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A state‑of‑the‑art methodology 
for high‑throughput 
in silico vaccine discovery 
against protozoan parasites 
and exemplified with discovered 
candidates for Toxoplasma gondii
Stephen J. Goodswen 1, Paul J. Kennedy 2 & John T. Ellis 1*

Vaccine discovery against eukaryotic parasites is not trivial as highlighted by the limited number 
of known vaccines compared to the number of protozoal diseases that need one. Only three of 17 
priority diseases have commercial vaccines. Live and attenuated vaccines have proved to be more 
effective than subunit vaccines but adversely pose more unacceptable risks. One promising approach 
for subunit vaccines is in silico vaccine discovery, which predicts protein vaccine candidates given 
thousands of target organism protein sequences. This approach, nonetheless, is an overarching 
concept with no standardised guidebook on implementation. No known subunit vaccines against 
protozoan parasites exist as a result of this approach, and consequently none to emulate. The 
study goal was to combine current in silico discovery knowledge specific to protozoan parasites and 
develop a workflow representing a state‑of‑the‑art approach. This approach reflectively integrates 
a parasite’s biology, a host’s immune system defences, and importantly, bioinformatics programs 
needed to predict vaccine candidates. To demonstrate the workflow effectiveness, every Toxoplasma 
gondii protein was ranked in its capacity to provide long‑term protective immunity. Although testing 
in animal models is required to validate these predictions, most of the top ranked candidates are 
supported by publications reinforcing our confidence in the approach.

An aspirational goal, first conceived in 2000, was the ability to predict protein or epitope-based vaccine candi-
dates entirely on a computer (in silico) without the need for cultivating the target pathogen in a  laboratory1. This 
goal was inspired by the technological success of protein sequencing at the time, plus the draft sequencing of the 
human  genome2. A new revolutionary approach named reverse vaccinology (RV) was devised to realize the  goal3. 
In the 22 years following the emergence of RV, the research community witnessed an exponential increase in 
pathogen sequence data that is freely available in public databases; an exponential increase in computer process-
ing power, digital storage capacity, and digital communication and networking; an increase in freely available 
software to analyse the sequences; and the maturing of bioinformatics and machine learning (ML) to aid in 
this analysis. RV as a result of these technological advances has evolved and merged with other in silico related 
approaches such as subtractive proteomics, computational vaccinology, and immunoinformatics. The term ‘in 
silico vaccine discovery’ is used henceforth to encapsulate all approaches. Fundamentally it is a methodology 
for the identification of antigenic components, sourced from the disease-causing pathogen, to create a subunit 
vaccine. A question arising from our current historical perspective is whether the goal of predicting vaccine 
candidates entirely in silico has been fully achieved. This question is especially pertinent to protozoan parasite 
subunit vaccines, which is the research focus of this article.
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One rigorous measure of success is whether an in silico vaccine candidate has made it all the way through 
to licencing. Supplementary Table S1 lists all vaccines licensed for use in the United States, irrespective of the 
discovery approach (source: The United States Food and Drug Administration). No vaccine has yet been licensed 
in the USA for human protozoal diseases. Seven vaccines, however, are available for protozoal diseases of animals 
(see Table 1). Five of the seven are subunit vaccines of which four are for leishmaniasis (or leishmaniosis) in dogs. 
All seven vaccines were discovered following traditional laboratory approaches. This underscores that there are 
currently no known subunit vaccines against protozoans as a result of an in silico vaccine discovery approach.

Supplementary Table S2 lists 17 priority protozoal diseases in need of a vaccine as compiled from publications 
authored by the World Health Organisation (WHO), Food and Agriculture Organization of the United Nations 
(FAO), and the Bill and Melinda Gates Foundation. Only three of the 17 diseases have commercial vaccines (as 
per Table 1). This further highlights that there are no vaccines for most protozoal diseases, irrespective of dis-
covery method. A more appropriate opening question might be why there are so few protozoan vaccines despite 
decades of research? Table 2 lists some possible answers as proposed in several  reviews11–14. Palatnik-de-Sousa 
and Nico present a comparative history on the delay in licensing of protozoal  vaccines13; and McAllister reviews 
protozoal vaccines and their designs, including descriptions of three subunit vaccines yet to be  licensed12. Live 
and attenuated vaccines, so far, have proved to be substantially more effective than novel vaccine designs such 
as  subunits14. However, the unacceptable risks posed by live and attenuated vaccines means that there remains 
a critical need to research alternative  designs13. The current strategy to improve efficacy of subunit vaccines and 
increase their protection term is to use appropriate adjuvants and have regular booster vaccinations, respectively.

Apicomplexan parasites are acknowledged as the most prevalent and successful intracellular  pathogens15 
i.e. this phylum of protozoan parasites actively invade host cells and cause disease. A notable apicomplexan 
infecting more humans than any other protozoan on the planet is Toxoplasma gondii, which causes the disease 
toxoplasmosis. This organism mainly gained attention because of its association with birth defects in  humans16 
but is now considered an underestimated  threat17,18 commanding even more attention. Toxoplasma gondii was 
chosen in this study as the target to evaluate state-of-the-art in silico vaccine discovery. This choice was guided 
by several facts: it is an important model system for the phylum  Apicomplexa19, well-studied with 13,137 sci-
entific publications with ‘Toxoplasma gondii’ in the title (source: Web of Science, January 2023), and crucially 
for in silico vaccine discovery, has protein sequences from multiple T. gondii strains readily available. In-depth 
information on T. gondii can be found in reviews  elsewhere20–23.

Although there is only one known vaccine against toxoplasmosis (see Table 1), there are numerous publica-
tions reporting T. gondii vaccine candidates with efficacy evidence from various testing strategies in animal 
models. Many of these candidates are listed and/or discussed in recent  reviews11,14,24–27. Invasion of host cells 
is an essential life cycle event for the survival of T. gondii. Therefore, proteins playing a role in this event have 
received the most research attention and consequently, the most represented candidates in publications. In brief, 
an apicomplexan pathogen invades a host cell first by recognising host-cell surface receptors via antigens on its 
cell membrane, and then secreting proteins from specialized secretory organelles (rhoptries, micronemes and 
dense granules)16,28. Table 3 lists the most represented protein candidate types in publications, namely surface 
antigen (SAG and SRS), rhoptry (ROP), dense granule (GRA), and microneme (MIC) proteins. The most com-
mon similarities between these candidates are their association with T. gondii  virulence21 and their tendency to 
be naturally exposed to the immune system. Researchers for the popularly published candidates are assumed to 
have focused specifically on proteins with these latter characteristics because they were traditionally expected 
to make the best candidates. These candidates (as per Table 3) are referred to henceforth as ‘classical vaccine 
candidates’. It remains unclear as to whether they specifically possess a distinctive characteristic or whether 
any exposed protein could be considered for candidacy. Furthermore, multiple factors can impact the efficacy 
of a vaccine formulation e.g. differences in method of antigen preparation, mouse models, ages of mice at the 

Table 1.  Current licensed vaccines for protozoal diseases of animals. Leishmania chagasi and Leishmania 
infantum are from the phylum Euglenozoa, Toxoplasma gondii from the phylum Apicomplexa, and Giardia 
lamblia from the phylum Metamonada. Key to columns: M. method used to discover vaccine (L = laboratory 
i.e. not an in silico discovery method), R. published reference. a CaniLeish contains an ‘adjuvant’ (a highly 
purified fraction of Quillaja saponaria) to enhance the immune response. b Available in Europe and 
New Zealand from MSD Animal Health: https:// www. msd- animal- health. co. nz/ produ cts/ toxov ax/; and 
administered to avoid abortion in sheep. Toxovax has been reported to decrease the abortion rate but does 
not eradicate the parasite. It is not considered an appropriate vaccine for humans because of its live attenuated 
formulation has the potential to revert to a pathogenic form.

Vaccine Target host Target protozoan Type Disease M R

Leishmune Dog Leishmania chagasi and Leishmania infantum Protein and carbohydrate chains Leishmaniasis L 4

CaniLeisha Dog Leishmania infantum Excreted secreted proteins Leishmaniasis L 5

Leish-tec Dog Leishmania infantum Saponin and recombinant protein A2 Leishmaniasis L 6

Letifend Dog Leishmania infantum Recombinant protein Q Leishmaniasis L 7

Coxabic Chicken Eimeria spp. Transmission-blocking vaccine composed of 
affinity-purified antigens Coccidiosis L 8

Toxovaxb Sheep Toxoplasma gondii Live-attenuated vaccine (tachyzoites) Toxoplasmosis L 9

Giardiavax Cat/Dog Giardia lamblia Inactivated trophozoites Giardiasis L 10

https://www.msd-animal-health.co.nz/products/toxovax/


3

Vol.:(0123456789)

Scientific Reports |         (2023) 13:8243  | https://doi.org/10.1038/s41598-023-34863-9

www.nature.com/scientificreports/

Table 2.  Challenges facing vaccine discovery against eukaryotic parasites.

Challenge Impact

Complex multiple life cycle stages yet to be fully understood and/or studied in detail

Expression of protein antigens can be different at each life-cycle stage and under altered environmental condi-
tions, such as interactions with a host during infection Choice of candidate can be specific to a life cycle stage

Antigens (in terms of protein sequences and/or 3D structure) can vary over time e.g. ancient and ongoing 
interactions between protozoans and the immune system have influenced their coevolution Efficacy of candidate can change over time

Parasites are always mutating. Mutations can change parasites in ways that allow better resistance to immune 
defences and opportunities for multiple mechanisms of immune evasion e.g. mutations introduce variability in 
vaccine targets

Efficacy of candidate can change over time

In the endeavour to greatly improve safety, advances in vaccine candidates such as subunit components tend to 
be less immunogenic or efficacious than traditional live, whole pathogen vaccines Requires potent adjuvants and appropriate delivery vectors

In a laboratory discovery approach, the expression of proteins is different in vitro than those proteins expressed 
during infection in vivo. Furthermore, abundantly expressed proteins are more easily identified in the labora-
tory

Potential vaccine candidates are missed

Unknown contributing factors that may be detrimental to vaccine discovery e.g. contributions from definitive 
and intermediate hosts, and transmission vectors (all complex biological systems)

Limited knowledge of precise interactions between parasites and host immune system, but more specifically, 
the interactions between antigens and immune cells Difficult to assess the contribution of candidate to overall efficacy

Types of immune responses needed for protection is not completely understood for many protozoans

Different strains of parasites have different levels of virulence Protective immunity may be better in some strains than others

No standardized testing protocol A quantitative comparison of claimed protection levels between 
studies is difficult

Coinfection with other pathogens can influence the host response to vaccination

For any protozoal disease, methods must be developed to cultivate the pathogen Some pathogens are too difficult and/or dangerous to cultivate in the 
laboratory

Many protozoan diseases are exacerbated by poverty and challenging environmental conditions in developing 
tropical and subtropical countries

A protozoan disease needs to attract the attention of vaccine manufacturers e.g. some diseases maybe consid-
ered commercially less profitable than others Influences research and development for vaccines

Geopolitics can play a role in which diseases obtain the necessary funding Influences research and development for vaccines

Regulatory limitations and safety concerns can impede vaccine licensing, especially for human recipients

The number of protozoan diseases in need of a vaccine is not static due to changing factors such as the rapid 
population growth in areas with weak health systems, climate change, antimicrobial resistance, and the chang-
ing nature of pathogen transmission between human and animal populations

For targeted human diseases, inability to test vaccine candidates on humans during vaccine discovery Reliance on natural animal disease models

Species barriers to clinical translation e.g. antigens identified in mice may not protect humans or food-produc-
ing animals Efficacy tested on animal model may not translate to target host

Limited research funding, although more funding is available for human diseases

Table 3.  Classical Toxoplasma gondii vaccine targets. a There are three pathogenic (infectious) forms of 
Toxoplasma gondii related to its three asexual life cycle stages: tachyzoites (rapidly multiplying form), 
bradyzoites (formed in tissue cysts), and sporozoites (formed in oocysts). Merozoites only occur in the sexual 
stages of reproduction in felines such as cats. ‘all’ = a protein from this protein type can be expressed in any 
of one of the three infectious stages but not necessarily in all stages e.g. GRA1 is expressed in all three zoites 
stages but GRA2 only expressed in tachyzoites and bradyzoites.

Protein type Role Life cycle  stagea

Micronemes (MICs) Recognition, attachment, and penetration of parasite to host cells All

Rhoptries (ROPs) Discharged into cytosol to interact with host cellular organelles and are important for the biogenesis of the 
parasitophorous vacuole during the parasite invasion All

Rhoptry neck proteins (RONs) Secreted into the host cell membrane to help microneme proteins All

Rhomboids (ROMs) Trigger microneme activity All

Apical membrane antigens 1 (AMA1) Cooperates with RONs during moving junction and host cell invasion Tachyzoite

Dense granules (GRAs) Modify the parasitophorous vacuole and are thought to contribute to nutrient gain for functioning in 
intracellular survival and replication All

Superfamily of surface antigens (SRS) Precise role unclear, but possibly act as surface protein adhesins to facilitate entry into host cells. All

Surface antigen glycoprotein (SAG) family Smallest member of the SRS superfamily Tachyzoites, bradyzoites

Oocyst wall proteins (OWP) Provides strong protection from harsh environmental conditions Oocysts

Matrix antigen 1 (MAG1) Secreted into the host cell and suppresses (modulates) the host immune reaction (a GRA protein found in 
the parasitophorous vacuolar matrix in tachyzoites; and cyst wall and matrix in bradyzoites) Tachyzoites, bradyzoites

Heat shock protein (HSP) Regulates key signal transduction events and plays an important role in growth, development, and virulence Tachyzoites, bradyzoites
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time-point of infection, vaccine delivery routes, adjuvants, vaccination and infection doses, parasite culture 
systems, challenge strains, and immunogenicity assessments. This means that a quantitative comparison of 
claimed protection levels following vaccination is difficult and consequently, assessing the actual contribution 
made by each published protein candidate is unfeasible. A further point adding to this contribution uncertainty 
is that none of the vaccine formulations in the respective publications achieved the desired long-lasting protec-
tion against toxoplasmosis, including prevention and elimination of tissue cysts and/or fully blocking vertical 
transmission. These candidates, nonetheless, could conceivably achieve better or worse results given different 
factors. Furthermore, an encouraging driver for continuing efforts to obtain a vaccine is that a natural infection 
from T. gondii elicits protective immunity against reinfection in most animals, including  humans14.

Collectively, the candidate publications indicate that the immune correlates of protection and the exact type 
and intensity of response are still unclear. Therefore, an ongoing challenge is ascertaining the obligatory immune 
response to a vaccine formulation that would induce the desired protection. Protective immunity to T. gondii is 
complex and has been extensively  reviewed11,14,24,29. Succinctly, the innate immune system, and both humoral 
immunity and cell-mediated immunity (CMI) respond at various infectious stages in an attempt to control a T. 
gondii natural infection. Our primary focus here was determining the initial immune system component that is 
the cascade catalyst to subsequent immune and antimicrobial responses e.g. the vaccine antigens need to induce 
this initial component in order to replicate the same protective host immune response during T. gondii invasion 
and infection. The expectation is that CMI components (i.e. T-cells) will be the main players because T. gondii 
is an obligate intracellular protozoan, and T helper (Th) lymphocytes will play a central role in the principal 
effector mechanism. Moreover, humoral immunity (B-cells and circulating antibodies) can only play a role in 
controlling extracellular  parasites25. Th cells are essentially cytokine factories directing other immune system 
players by secreting subsets of chemical messengers (cytokines). There are two main subsets, named Th1 and 
Th2. Pattern‐recognition receptors and cytokine receptors on dendritic cells (a type of antigen presenting cell) 
detect invading pathogens and display a mixture of co‐stimulatory molecules on its surface which depend on the 
type of pathogen encountered. Whether a naïve Th differentiates into Th1 or Th2 depends on which cytokines are 
produced by dendritic cells (DCs) in response to the type and location of the pathogen. From a subunit vaccine 
design perspective, whether to trigger a Th1 or Th2 response against T. gondii is a crucial decision. There is still 
some published debate, but the consensus proposes  Th114,22,29. The main cytokine types produced by activated 
Th1 cells are interferon gamma (IFN-γ), interleukin-2 (IL-2), and tumor necrosis factor (TNF). TNF helps 
activate macrophages and natural killer (NK) cells, IFN-γ maintains macrophage activation and influences B 
cells to produce antibodies; and IL-2 (a growth factor) stimulates the proliferation of cytotoxic T-cells (CTLs), 
NK cells, and Th1 cells themselves.

There are essentially four critical interdependent vaccine design decisions (see Fig. 1). The first crucial step in 
vaccine design is the precise selection of antigens, and this is the principal focus of the current study. The second 
decision is the adjuvant type. Various adjuvants with different purposes have been used for decades in vaccine 
formulations, but the molecular mechanisms by which these adjuvants work remain  unclear30. The choice of 
adjuvants is limited as only six have been included in licensed  vaccines31, and the choice also depends on the 
desired adjuvant purpose. Our interest here is how a vaccine formulation can mimic a T. gondii invasion such 
that the immune system recognises it as both foreign and dangerous. Adjuvants that are toll-like receptor (TLR) 
agonists seem to be a potential solution in providing the requisite danger signal i.e. these types of adjuvants con-
tain pathogen-associated molecular patterns (PAMPs), which can activate TLRs (a type of pattern recognition 
receptor) on DCs. MPL (a modified version of the bacterial surface protein LPS) and CpG-1018 are TLR agonist-
based adjuvants currently used in licensed  vaccines30. A strong humoral response was detected at 3 weeks post 
immunization with recombinant T. gondii GRA2 protein combined with a MPL  adjuvant32. The third decision is 

Figure 1.  Four critical interdependent vaccine design decisions. Key:Adjuvants—Aluminum denotes one 
or more of the following: amorphous aluminum hydroxyphosphate sulfate (AAHS), aluminum hydroxide, 
aluminum phosphate, potassium aluminum sulfate (Alum); Matrix-M indicates saponins derived from the 
soapbark tree (Quillaja saponaria Molina); MPL abbreviates for Monophosphoryl lipid A and is the first non-
alum vaccine adjuvant to achieve widespread acceptance; CpG-1018 abbreviates for Cytosine phosphoguanine 
(CpG), which is a synthetic form of DNA mimicking bacterial and viral genetic material. Vaccine delivery routes 
(administration routes)—Intramuscular = into muscle layer; Subcutaneous = into the subcutaneous, or fatty layer 
beneath the skin; Intradermal = into the outer layers of skin, between the epidermis and the dermis; Oral—taken 
in either tablet or liquid formulation. Antigen delivery method VLPs = virus-like particles.
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the type of antigen display i.e. the delivery vehicle. The decision is influenced by the required immune response. 
A crucial event for a CMI response is the antigen uptake by DCs. Otherwise, antigens will not be presented to Th 
cells. The decision here is which carrier or delivery vehicle for multiple antigens (and possible adjuvants) should 
be utilised to enhance DC phagocytosis. Possible choices are nanoparticles (NPs), liposomes, DNA, and RNA 
delivery vehicles. These vehicles are reviewed  elsewhere33–36. No studies on T. gondii RNA vaccines were found, 
but several are discussed in a recent  review37 on T. gondii DNA vaccines. Except, this review also reports that 
none of the studies demonstrated complete protection. Vaccine components for a humoral response ideally need 
to be presented directly to the immune system in their native 3D structures to mimic a natural infection, but as 
a compromise, the repetitive presentation of multivalent antigens on the surface of a carrier could increase both 
their affinity and the binding to B-cell receptors to invoke the desired humoral response. For example, virus-like 
particles (VLPs) decorated with full-length  antigens38. Results from a recent study showed that a VLPs vaccine 
expressing T. gondii rhoptry ROP13 elicited significantly high levels of T. gondii-specific antibody  responses39.The 
fourth decision is the appropriate vaccine delivery route (i.e. routes of administration) to ensure optimal immune 
response and minimal side effects in the vaccine recipient. Examples of administration routes are intramuscular, 
subcutaneous, intradermal, and oral (reviewed  elsewhere40,41).

Vaccine discovery against eukaryotic parasites is not trivial as highlighted by the limited number of known 
vaccines in comparison to the number of protozoal diseases that need one. There are various challenges to vaccine 
discovery as stressed in Table 2. Solutions to several of these challenges are most likely beyond the researcher’s 
control (e.g. limited funding, geopolitics, and commercial decisions), but some challenges can be addressed by in 
silico vaccine discovery. The goal of this study is to demonstrate the capacity of a high-throughput, in silico vac-
cine discovery methodology to identify novel vaccine candidates for further investigation. The ‘high-throughput’ 
denotes that every single available protein of a target protozoan, irrespective of its current characterisation 
and naming, is evaluated for its candidacy potential. The ‘novelty’ of the vaccine candidates is that they aim to 
address known challenges in providing widespread efficacy in multiple strains and all infection life cycle stages 
(e.g. tachyzoites, bradyzoites, and sporozoites,), and maintaining this efficacy by using less genetically variable 
candidates. Toxoplasma gondii is used in the demonstration. Every T. gondii protein is assigned a score repre-
senting its merit as a potential vaccine component. Researchers can adapt our presented methodology for their 
protozoan target and/or select the desired percentage of high-scoring T. gondii proteins for further investigation 
in accordance with their laboratory/animal model testing capability and budget.

Results
Figure 2 shows a schematic of the high-throughput, in silico vaccine discovery pipeline applied in this study. 
The end goal is to identify two sets of vaccine candidates. One set designed to induce a cellular and the other to 
induce a humoral response. More specifically, the approach begins with every available protein sequence for the 
target T. gondii strain. It ends with two scored lists showing vaccine candidacy potential of the input sequence’s 
parent protein. One list is specific to CMI and the other, humoral immunity.

The CMI list is compiled from data and predictions relevant to the T. gondii core proteome, protein abun-
dance, and peptides binding to major histocompatibility complex (MHC) class II molecules; whereas the humoral 
immunity list is relevant to the T. gondii core proteome, linear and conformational B-cell epitopes, protein 
abundance, and proteins naturally exposed to the immune system and under positive selection.

Validation of protein sequences. Thousands of T. gondii strains are expected to exist but so far only 
67 strains have been assigned a National Center for Biotechnology Information (NCBI) Taxonomy ID. Only 
21 strains have at least one protein sequence (see Table 4) and only 15 have sequences representing the entire 
proteome e.g. strains PRU (1), RH (6), TgCATBr5 (1), TgCatBr64 (1), type I (2), and type II (2) have only a few 
proteins sequenced, as indicted in the brackets.

All downloaded protein sequences and their annotation for the 15 strains were assessed (see ‘Sequence 
evaluation’ in “Materials and methods”). Supplementary Table S3 shows this assessment relevant to sequences 
and annotation from T. gondii strains ME49 and RH-88. Note that most protein sequences from all Toxoplasma 
strains are predicted, poorly annotated, and mainly uncharacterised.

Core proteome for Toxoplasma gondii strains. A core proteome represents the collection of proteins 
common to all strains. Common immunogenic proteins are expected to contribute to widespread protection 
i.e. protect against all existing and potential new strains. A core proteome for all 15 strains was determined 
using CD-HIT (cluster database at high identity with tolerance)43 by creating clusters of sequences greater than 
90% sequence similarity. The total number of clusters was 14,832. Supplementary Table S4 lists all the clusters. 
The important column is ‘No. of strains’, which indicates the number of strains contributing to the cluster. All 
clusters with 15 strains are considered here to represent the core proteome. Typically, the protein with the long-
est sequence in the cluster is used as the cluster’s representative sequence. That is, any sequence from one of 
the 15 strains could theoretically be the representative (see columns ‘Rep. ID’, ‘Rep. Name’, and ‘Rep. Strain’ in 
Supplementary Table S4, Excel sheet [Core proteome]). Note that the cluster’s representative protein name (e.g. 
Rep. Name) can be different to the most frequently used name in the cluster. The current study used the RH-88 
sequence from each cluster as the representative, although the ME49 genome sequence is normally considered 
the reference. RH-88 is the most recent strain to be sequenced using the latest third-generation sequencing 
technology and is judged the current most accurate T. gondii genome  sequence44. There are 6199 out of 14,832 
proteins (41.79%) representing the clusters that are common to all 15 T. gondii strains (see, sheet [Proteins per 
No. of strains], and therefore 6199 RH-88 proteins are common to proteins in 15 strains.
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Autoimmunity safeguards and toxicity predictions. To avoid the likelihood of an autoimmune 
response and/or a detrimental poisoning effect to the intended vaccine recipient, T. gondii protein sequences 
were checked for their similarity to human sequences and their potential for toxicity were predicted. Supplemen-
tary Table S5 shows the results for all RH-88 proteins. In summary, 176 proteins have the potential to trigger an 
autoimmune response in humans (e.g. polyubiquitin UbC protein predicted to have the greatest potential), and 
203 have toxicity potential (e.g. translation initiation factor IF-2 protein predicted the most toxic). Irrespective of 
these results, no proteins were discarded from further analysis. This aligns with our approach that all predicted 

Figure 2.  A schematic of pipeline processes for high-throughput in silico vaccine discovery. Steps 1 to 7a 
are for the identification of cell-mediated immunity (CMI) inducing proteins. Protein characteristics of CMI 
candidates: conserved among strains, contain multiple peptides that strongly bind to promiscuous MHC II 
alleles, and contain multiple promiscuous peptides that strongly bind to multiple MHC alleles. Steps 1 to 7b to 9 
are for the identification of humoral immunity (HI) inducing proteins. Protein characteristics of HI candidates: 
conserved among strains, naturally exposed to the immune system, have no or minimal positive selection sites, 
and contain multiple B-cell epitopes.
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characteristics are collectively considered to assess vaccine candidacy. Preferably, a host’s possible allergic reac-
tion to a protein also needs to be checked. However, no standalone program for high-throughput allergenicity 
predictions could be found for this study.

Determining protein abundance. There is an expected relationship between surface antigen abundance 
and their propensity to be recognised by the immune system. A similar expected relationship is between pro-
tein abundance in phagocytosed pathogens and their availability for antigen presentation. No clear published 
evidence of these relationships was found for T. gondii, but there is supporting evidence from bacterial and viral 
 studies45–48. Protein abundance levels at different time points during the T. gondii life cycle stages may be an 
additional useful indicator for antigen selection e.g. antigens that increase in abundance during host infection 
are likely by association to have higher epitope presence for recognition, and hence score more favourably as vac-
cine candidates. Two different datasets of abundance levels were ideally required for this study: one to indicate 
a protein’s abundance prior to cell invasion, and the other to indicate a protein’s abundance prior to proteolytic 
fragmentation in a DC. These datasets were not forthcoming in any known public database. Measurements of 
mRNA expression levels, however, were used here as a compromise. A caveat is that due to post transcriptional 
processing of eukaryotic proteins, mRNA levels are not an exact determinant of protein  abundance49 i.e. protein 
and mRNA abundance data correlate  poorly50. Results from eight  publications51–58, related to RNA sequencing 
(RNA-seq) and specific to T. gondii, were compiled to show metrics of absolute and/or changes in RNA expres-
sion levels for captured T. gondii proteins. Supplementary Table S5 lists this compilation. Proteins with the high-
est RNA expressions in tachyzoites and sporozoites are mainly the classical vaccine candidates (especially GRA1 
and SRS29B). These expression levels appear to be irrespective of whether the RNA captured time point was 
intracellular or extracellular. The protein with the highest RNA expression in bradyzoites is BAG1. RNA expres-
sions that changed the most when comparing samples from tachyzoites and bradyzoites were not the classical 
vaccine candidates (except some SAG-related sequences had reduced levels e.g. SRS29B). The main purpose of 
the compiled RNA expression was to provide a comparative indicator during antigen selection e.g. a protein 
associated with high or increased RNA expression at a particular life cycle stage was weighted more favourably 
than one with fewer expression levels, if the compared protein from the same stage had other equivalent candi-
dacy indicators.

Evaluating peptide‑MHC class II binding predictors. One of the vaccine design requirements was to 
produce a Th response. To obtain such a response, T cell receptors (TCRs) on Th cells need to recognise antigen 

Table 4.  Toxoplasma gondii strains that have protein sequences available. Key to columns: 
Taxonomy = National Center for Biotechnology Information (NCBI) taxonomy ID; Type = types I, II, or III. In 
a study by Howe and  Sibley42, the population genetic structure of Toxoplasma gondii was originally thought to 
be clonal, with most isolates belonging to one of three lineages, designated Type I (most virulent type), Type 
II and Type III. The three types are now thought not to be representative of the global T. gondii population; 
Host = organism from which the strain was isolated; #. of proteins = number of protein sequences available in 
the Universal Protein Resource (UniProt); #. Reduced = reduced number of protein sequences after removing 
identical and/or redundant proteins per strain.

Strain Taxonomy Type Host #. of proteins #. reduced Comments

ARI 1074872 Human 9958 9927

CAST 943122 Human 9494 9455

COUG 1074873 Cougar 9866 9835

FOU 943167 Human 10,116 10,097

GT1 507601 II Goat 8445 8351

GAB2-2007-GAL-DOM2 1130820 Chicken 9135 9111

MAS 943118 Human 10,006 9992

ME49 508771 I Sheep 8315 8236 Reference strain

P89 943119 Pig 9698 9678

PRU 1080348 II Human 1 1 Ron10 protein

RH 383379 I Human 6 6

RH-88 1208370 I Human 8316 8147

RUB 935652 Human 10,027 10,000

TgCATBr5 943121 Cat 1 1 Ron10 protein

TgCatBr64 1208666 Cat 1 1 Ron10 protein

TgCATBr9 943120 Cat 9833 9811

TgCatPRC2 1130821 Cat 10,120 10,089

type I 1209525 4 2

type II 1209523 4 2

VAND 933077 9252 9232

VEG 432359 III Human 11,148 8948
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peptides presented by MHC class II molecules on professional antigen presenting cells (APCs) e.g. macrophages 
and DCs. The aim here was to evaluate programs that can predict peptides that have an affinity to MHC class II 
molecules.

Nine peptide-MHC class II binding predictors (MHCPred, RANKPEP, SYFPEITH, Vaxitop, IEDB’s MHC-II 
Binding predictor, MHC2Pred, NetMHCII, NetMHCIIpan, and ProPred) were assessed for suitability for the 
pipeline. The predictors SYFPEITHI, Vaxitop, MHCPred, ProPred, and MHC2Pred allow only one sequence 
at a time to be processed and provide no standalone version (RANKPEP allows only 100 sequences at a time). 
This means that there are only three predictors (IEDB MHC-II  Binding59,  NetMHCII60, and  NetMHCIIpan61) 
that have the capacity for high-throughput processing.

To evaluate the three high-throughput predictors, known T-cell epitopes were downloaded from the Immune 
Epitope Database (IEDB). In an attempt to have the best quality test data, only epitopes associated with more 
than one publication over the last 10 years and sourced from parent proteins with ‘reviewed’ status in UniProt 
were used. Supplementary Table S6, sheet [Published_epitopes] lists the epitopes downloaded from IEDB. These 
epitopes are associated with 911 parent proteins. Sequences of the 911 proteins were used as input into the predic-
tors. Different default thresholds are automatically applied by the predictors to prediction outputs to determine 
if a peptide is a strong binder (SB) or weak binder (WB) or a non-binder. Prediction outcomes are listed in Sup-
plementary Table S6, and Supplementary Table S7 presents a summary.

There were 6201 published epitopes, which collectively represent true positives for the test parent proteins. 
An evaluation challenge is that we do not know how many other ‘true’ epitopes exist on the test proteins. This 
means that in the evaluation only ‘true positive’ (TP), ‘false negative’ (FN), and sensitivity (SN) can be appraised 
with any certainty e.g. a ‘false positive’ (FP) epitope could be an epitope yet to be published. However, compar-
ing the predictors solely on SN is misleading when considering the substantial difference in false positives. For 
example, IEDB predicts more TPs but substantially more FPS in comparison to the other predictors. Given the 
number of predictions (e.g. TPs + FPs) in contrast to the number correctly predicted, it could be argued that 
the predictors’ precision is no better than guessing. The consolatory factor, conversely, is that we do know how 
many of the FPs are in fact true.

Only peptides predicted to be SBs by all three predictors were recognised here as potential epitopes. This is 
on the assumption that predictors in agreement are more reliable than contradictory predictions but still on the 
understanding that most peptide-MHC II binding predictions are likely to be FPs given their unreliable preci-
sion. Given the 6201 published epitopes, 319 true positives and 1788 false positives were predicted by all three 
predictors (see Supplementary Table S6).

T‑cell epitope prediction for Toxoplasma gondii RH‑88. The aim was to predict the binding affinity 
to MHC II molecules of every possible peptide in every RH-88 protein. This is on the premise that any protein 
irrespective of its subcellular location can potentially contain peptides that bind to MHC II molecules for sur-
veillance by Th cells. There is no guarantee, however, that the presented peptide will be recognised by a Th cell.

Given published MHC II peptides from IEDB, peptide lengths range from two to 80 amino acids (AAs) but 
typical lengths are 13–25 AAs. There are numerous MHC II alleles e.g. MHC-peptide predictions can be obtained 
for 5628 available alleles for NetMHCIIpan; and 54 alleles (25 HLA-DR, 20 HLA-DQ, and 9 HLA-DP alleles) for 
NetMHCII. In theory, to predict every feasible MHC binding peptide for each protein, a predictor would need to 
be executed for every combination of peptide length and MHC II allele e.g. for NetMHCII, the program would 
need to run 54 times for peptide lengths of 13 AAs, and then another 54 times for peptide lengths of 14 AAs, 
and so on. This means that the program would need to execute 702 times per protein for lengths 13–25 AAs. 
On the computer platform used in this study (see Materials and methods), the processing time for one protein 
was approximately 60 minutes, notwithstanding the gigabytes of output data per protein. The processing time 
required to process all 8147 RH-88 proteins was calculated to be potentially 330 days. Predicting every MHC 
binding peptide is possible but an impractical exercise.

Given more than nine million different references to MHC II alleles in IEDB, the frequency of each allele was 
determined. There are only 237 frequently referenced alleles. Supplementary Table S8, sheet [Published_alleles_
from_IEDB] lists the frequencies e.g. DPA1*01:03 /DPB1*04:01 is the most frequent with 242110 references, 
whereas DQA1*01:04/DQB1*05:03 is only referenced once. Alleles that were common between the predictors 
and the 237 published alleles were determined (e.g. NetMHCII has 54 and NetMHCIIpan has 5628 alleles avail-
able for computation). Supplementary Table S8 lists the 33 identified common alleles that were subsequently 
used for the MHC-peptide predictions.

Given 442,019 published MHC II epitopes from IEDB, the frequency of peptide lengths were determined (see 
Supplementary Table S8, sheet [Published_peptide_lengths]). The most frequent length is 15 AAs (i.e. 14.63% of 
peptides have a length of 15AAs). Peptide lengths from 13 to 19 AAs represent 74% of the published epitopes.

The compromise to the previously described processing challenge was to use only peptide lengths from 13 to 
19 AAs and the 33 common MHC II alleles. Therefore, the programs were executed 231 times per protein (i.e. 
7 peptide lengths * 33 alleles = 231).

The section ‘T-cell epitope prediction’ in “Materials and methods” describes the concept behind a sliding 
fixed-sized window to calculate peptide-MHC II binding affinity, which underpins NetMHCII and NetMHCIIpan 
methodology. One consequence of this window methodology and a high-throughput approach is gigabytes of 
predictions. For example, over 35 GB of predications were generated from the ‘13 AAs window’ predictions and 
another 36 GB from the ‘14 AAs window’ predictions, and so on (this is for predictions covering peptide lengths 
from 13 to 19 AAs). Furthermore, there were 1000s of dispersed SB and WB predictions associated with the 33 
MHC alleles for which many were expected to be false as per previous testing results.
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The aim was to filter out possible false positives from the pipeline by establishing stringent selection criteria 
for a SB peptide. For example, a peptide’s binding core is typically 9AAs. Therefore, peptides predicted to be SB 
on nine or more consecutive sliding windows were counted as potential epitopes.

A further challenge was how to address the repetitive nature of AAs in sequences. Supplementary 
Table S9, sheet [Peptide Frequency 15 AA] lists the frequency of a particular AA peptide combination e.g. 
SSSSSSSSSSSSSSA is the most frequent SB combination of 15 AAs. Similarly, SSSSSSSSS is the most frequent 
AA core combination as shown in sheet [Core Frequency]. To address this challenge, the pipeline excludes any 
predicted SB peptide for which its 9 AAs core overlaps a low complexity region (LCR) on a protein sequence.

Supplementary Table S9, sheet [Counts_per_ID] shows the results when combining predictions for peptide 
lengths 13 to 19 AAs and all 33 MHC alleles. A normalised score was applied to each of the 8147 RH-88 proteins 
taking into account the total number of predicted SB peptides per MHC allele, the number of peptides bind-
ing to ‘promiscuous’ MHC alleles, and the number of ‘promiscuous’ peptides binding to multiple MHC alleles 
(see column ‘T-cell Rank’ in sheet [Counts_per_ID]). The higher the score the more likely the protein contains 
multiple promiscuous strong binding peptides that bind to promiscuous MHC alleles.

It is clear from the results that high scoring proteins tend to have long sequences. Intuitively, one would 
expect longer sequences to have more binding peptides than shorter ones. However, there is not a perfect cor-
relation between high scoring and protein length e.g. examples exist of proteins scoring higher than proteins 
with longer length.

Evaluating linear B‑cell epitope predictors. A humoral response is proposed as the main mechanism 
to prevent tachyzoites from invading cells in the first place. Programs are available that predict regions of pro-
teins that are likely to be recognized as epitopes in the context of a humoral response. Four linear B-cell epitope 
predictors (ABCpred, Bcepred, BepiPred, and predictors from IEDB) were assessed for suitability for the in silico 
approach. Known B-cell epitopes downloaded from IEDB were used as a benchmark dataset in the evaluation. 
Only epitopes fulfilling the following criteria were included: epitope identified in a published experiment from 
the last 10 years, the parent protein has a ‘reviewed’ status in UniProt, and the epitope is referenced in more than 
one publication.

The accuracy of the predictors ranged between 50 to 56%, although publications from the predictors’ devel-
opers report 65.93% accuracy for ABCpred  server62 (developed in 2006), 58.7% for  Bcepred63 (2004), and 62% 
for BepiPred-2.064 (2017). The IEDB B-cell epitope prediction tools provide a collection of seven methods with 
Bepipred-2.0 as the default method. ABCpred and Bcepred only process one sequence at a time and therefore 
do not have the capacity for high-throughput processing required for this study’s pipeline.

BepiPred has recently been improved with version 3.065 and predicts both linear and conformational B-cell 
epitopes from protein sequences. The authors claim in their publication that it outperforms BepiPred-2.0, 
which was the best out of all the predictors tested in this study e.g. BepiPred 2.0 AUC = 0.596 and BepiPred 
3.0 AUC = 0.710. Sheets [BepiPred-2.0_A0A0K2GUJ4] and [BepiPred-3.0_ A0A0K2GUJ4] in Supplementary 
Table S10 show outputs for the different program versions for one protein (A0A0K2GUJ4, which contains a 
known epitope of length 32 AAs located at position 1–32). Each amino acid is scored. The programs do not 
indicate which amino acid is part of an epitope. The epitope decision is at the discretion of the user by choosing 
a threshold. The suggested threshold value by the developers is 0.5 for BepiPred-2.0 and 0.1512 for BepiPred-3.0. 
We cannot confirm whether the scores located outside the known epitope are false positives or epitopes yet to 
be identified. Sheet [BepiPred3_benchmarking] shows the results when comparing the benchmark epitopes 
from 186 parent proteins with the predicted BepiPred-3.0 scores e.g. 25 out of 32 residues (78.12%) representing 
known epitope regions in the protein A0A0K2GUJ4 were correctly predicted. On the assumption the benchmark 
epitopes are truly correct, 50% or more of the epitope regions were correctly predicted on 46 out of 186 proteins 
(24.7%). Lowering the threshold improves this result but at the expense of an unknown increase in false positives.

Predicting Toxoplasma gondii RH‑88 proteins naturally exposed to the immune system. An 
expectation is that a primed or memory B-cell, as a result of natural infection or vaccination, will only have the 
opportunity to recognise its cognate epitope when the epitope is completely exposed to surveillance e.g. mem-
brane bound or secreted. The program  Vacceed66 was used to predict a score that indicates proteins are naturally 
exposed to the immune system. That is, membrane-associated proteins, including those spanning or anchored 
to the membrane, and proteins secreted to the outside of the pathogen are in full view of a host’s immune system 
surveillance. Consequently, naturally exposed proteins containing B-cell epitopes are considered more likely to 
be antigenic than those located within the pathogen. Supplementary Table S11 shows the predicted exposure 
score for all 8147 T. gondii RH-88 proteins, and 1986 have a greater than 90% probability of being naturally 
exposed to the immune system.

Linear B‑cell epitope prediction for Toxoplasma gondii RH‑88. The program BepiPred was used 
to predict linear B-cell epitopes for all 8147 T. gondii RH-88 proteins. More specifically, BepiPred scores each 
amino acid in a protein sequence and a higher score indicates the amino acid is more likely to be part of a B-cell 
epitope. The challenge was how best to collectively score each RH-88 protein given hundreds of scored amino 
acids. To reiterate, BepiPred does not indicate which amino acid is part of an epitope. Furthermore, there is a 
relationship between an optimal BepiPred threshold and protein length i.e. the optimal threshold appears to be 
lower for longer proteins. Finding an optimal threshold for each protein is not conducive for high-throughput 
processing. The strategy in this study was to first normalise the BepiPred scores for each protein to make them 
independent of protein length. Then, consecutive amino acids of a certain length (e.g. 12 AAs) that had normal-
ised scores above 0.7 were identified and considered here as representative of a possible B-cell epitope. Scores of 
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the consecutive amino acids were averaged and the average scores from each consecutive group were added to 
generate a single protein score.

Supplementary Table S11, sheet [Epitope_lengths] shows the frequency of epitope lengths given 123338 
known B-cell epitopes downloaded from IEDB. Lengths of 12, 15, and 16 AAs are by far the most frequent. There-
fore, the ‘consecutive amino acids’ strategy applied to normalised BepiPred scores was repeated for these three 
frequent lengths. Sheets [Length_12], [Length_15], and [Length_16] show the generated protein scores along 
with columns ‘AA_Count’ (the number of AAs above 0.7 threshold but not necessarily consecutive), ‘Density’ 
(the number of epitopes as defined by consecutive AAs of length 12, 15 or 16, respectively), and ExposureScore 
(a score predicted by Vacceed representing the probability that the protein is exposed to the immune system). 
The protein scores and density from the three applied lengths were averaged. A normalised score taking into 
account the average protein score and density was used as a final indicator of the likelihood a protein contains 
multiple linear B-cell epitopes (see sheet [Combined_results]).

Conformational B‑cell epitope prediction for Toxoplasma gondii RH‑88. The standalone versions 
of  DiscoTope67 and  ElliPro68 were used to predict conformational B-cell epitopes. These standalone versions pro-
vided the capacity to perform high-throughput processing. Ideally, B-cell epitope predictions for all 8147 T. gon-
dii RH-88 proteins were sought. However, the required program input for DiscoTope and ElliPro is a protein’s 
3D structure and there are none available for RH-88 proteins. In the AlphaFold Protein Structure  Database69 
there are currently 6901 3D structures for T. gondii ME49 proteins that were predicted by AlphaFold v2.070. 
Therefore, B-cell epitopes were predicted for the 6901 ME49 proteins instead. Then, RH-88 proteins that had a 
greater than 90% sequence similarity to the ME49 proteins were assumed to have a similar number and distribu-
tion of B-cell epitopes. The results are shown in Supplementary Table S12 sheet [Conformational predictions]. A 
normalised score taking into account the number of conformational B-cell epitopes predicted by ElliPro and the 
number of binding sites predicted by DiscoTope was used as a final indicator of the likelihood a protein contains 
multiple conformational B-cell epitopes.

Predicting proteins under positive selection. The premise for this study is that proteins under positive 
selection (PS) to evade the immune system are more likely to induce an immune response than proteins exposed 
to other selection pressures. The methodology from a previous  study71 that exploits ortholog groups was used to 
predict which RH-88 proteins have PS indicators. Ideally, an indicator was sought for all 8147 RH-88 proteins. 
However, the nature of the methodology provided an indicator for only 475 proteins. That is, only 475 ortholog 
groups could be created that fulfilled the obligatory criteria for a group. In the previous  study71, the ideal ‘Goldi-
locks’ criteria for membership of a sequence to an ortholog group were sequence similarity thresholds greater 
than 70% and less than 95%. Supplementary Table S12 lists the 475 proteins that were members of ortholog 
groups suitable for PS detection. The important columns are ‘ExposureScore’ (the probability that the protein 
is exposed to the immune system as determined by Vacceed) and ‘P > 99%’ (number of positive sites > 99% pos-
terior probability). Many of the protein names associated with the PS indicators are recognisable classical vac-
cine candidates e.g. ROP1, ROP18, GRA4, MIC2, toxofilin, and the SAG_related sequences. However, there are 
equally as many classical vaccine targets that have no PS indicators e.g. ROP5, ROP6, GRA1, GRA3, MIC1, and 
MIC3. This is because their sequence similarity is too close (i.e. > 99%) between the target proteins from different 
strains to fulfil the requirements for an ortholog group. Proteins that have high scores in ‘ExposureScore’ and 
‘P > 99%’ are likely to be under continued positive selection from the immune system.

Combining predictions to create vaccine candidate lists. For the CMI list, results pertinent to T-cell 
epitope prediction, RNA expression levels in the three T. gondii infectious stages (tachyzoites, bradyzoites, and 
sporozoites), sequence similarity in other strains, toxicity, and autoimmunity potential were combined and pre-
sented in Supplementary Table S13, sheet [Vaccine #1 CMI]. Given all 8147 RH-88 proteins, the aim was to rank 
them on candidacy potential respecting both T-cell epitope prediction scores and RNA expression levels. The 
ranking method is described in ‘Materials and methods’ under ‘Methodology for ranking protein characteristics’. 
Table 5 shows an extract of the top 10 rows taken from the CMI list. The scores have been removed leaving only 
rank numbers. Proteins from each infectious stage were ranked separately, and then an overall rank was deter-
mined from the three stage ranks e.g. dense granule protein GRA1 (TGRH88_081130) had the eighth highest 
rank in the tachyzoite stage, 24th highest in the bradyzoite stage, and the highest in the sporozoite stage when 
compared to all other RH-88 proteins. GRA1, however, is ranked the highest for all infectious stages. Five clas-
sical vaccine candidates are in the top 10 (3 * GRAs, 1 * ROP, and 2 * RONs) but no MIC, SAG or SRS proteins. 
These high ranked candidates, as with any selected candidate, need to also be considered in the context of their 
protection efficacy against multiple strains, and their likelihood of triggering an autoimmune response and/or a 
detrimental poisoning effect. Although the latter protein characteristics are excluded from the ranking process, 
they are in the list to help make informed candidate selection decisions. For example, Table 5 shows that chap-
eronin protein BiP (TGRH88_051090) and ribosomal protein RPS9 (TGRH88_062360) have an autoimmunity 
potential, and rhoptry protein ROP7 (TGRH88_020190) has a sequence similarity to only 14 of 15 known strains 
with sequences. With these known characteristics in mind, a possible judicious selection decision might be to 
include ROP7 but exclude the potential autoimmune triggers from further analysis. Given the top 10 names 
(excluding the ‘unspecified product’ proteins), poly (ADP-ribose) glycohydrolase (PARG) could be judged novel 
from a classical candidate perspective. PARG is a protein distributed within the parasite interior and is reported 
to play a regulation role in the cell cycle, including  death72. Interestingly, PARG inhibition in Trypanosoma para-
sites has a detrimental effect on their  growth72. Four of the top 20 names are ribosomal proteins. These protein 
types have been identified as targets for protection against toxoplasmosis and  leishmaniasis73,74.
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For the humoral immunity list, results pertinent to linear and conformational B-cell epitope predictions, RNA 
expression levels in the three infectious stages, exposure probabilities, positive selection indicators, sequence 
similarity in other strains, toxicity, and autoimmunity potential were combined and presented in Supplementary 
Table S13, sheet [Vaccine #2 humoral]. Similar to the CMI list, the aim was to rank all RH-88 proteins on their 
candidacy potential with respect to B-cell epitope prediction scores, RNA expression levels, and exposure prob-
abilities. Table 6 shows an extract of the top 10 rows taken from the humoral immunity list (only rank numbers 
are shown). Four classical vaccine candidates are in the top 10 (2* GRAs and 2 * MICs). Two proteins, protease 

Table 5.  Top 10 overall ranked vaccine candidates specific to cell-mediated immunity. Key to columns: 
Len = protein length; Toxicity = a ‘Toxin’ or ‘Non-Toxin’ classification indicating a protein’s potential toxicity 
as predicted by the program ToxinPred2; Autoimmunity = a ‘Safe’ or ‘Potential’ classification indicating the 
potential of the protein to trigger an autoimmune response in humans (based on sequence similarity between 
RH-88 Toxplasma gondii and humans as calculated by BLASTP); No. of Strains = number of different strains 
that have a protein with a sequence similarity > 90% to the RH88 ID protein sequence; Tz_rank, Bz_rank, 
and Sp_rank contain the vaccine candidacy rank that is specific to the infection stage of tachyzoites (Tz), 
bradyzoites (Bz), and sporozoites (Sp), respectively; Overall rank = a rank taking into account Tz_rank + Bz_
rank + Sp_rank.

RH88 ID Name Len Toxicity Auto-immunity No. of Strains Tz rank Bz rank Sp rank
Overall 
rank

TGRH88_081130 dense granule 
protein GRA1 190 Non-Toxin Safe 15 8 24 1 1

TGRH88_020190 rhoptry protein 
ROP7 575 Non-Toxin Safe 14 39 2 12 2

TGRH88_046790 dense granule 
protein GRA3 222 Non-Toxin Safe 15 5 59 2 3

TGRH88_050950 rhoptry neck 
protein RON5 1702 Non-Toxin Safe 15 20 35 17 4

TGRH88_051090 chaperonin protein 
BiP 668 Non-Toxin Potential 15 23 17 33 5

TGRH88_062360 ribosomal protein 
RPS9 188 Non-Toxin Potential 15 43 15 25 6

TGRH88_077370 unspecified 
product 1049 Non-Toxin Safe 15 41 34 14 7

TGRH88_043710 rhoptry neck 
protein RON3 1958 Non-Toxin Safe 15 18 41 43 8

TGRH88_033050 poly(ADP-ribose) 
glycohydrolase 553 Non-Toxin Safe 15 74 49 4 9

TGRH88_001930 unspecified 
product 519 Non-Toxin Safe 15 60 43 44 10

Table 6.  Top 10 overall ranked vaccine candidates specific to humoral immunity. Key to columns: 
Len = protein length; Toxicity = a ‘Toxin’ or ‘Non-Toxin’ classification indicating a protein’s potential toxicity 
as predicted by the program ToxinPred2; Autoimmunity = a ‘Safe’ or ‘Potential’ classification indicating the 
potential of the protein to trigger an autoimmune response in humans (based on sequence similarity between 
RH-88 Toxplasma gondii and humans as calculated by BLASTP); No. of Strains = number of different strains 
that have a protein with a sequence similarity > 90% to the RH88 ID protein sequence; Under PS = number of 
positive selection sites as predicted by Bayes Empirical Bayes (BEB) analysis within CODEML; Tz_rank, Bz_
rank, and Sp_rank contain the vaccine candidacy rank that is specific to the infection stage of tachyzoites (Tz), 
bradyzoites (Bz), and sporozoites (Sp), respectively; Overall rank = a rank taking into account Tz_rank + Bz_
rank + Sp_rank.

RH88 ID Name Len Toxicity Auto-immunity No. of Strains Under PS Tz rank Bz rank Sp rank Overall rank

TGRH88_038710 Dense granule protein GRA6 201 Non-Toxin Safe 15 7 3 4 1 1

TGRH88_025740 Dense granule protein GRA5 120 Non-Toxin Safe 15 1 1 6 4 2

TGRH88_022490 Putative myosin heavy chain 1124 Non-Toxin Safe 15 0 4 2 10 3

TGRH88_011090 3′5’-cyclic nucleotide phosphodies-
terase domain-containing protein 1065 Non-Toxin Safe 15 0 2 8 9 4

TGRH88_022410 Protease inhibitor PI2 318 Toxin Safe 15 0 13 5 2 5

TGRH88_068970 Unspecified product 131 Non-Toxin Safe 15 15 9 20 3 6

TGRH88_037170 Microneme protein MIC2 769 Toxin Safe 15 0 14 12 6 7

TGRH88_066240 Microneme protein MIC5 181 Non-Toxin Safe 15 0 12 11 11 8

TGRH88_033800 Cyclophilin precursor 348 Non-Toxin Safe 15 0 5 19 18 9

TGRH88_015150 Unspecified product 312 Non-Toxin Safe 15 1 18 15 13 10
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inhibitor PI2 (TGRH88_022410) and microneme protein MIC2 (TGRH88_037170) are predicted to be toxic. 
Furthermore, dense granule protein GRA6 (TGRH88_038710) and unspecified product (TGRH88_068970) are 
predicted to contain several amino acids sites under continued positive selection (i.e. proteins possibly prone 
to genetic variability). A cautious approach would be to exclude the toxic protein and the proteins under posi-
tive selection but at the conceivable expense of rejecting a strong candidate (e.g. GRA6 is the highest overall 
ranked protein). Given the top 10 names, putative myosin heavy chain, 3′5’-cyclic nucleotide phosphodiesterase 
domain-containing protein, and cyclophilin precursor are non-classical candidates. Myosin proteins in T. gondii 
are known to be essential for gliding motility and host cell  invasion75, and a recombinant heavy chain myosin 
of Brugia malayi (a filarial nematode) was reported as a potent vaccine  candidate76. Phosphodiesterases (PDEs) 
are thought to be associated with cyclic nucleotide signalling that govern apicomplexan parasite motility to 
actively infect host  cells77; and PDEs from Schistosoma mansoni (a blood fluke) are considered potential vaccine 
candidates to control  schistosomiasis78. Cyclophilin is a highly conserved and multifunctional protein, and a 
recombinant T. gondii cyclophilin induced a significant Th1 type immune response as indicated by high IFN-γ 
and IL-2  production79. Also, vaccination with Neospora caninum cyclophilin (combined with profilin) conferred 
partial protection against experimental  neosporosis80.

We propose two different candidate selection strategies that are applicable to both the CMI and humoral 
immunity lists. Either select multiple candidates based on high overall ranks (see Tables 5 and 6) or select the 
highest ranking candidates from each of the infectious stages e.g. highest stage ranked candidates for CMI: 
HECT-domain (ubiquitin-transferase) domain-containing protein (TGRH88_032760) (tachyzoite stage), brady-
zoite antigen BAG1 (TGRH88_070990) (bradyzoite stage), dense granule protein GRA1 (TGRH88_081130) 
(sporozoite stage); and highest ranked candidates for humoral immunity: dense granule protein GRA5 
(TGRH88_025740) (tachyzoite stage), P-type ATPase PMA1 (TGRH88_005300) (bradyzoite stage), unspecified 
product (TGRH88_068970) (sporozoite stage). The expectation is that multiple high ranking candidates would 
be selected to contribute to a vaccine formulation, irrespective of selection strategy.

Discussion
This study primarily focused on two aims. The first aim was to construct an in silico vaccine discovery pipeline 
that was specific to protozoan parasites. More distinctively, the pipeline role was to predict the most worthy 
vaccine candidates given thousands of protein sequences from a target pathogen. ‘Worthy’ candidates are those 
proteins that contribute to a vaccine formulation into stimulating a recipient’s adaptive immune system into 
generating memory helper T and B cells. These memory cells are easier to activate than naïve cells and can trig-
ger a defence against future infections from the actual pathogen i.e. provide long-term protective immunity.

Creating a pipeline is not a trivial task because there is no universal agreement as to which bioinformatics 
programs among hundreds should be used and in what order. Essentially, an in silico vaccine discovery approach 
is simply an overarching concept with no standardised guidebook yet on how to implement the approach. Fur-
thermore, there are currently no known subunit vaccines against protozoan parasites as a result of this approach, 
and consequently none to emulate. In this study, a pipeline workflow was presented (see Fig. 2.) which we believe 
represents a state-of-the-art approach to in silico vaccine discovery that is specific to eukaryotic pathogens. 
That is, appropriate bioinformatics programs are proposed for each step needed to predict vaccine candidates.

There are many layers of inaccuracies impacting an in silico vaccine discovery approach. For example, most 
protozoan protein sequences are translations from gene predictions (see Supplementary Table S3 as an example 
for T. gondii). These gene predictions are mainly ab initio, which involves predicting coding sequence (CDS) 
regions encoded in genome sequences. Recent  reviews81,82 highlight that correctly identifying protein-coding 
genes remains error-prone. Some prediction inaccuracies might be explained by the genome sequence quality 
and the complexity of intron–exon gene structures. It is difficult to quantify the negative impact of sequence 
inaccuracies to the overall in silico approach. Nonetheless, protein sequences are the primary input to all sub-
sequent pipeline programs, and it must be clearly understood, from a methodological analysis perspective, that 
the T. gondii sequences have not been verified by experimental means.

Most prediction programs generate a score associated with a predicted protein characteristic. A threshold 
value is typically applied to the score to classify a protein as either possessing or lacking the characteristic. This 
classification raises several points. First, irrespective of input sequence quality, programs have their own inherent 
levels of inaccuracies (as illuminated with MHCII binding predictors in Supplementary Table S7), and conse-
quently at each pipeline stage there are an unknown number of false classifications. Second, in silico pipelines 
typically choose between two methodology types for selecting candidates, given protein characteristics—filtering 
or ranking. With a filtering methodology, a potential candidate could be erroneously discarded because of an 
incorrect classification due to poor predictions and/or an inappropriate threshold. We propose that ranking is the 
optimum methodology as presented in this study. That is, no protein was discarded from the pipeline. Instead, 
every score for each predicted characteristic was collectively considered, with the highest scoring proteins judged 
the worthiest candidates.

Ideally, ML should be utilised for selecting candidates, given the copious volumes of characteristic predic-
tions. Unfortunately, there are currently insufficient numbers of verified protective antigens against protozoan 
parasites to create quality ML training data. Furthermore, ML algorithms require both positive and negative 
training data, and similarly, insufficient numbers exist showing a protein will not induce an immune response 
as determined by experimental testing.

To reiterate, in silico vaccine discovery is founded upon sequential layers of inaccuracies within genome 
sequencing, gene predictions, characteristic predictions, and candidate selection with or without ML. These 
inaccuracies are in addition to unsuitable choices of pipeline programs and workflow steps e.g. a program choice 
may be governed by its popularity or lack of choice, rather than on its merit. Nonetheless, encouraging progress 
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continues in the incremental improvement of genome sequences, gene predictions, and within the constantly 
increasing choice of high-tech bioinformatics programs predicting evermore informative protein characteris-
tics. Currently, in silico vaccine discovery remains a powerful complementary approach supporting traditional 
discovery methods by saving time and money in narrowing down candidate numbers for experimental testing. 
Given the momentum of the inevitable computational advances epitomised by artificial intelligence, a gradual 
paradigm shift will move the importance further from the time-consuming and expensive culture-based methods 
to high-throughput in silico vaccine discovery methods.

The second study aim was to implement the pipeline to predict candidates against T. gondii. The precise 
selection of antigens for a vaccine formulation is one of four critical interdependent vaccine design decisions 
(see Fig. 1). Any wrong decision can totally change the desired vaccine outcome. For example, the perfect anti-
gens might be selected, but any wrong decision in the type of adjuvant and/or antigen display method and/or 
vaccine delivery route could negate their immunogenic potential. The emphasis here is that the in silico vaccine 
discovery outcomes cannot be judged in isolation because it is one of many components in an overall holistic 
approach to vaccine design.

Our proposal is to have two different vaccines to augment protective immunity. One specific to CMI (vaccine 
#1) and the other specific to humoral immunity (vaccine #2).

Vaccine #1. Two key influences on our methodology development for vaccine #1 were first to understand 
the decisive event triggering protective CMI in a natural infection, and then how to replicate this event through 
a vaccine design. In summary, the event triggering natural protective immunity is expected to be only when live 
parasites are phagocytosed. In a natural infection, however, live parasites (in the form of tachyzoites) invade host 
cells as part of a lytic cycle for their existence and then safely reside in parasitophorous vacuoles (PVs) hidden 
from a host’s immune  system83,84 (PVs are unique intracellular compartments made from host-cell membrane 
and modified by the parasite). Furthermore, tachyzoites can differentiate into bradyzoites that form tissue cysts 
in reaction to an immune response. Taken together, PVs and tissue cysts have proved to be successful survival 
mechanisms to evade the immune system. This evasion effectively means that tachyzoites within infected cells 
will not be fragmented, and accordingly, parasite peptides will not be presented by MHC class I and recognised 
by CTL receptors. Similarly, CTLs cannot detect bradyzoites in tissue cysts. Therefore, T.gondii during its lytic 
cycle of invasion, replication and egress, will be at its most vulnerable when not residing in PVs or tissue cysts. 
Put differently, T.gondii during the lytic cycle will frequently transition between an intracellular and extracel-
lular position. A  study85 reports that T. gondii extracellular parasites remain viable for only a limited period (six 
to 12 hours) after natural egress. It is unclear whether the extracellular time period before the next host cell 
invasion is an opportunity for the innate immune system. In such a case, macrophages are expected to be the 
main killing mechanism through phagocytosis of extracellular tachyzoites before host cell  invasion86 or dur-
ing extracellular-intracellular transition periods. Activated macrophages can in turn activate naive  CTLs87. The 
expected main players in the flow of events towards protective immunity are therefore dendritic cells (display-
ing antigen fragments on MHC II molecules), Th1 cells (binding to their cognate antigen), IFN-γ + TNF + IL-2 
(secreted from activated Th1), B-cells (antibody production stimulated by IFN-γ), CTLs + NK cells + Th1 cells 
(stimulated by IL-2). The crucial trigger in the vaccine design to replicate these events is antigen presentation 
on MHC II molecules.

Ideally, the in silico vaccine discovery approach needs to identify epitopes on antigens that will be irrefutably 
recognized by cognate TCRs on Th cells when presented on MHC II molecules. Disappointingly, no program 
could be found that directly predicts T-cell epitopes with sufficient accuracy. This may be why most so-called 
T-cell epitope predictors currently available use an indirect method of predicting peptides binding to MHC 
molecules. This means that the predicted peptides only represent probable candidates because there is no in silico 
approach to determine whether the peptide–MHC complexes will be presented by dendritic cells (DCs) and/or 
recognized by Th TCRS and/or produce memory Th cells.

The accuracy of peptide-MHC class II binding predictors remains doubtful (see Supplementary Table S7). 
The expectation is that any given antigen will likely have an unknown number of true and false epitope predic-
tions. Our strategy was therefore not to focus on individual peptides as per a multi-epitope vaccine design but 
collectively on all predicted epitopes per antigen. One rationale for using protein antigens (rather than peptides) 
is to entrust DCs to select and present the most appropriate peptides. Also, a shortcoming of a peptide-based 
approach is that the selected peptides are specific to certain MHC alleles. This restricts its universal effectiveness. 
A protein-based approach is less restrictive because a protein typically contains many high-affinity peptides with 
potential to bind to a broader range of MHC alleles. As part of our strategy, each T. gondii protein was scored in 
accordance with the number of strong binding peptides that bind to promiscuous MHC II alleles, and the number 
of strong binding promiscuous peptides that bind to multiple MHC alleles.

When tachyzoites are proteolytically fragmented into peptides following phagocytosis, it is assumed that 
any peptide, irrespective of its parent protein’s normal subcellular location, has the potential to be presented to 
Th cells if it has an affinity to a DC’s MHC class II molecule. We speculate that the more abundant high-affinity 
peptides will have a greater probability of presentation. Continuing with this speculation, the optimum vaccine 
candidates are expected to be those proteins naturally in abundance with a high-density of high-affinity peptides.

As part of this study, we investigated predicting the fragmentation of proteins into peptides. The aim was 
to first predict fragmented peptides by predicting cleavage sites, and then predict binding affinity to MHC II 
molecules in the hope of improved accuracy. Supplementary Data S1 and Supplementary Tables for Data S1 
describe this investigation in detail, but disappointingly, no reliable program (e.g. accuracy less than 66%) could 
be found that predicts which peptides are naturally processed by the MHC class II antigen presenting pathway. 
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It appears no universal cleavage signal exists. However, there are possible natural groups of peptides specific to 
different endocytic  proteases88, which we propose may be worthwhile investigating further.

Vaccine #2. Although Th 1 activation is expected to also stimulate antibody production, it remains unclear 
as to what extent B-cells and circulating antibodies play a part in the overall Th 1 response towards protective 
immunity. Our strategy was therefore to generate another subset of candidates as per vaccine #2 that had the 
capacity to stimulate a recipient’s humoral immune response into generating memory B cells. The rationale is 
that antibodies triggered from a natural infection will have the capacity to neutralise extracellular tachyzoites 
from invading host cells. To generate memory B cells, B-cell receptors (BCRs) must first bind with epitopes on 
cognate antigens secreted from or on tachyzoites.

The accuracy of B-cell epitope predictions remains unreliable. Consistent with T-cell epitope predictions, an 
unknown number of true and false epitope predictions per antigen can be expected. Our strategy was to assign 
a single score to each protein collectively considering all predictions. This protein score indicated the likelihood 
an antigen contained multiple B-cell epitopes but was not our sole indicator for a possible humoral immune 
response.

An expectation is that virulent pathogen proteins, simply by the fact they present a danger to the host, will 
be optimum antigen candidates to induce a humoral response as a protection mechanism against the danger. It 
can therefore be assumed there is a correlation between virulence and protection. However, the more virulent 
the protein, the more likely the protein maintains antigenic variation due to co-evolutionary balancing acts 
with the host i.e. the main phenomenon underpinning immune system evasion is genetic variability. This might 
explain why some vaccines have shown excellent protection in preclinical and initial phase trials, but do not 
show long lasting protection in the field e.g. the original parasite targets at the time of vaccine development may 
have changed and are no longer recognised by memory cells. Most T. gondii candidates reported with evidence 
of efficacy are classical vaccine candidates. These candidates are expected to possess and maintain high levels of 
genetic variation; in effect creating a greater pool of mutations for natural selection to act upon to avoid recog-
nition by the immune system. Viewed slightly differently, proteins under continued positive selection from the 
immune system are more likely suitable vaccine candidates than proteins exposed to other selection pressures. 
This presents a major conundrum. Possibly the most immunogenic targets are the most variable, which equates 
to a protective response that will not be long-lived.

We propose that proteins that are conserved among strains, naturally exposed to the immune system, have no 
or minimal positive selection sites, and contain multiple B-cell epitopes are worthy candidates to induce broader 
and longer-lived immunity. Hence, our strategy for vaccine #2 was to favour proteins that had a high protein 
score + high immune exposure score + low positive selection sites.

Concluding remarks
Our study provided an important ranked list of T. gondii vaccine candidates that we believe is the first to be gener-
ated following a high-throughput in silico approach. This list is judged to be the optimum within the constraints 
of available data, current knowledge, and existing bioinformatics programs. The unfortunate limitation of any in 
silico approach is that the proposed candidates are fundamentally purely predictions. There is currently no way 
to know whether any of the predicted candidates will induce the desired immune response. What is encouraging 
from our results, which supports the presented methodology and pipeline, is that the top ranked candidates are 
those from the classical vaccine candidate group (see Table 3). There are 183 known classical candidates out of 
8147 T. gondii proteins. The chance of randomly selecting a classical candidate is therefore 2.5%, which reinforces 
our confidence in the results. We speculate based on this confidence that the highly ranked non-classical proteins 
are worthy of further investigation.

We raised a question in the introduction as to why there are so few protozoan vaccines despite decades of 
research. The absence of vaccine contributions from in silico vaccine discovery is not necessarily because of the 
approach itself, but financial restrictions preventing indispensable in vivo validation of candidates, or at least 
testing in animal models. In silico vaccine discovery has an enormous potential in contributing to current and 
future vaccines for protozoal diseases. The hope is that this potential is recognised by financial stakeholders in 
health care and/or animal welfare because an in silico approach without the expensive experimental verification 
is an unfinished endeavour.

Materials and methods
Computer platform used for study. All experiments and data generation were performed on a high 
performance computing (HPC) cluster node with 64 bit kernel, 32 MB memory, and 8 cores. The pipeline was 
designed for a Linux operating system and has only been tested on Red Hat Enterprise Linux 7.9 but is expected 
to work on most Linux distributions. Python version used was 3.6.8.

Collecting Toxoplasma gondii protein sequences. Proteins sequences for 21 T. gondii strains were 
downloaded from the Universal Protein Resource (UniProt) in a FASTA format. Note that sequences can also be 
downloaded from  ToxoDB89. Table 4 lists the 21 strains.

Sequence evaluation. All downloaded protein sequences were validated to ensure that they commenced 
with the letter ‘M’ (representing the amino acid methionine) and did not contain invalid letters, e.g. J, O, U, and 
X. All mRNA sequences were validated to ensure that they commenced with ATG; terminated with TGA, TAA, 
or TAG; contained only letters A, T, G, and C; and their sequence lengths were a multiple of three for later codon 
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analysis. Furthermore, the mRNA sequences were checked to confirm that their codon translations matched 
their corresponding protein sequences.

Autoimmunity checks and toxicity predictions. Sequence similarity between the RH-88 strain of T. 
gondii and humans were performed by  BLASTP90. Only the pident (percentage of identical matches) and qcovs 
(query coverage per subject e.g. T. gondii sequence coverage per human sequence) from the BLASTP results 
were recorded for each T. gondii protein. A measure of each protein’s potential toxicity was predicted using 
 ToxinPred291. Syntax used for ToxinPred2: python3 toxinpred2.py -i RH88.fasta -o RH88_toxins_all -d 2.

RNA expression. Fold change and/or normalized reads were collated from eight publications related to 
RNA sequencing (RNA-seq) specific to T. gondii. The normalized reads are shown by FPKM values, which is 
a popular metric to normalise RNA-seq reads (specifically paired-end) for sequencing depth and gene length. 
FPKM is the abbreviation for Fragments Per Kilobase Million. FPKM fold change is a measure describing how 
much RNA abundance changes between two samples and is calculated as sample #2 FPKM reads/sample #1 
FPKM reads. Note (1) the publication RNA-seq experiments were performed on various T. gondii strains, but 
raw reads were mapped to the ME49 genome, (2) RH-88 proteins that had a greater than 90% sequence similarity 
to the ME49 proteins from the publications were assumed to have similar RNA concentrations, and (3) the life 
cycle stage of samples is assumed here only when it is not clear from the publication. The eight publications and 
their samples used in this study are now listed: (1) sample #1: acute infection (10 days post-infection—assumed 
here to be tachyzoites), sample #2: chronic infection (28 days post-infection—assumed here to be bradyzoites). 
Samples obtained from infected mice  forebrains55; (2) sample #1: extracellular (assumed here to be tachyzoites), 
sample #2: intracellular (assumed here to be tachyzoites). Samples obtained from infected human foreskin fibro-
blasts (HFFs)54; (3) sample #1: day 3 tachyzoites, sample #2: day 4 tachyzoites. Samples obtained from tachyzoites 
that were grown for a period of six days in cell  culture56; (4) Single-cell RNA sequencing (scRNA-seq) analysis 
performed—sample #1: unstressed (acute-stage tachyzoites), sample #2: stressed (chronic-stage bradyzoites). T. 
gondii parasites were grown in HFFs (i.e. the experimental host cells). Parasites were allowed to invade and rep-
licate inside host cells for 24 h under standard conditions, and then switched to standard (for unstressed sample 
#1) or alkaline-stress medium (stressed sample #2)58; (5) sample #1: sporozoites, sample #2: tachyzoites. Samples 
obtained from infected rat intestinal epithelial  cell53; (6) sample # 1: bradyzoites (28 days post-infection), sample 
#2: bradyzoites (90 days post-infection). Samples obtained from infected mice  brains52; (7) sample #1 extracel-
lular sporozoites (10 days post-sporulation), sample #2: intracellular sporozoites, and sample #3: intracellular 
 tachyzoites57, and (8) tachyzoites (28 days post-infection), sample #2: bradyzoites (90 days post-infection). Sam-
ple #1 collected from invaded HFF cells in vitro, and sample #2 obtained from infected mice  brains51.

Clustering. CD-HIT was used to create clusters for each strain i.e. sequences that have > 90% similarity were 
clustered. The RH-88 sequence from each cluster was used as the representative (note: the longest sequence was 
chosen if more than one RH-88 protein was in the cluster).

Evaluating peptide‑MHC II binding predictors. Peptides for evaluating peptide-MHC II binding pre-
dictors were downloaded from IEDB. The selection criteria used: Epitope—Linear peptides; Epitope source—
default used (any source); Host—Human; Assay—MHC Ligand (positive only); MHC Restriction—Class II; 
Disease: Any. Records for 470,217 epitopes were downloaded. Note that if ‘Infectious’ is used for the Disease set-
ting, only 1997 epitopes are listed. The downloaded IEDB epitopes were further filtered to contain only peptides 
of length 15 AAs. Protein sequences associated with the filtered epitopes were downloaded from UniProt. These 
sequences were used as input to the online versions of the predictors: IEDB-MHC-II_Binding, NetMHCII, and 
NetMHCIIpan. The test MHC II allele was ‘HLA-DRB1*01:01’ for IEDB and ‘DRB1_0101’ for NetMHCII and 
NetMHCIIpan.

T‑cell epitope prediction. Ideally, this study wanted to use the standalone version of IEDB-MHC-II_
Binding to enable high-throughput processing. However, when using the ‘IEDB Recommended’ method the 
program crashed before generating the results. The IEDB support staff acknowledged that an incompatibility 
exists between the executable netMHCII in the ‘directory < install directory > /methods/netmhcii-1.1-executable/
netmhcii_11_executable/netMHCII’ and the computer platform used for the study. The ‘IEDB Recommended’ 
method is designed to use the best possible method for a given MHC molecule based on availability of predictors 
and previously observed predictive performance. There are eight possible methods: Consensus method, Com-
binatorial library (CombLib), NN-align-2.3 (equivalent to NetMHCII-2.3), NN-align-2.2 (equivalent to NetM-
HCII-2.2), SMM-align (equivalent to NetMHCII-1.1), Sturniolo, NetMHCIIpan-3.1, and NetMHCIIpan-3.2. 
The ‘IEDB Recommended’ uses the Consensus approach, which considers a combination of any three of the 
four methods (NN-align, SMM-align, CombLib and Sturniolo) if available for the MHC II allele, otherwise 
NetMHCIIpan is used. The SMM-align method when using ‘IEDB Recommended’ is causing the ‘Segmentation 
fault’ error.

The pipeline in this study used only the standalone versions of NetMHCII 2.3 and NetMHCIIpan 4.0. In effect, 
it is the equivalent to using ‘IEDB Recommended’ except for CombLib and Sturniolo. These latter two methods 
were published in 2008 and 1999, respectively, whereas NetMHCII 2.3 and NetMHCIIpan 4.0 were released in 
 201860 and  202061, respectively. The main difference is that NetMHCII only predicts peptide binding affinities 
to MHC molecules for which it has been trained e.g. currently 54 MHC II alleles, whereas NetMCHIIpan can 
predict peptide binding affinities to any MHC molecule of known sequence by uploading a full-length MHC 
protein sequence in FASTA  format60.
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NetMHCII and NetMCHIIpan slide a fixed-sized window (e.g. 15 AAs in length) one AA at a time from the 
N- to C-Terminal of each protein. At each window position, the binding affinity to a particular MHC II molecule 
is calculated e.g. there would be 199 15 AA peptides for a protein of length 213 AAs. A threshold proposed by 
the authors of NetMHCII and NetMHCIIpan is automatically applied to the affinity scores to indicate which 
peptides are SB, WB or non-binders. A typical result is that a protein can contain many WBs and several SBs 
dispersed along its entire length. However, the WB or SB peptides are not necessarily consecutive e.g. a particular 
15AA peptide (window) might be predicted as an SB but move the window only by one AA and its non-binder.

An in-house Linux script was used to implement parallel processing of the two predictors (netMHCII and 
NetMHCIIpan) with seven different peptide lengths (13 to 19 AAs) and 33 common MHC II alleles e.g. 8147 T. 
gondii RH-88 proteins were processed with 26 cores allowing for about 325 proteins to be processed simultane-
ously. Total processing time was less than nine days.

Low complexity region (LCR). The program called  SEG92 was used to predict the low complexity regions 
(LCR) on a protein sequence. All 8147 T.gondii RH88 protein sequences were processed through SEG. An in-
house Python script extracted the locations of the LCRs from the SEG output e.g. TGRH88_04545022-34, 75-89. 
An in-house Python script excluded any predicted SB peptide for which its 9AA core was located ‘entirely’ 
within an LCR e.g. between 22 and 34 AAs or between 75 and 89 AAs. Note that it seems to be still a contentious 
research area as to what constitutes an LCR.

Evaluating B‑cell epitope predictors. Epitopes for evaluating linear B-cell epitope predictors were 
downloaded from IEDB. The selection criteria used: Epitope—Linear peptides; Epitope source—default used 
(any source; Host—Human; Assay—B-cell (positive only; Disease: Any. The IEDB output listed: 173,944 
Epitopes, 7522 Antigens, 231,667 Assays, and 2741References. Parent protein IDs were obtained from the down-
loaded Assays and an in-house Python script determined the following: number of antigens (171,875), number 
of missing IDs (59,792), number of duplicates (164,453); and number of unique IDs (7,422). Epitopes were also 
obtained from the downloaded Assays: number of epitopes (171,875), number of epitopes with no parent pro-
tein ID (59,792), number of unique epitopes (123,338), number of different peptide lengths (68), and number 
of species associated with epitopes (566). Note that some epitopes are duplicated with the same PubMedID. The 
number of epitopes selected for inclusion in the evaluation test dataset was 1060 based on the selection criteria: 
parent protein ID = ‘reviewed’ status in UniProt and publication year > = 2012 and number of references in pub-
lications > 1.

Linear B-cell epitope predictors assessed: ABCpred server, Bcepred, BepiPred-2.0, and BepiPred-3.0. The 
IEDB B-cell epitope prediction tools provide a collection of different methods devised in 1978 (Chou and Fasman 
Beta-Turn Prediction), 1985 (Emini Surface Accessibility Prediction and Karplus and Schulz Flexibility Predic-
tion), 1986 (Parker Hydrophilicity Prediction), 1990 (Kolaskar and Tongaonkar Antigenicity), 2006 (Bepipred 
Linear Epitope Prediction), and 2017 (Bepipred Linear Epitope Prediction 2.0).

Predicting naturally exposed proteins using Vacceed. The ensemble of ML algorithms used by Vac-
ceed generate probabilities that the ‘yes’ and ‘no’ classifications of exposed or non-exposed, respectively, are cor-
rect, but only ‘yes’ probabilities are displayed in the output. The ‘average ML score’ for each protein is the average 
probabilities of all ‘yes’ classifications.

Linear B‑cell epitope prediction with BepiPred. A standalone version of BepiPred (v3.0) was used to 
predict B-cell epitopes. Command line syntax: python bepipred3_CLI.py -i ./example_antigens/antigens.fasta -o 
./example_output/ -pred vt_pred -t 0.17.

Conformational B‑cell epitope prediction. All available 3D structures for T. gondii ME49 (6901 in 
total) were obtained from the AlphaFold Protein Structure Database using gsutil (syntax: gsutil -m cp gs://public-
datasets-deepmind-alphafold-v4/proteomes/proteome-tax_id-508771-*_v4.tar.). Three files were included in the 
download for each protein: model_v4.cif, confidence_v4.json, and predicted_aligned_error_v4.json. The ‘cif ’ 
contains the atomic coordinates for the predicted protein structure in a PDBx/mmCIF format. A python script 
was used to convert the mmCIF files to a protein database (PDB) format. Standalone versions of ElliPro (v3.0) 
and DiscoTope (v1.1a) were used for the conformational B-cell epitope predictions, which require PDB files as 
input. Note that the latest web server version of DiscoTope is 3.0 (https:// servi ces. healt htech. dtu. dk/), but only 
‘1.1a’ is available as a standalone version.

Predicting proteins under positive selection. The methodology from a previous  study71 was replicated 
but with up-to-date sequences and including RH-88 sequences. The key to the methodology is ortholog groups. 
The ideal criteria for an ortholog group suitable for PS detection were group members with sequence similarity 
thresholds greater than 70% and less than 95%; aligned sequences having greater than 70% query coverage (i.e. 
the percent that a BLASTP query sequence aligns to a target sequence); only one protein sequence per species (or 
strain) in the group, and the group has 5 or more members. Two different sequence similarity thresholds were 
used in turn to increase the number of ortholog group for PS detection (e.g. > 70% and < 95%, and then > 70% 
and < 99%). One caveat from increasing the upper similarity threshold from 95 to 99% is that it will introduce 
more closely related sequences for inclusion in the ortholog group at the possible expense of reducing the accu-
racy of the PS detection procedure.

https://services.healthtech.dtu.dk/
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Methodology for ranking protein characteristics. Predicted protein characteristics for each RH-88 
protein were compiled i.e. each protein had a set of protein characteristics. The methodology aim was to create 
one single score to collectively represent all characteristics for the purpose of ranking candidates.

The compiled characteristics are raw scores and/or counts specific to a program output, and importantly, 
they are mostly not comparable. For example, RNA expression levels are normalised RNA-seq reads such as 
‘19,570.84’; and the peptide-MHC II results consist of a total count (the total number of predicted SB peptides 
when considering all 33 MHC alleles and peptide lengths 13 to 19 AAs), density ratio (total count / protein 
length), HD count (a count of the number of predicted SB sites beyond the 9 amino acid core threshold), and 
SB counts (the number of SB peptides per allele).

The first methodology step was to normalise each characteristic using the formula: normalised value = (value 
− minimum value)/range of values. Normalisation was performed such that a single value (0–1) was created to 
collectively represent a group of related characteristics e.g. normalised values for density ratio, HD count, and SB 
counts were added and further normalised to create a single value representing the likelihood a protein contains 
multiple SB peptides (named here ‘T-cell Rank’). Similarly, a single rank was created for linear B-cell predictions 
(Linear_B), conformational B-cell predictions (Conf_B), RNA expression levels in tachyzoites (Tz_RNA), RNA 
expression levels in bradyzoites (Bz_RNA), RNA expression levels in sporozoites (Sp_RNA), and exposure prob-
abilities to the immune system (Exposed). Supplementary Table S10, sheets [Vaccine #1 CMI] and [Vaccine #2 
humoral] shows the characteristic ranks.

The second methodology step was to obtain the product of the rank values associated with each vaccine 
type e.g. for CMI: Tz_RNA * T_cell Rank (the resultant normalised score was named Tz_score), Bz_RNA * 
T-cell Rank’ (resultant name: Bz_score), Sp_RNA * T-cell Rank’ (Sp_score); and for humoral: RNA * Exposed 
* linear_B * Conf_B (where RNA is either Tz_RNA, Bz_RNA, or Sp_RNA; and the resultant normalised score 
were named Tz_score, Bz_score, and Sp_score, respectively). The reason for multiplication rather than addition 
was to achieve equal importance from the contributing characteristics e.g. for CMI candidates the requirement 
was to have a protein that contains multiple SB peptides (a high T-cell rank) and is expressed in high levels (a 
high RNA rank). Using addition can potentially create a high comparative score even when one characteristic 
is low or zero. Despite using multiplication, however, a high ranked characteristic can still undesirably raise the 
rank of a poor scoring characteristic of the same protein. To address this problem, characteristics that had scores 
below average were weighted by 0.5. The effect of halving the value of below average characteristics ensured a 
more balanced contribution from each characteristic. The final ranks—Tz_rank, Bz_rank, and Sp_rank—are 
ascending sequential numbers based on the descending order of the normalised scores Tz_score, Bz_score, and 
Sp_score, respectively. The overall rank was determined by the ascending sum of Tz_rank + Bz_rank + Sp_rank 
i.e. the smallest sum is ranked first.

Data availability
All required datasets for the current study were downloaded from the Universal Protein Resource (UniProt) (see 
section ‘Collecting Toxoplasma gondii protein sequences’ under “Materials and Methods”). All analysis results 
are presented in Supplementary Information files.

Code availability
The inhouse Python and Linux scripts used to demonstrate the workflow in this article are available via GitHub: 
https:// github. com/ goods wen/ in_ silico_ vacci ne_ disco very.
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