuscation methods to protect privacy of many types 
of  data21. These methods range from industry level data obfuscation/masking and secure data outsourcing tech-
niques such as substitution, shuffling, numeric variance and null-out/mask-out, to more rigorous statistical 
data obfuscation methodologies used in Hippocratic  Databases22, and privacy-preserving data  mining23 such 
t-Closeness24, differential-privacy25 based methods. Machine  learning26 and deep  learning27 are also being used 
in proteomic feature identification and we may be able to leverage these same methods to isolate and "cloak" 
identifiable omics features while maintaining desirable statistical properties of the data for downstream applica-
tion. We also believe new omics-specific privacy-preserving methods must be introduced to preserve privacy 
with omics data against model evasion attack methods that can target both traditional profiling models (such as 
NB) and modern deep learning-based profiling models.

Bioethicists had anticipated that other omics data such as proteomic data might one day be identifiable and 
create privacy  concerns28 and our work demonstrates that this day has come even for proteomic technologies 
that do not rely on peptide sequencing. Unfortunately, most governmental policies do not yet apply to newer 
omics data such as proteomics (one exception may be the General Data Protection Regulation in the European 
Union, which protects biological equivalents of genotypes). We suggest biomedical research policies be clarified 
or amended to include any omics data (e.g., measurement of proteins or other molecules, such as metabolites) 
in which genotype can be  ascertained29, but also that there be consideration beyond genotype equivalents to 
include all features of omics (e.g. behavioral information such as smoking). Because data protection is imperfect 
and frequently breached, a complementary solution to maintaining privacy might include bioinformatic and 
identity preserving adjustments to proteomic data. We demonstrated that adjusting out the genetic effects on 
protein measurements protects privacy by obfuscating the genetic effects, but it still does not change non-genetic 
associations (such as smoking). This strategy is simple and can be reversed, if necessary, when a researcher has 
the accompanying genetic information. A disadvantage to removing genetic coding of the proteome is that it 
could remove associations in which genotype mediates protein affect. Another caveat from our work is that if 
training the method does not include diverse populations, the identification methods may not be generalizable 
outside European ancestry. While lower identifiability may be beneficial, future privacy protection algorithms 
may suffer if identifying features in underserved population are not fully known.

Data availability
COPDGene. Genotype data and SomaScan can be found on dbGaP for COPDGene (phs000179). JHS. Genotype 
data can be requested through TOPMed and SomaScan can be found on dbGaP (phs000964). SPIROMICS. 
Genotype data and SomaScan can be found on dbGaP (phs18817) or through contacting the SPIROMICS 
GIC (https:// www. spiro mics. org/ spiro mics/ conta ct- gic). MESA. Genotype and SomaScan data can be requested 
through TOPMed and dbGaP (phs001416). ARIC. Individual genotyping data from ARIC are available via dbGaP 
(phs000668). Proteome data, as well as phenotypic data, are available via application through the ARIC Data 
Coordinating Center (https:// sites. cscc. unc. edu/ aric/ distr ibuti on- agree ments).
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