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Approximation of nearly‑periodic 
symplectic maps 
via structure‑preserving neural 
networks
Valentin Duruisseaux 1*, Joshua W. Burby 2 & Qi Tang 2

A continuous‑time dynamical system with parameter ε is nearly‑periodic if all its trajectories 
are periodic with nowhere‑vanishing angular frequency as ε approaches 0. Nearly‑periodic 
maps are discrete‑time analogues of nearly‑periodic systems, defined as parameter‑dependent 
diffeomorphisms that limit to rotations along a circle action, and they admit formal U(1) symmetries 
to all orders when the limiting rotation is non‑resonant. For Hamiltonian nearly‑periodic maps on 
exact presymplectic manifolds, the formal U(1) symmetry gives rise to a discrete‑time adiabatic 
invariant. In this paper, we construct a novel structure‑preserving neural network to approximate 
nearly‑periodic symplectic maps. This neural network architecture, which we call symplectic 
gyroceptron, ensures that the resulting surrogate map is nearly‑periodic and symplectic, and that it 
gives rise to a discrete‑time adiabatic invariant and a long‑time stability. This new structure‑preserving 
neural network provides a promising architecture for surrogate modeling of non‑dissipative dynamical 
systems that automatically steps over short timescales without introducing spurious instabilities.

Dynamical systems evolve according to the laws of physics, which can usually be described using differential 
equations. By solving these differential equations, it is possible to predict the future states of a dynamical system. 
Identifying accurate and efficient dynamic models based on observed trajectories is thus critical for the analy-
sis, simulation and control of dynamical systems. We consider here the problem of learning dynamics: given a 
dataset of trajectories followed by a dynamical system, we wish to infer the dynamical law responsible for these 
trajectories and then possibly use that law to predict the evolution of similar systems in different initial states. 
We are particularly interested in the surrogate modeling problem: the underlying dynamical system is known, 
but traditional simulations are either too slow or expensive for some optimization task. This problem can be 
addressed by learning a less expensive, but less accurate surrogate for the simulations.

Models obtained from first principles are extensively used across science and engineering. Unfortunately, due 
to incomplete knowledge, these models based on physical laws tend to over-simplify or incorrectly describe the 
underlying structure of the dynamical systems, and usually lead to high bias and modeling errors that cannot 
be corrected by optimizing over the few parameters in the models.

Deep learning architectures can provide very expressive models for function approximation, and have proven 
very effective in numerous  contexts1–3. Unfortunately, standard non-structure-preserving neural networks strug-
gle to learn the symmetries and conservation laws underlying dynamical systems, and as a result do not generalize 
well. Indeed, they tend to prefer certain representations of the dynamics where the symmetries and conservation 
laws of the system are not exactly enforced. As a result, these models do not generalize well as they are often 
not capable of producing physically plausible results when applied to new unseen states. Deep learning models 
capable of learning and generalizing dynamics effectively are typically over-parameterized, and as a consequence 
tend to have high variance and can be very difficult to  interpret4. Also, training these models usually requires 
large datasets and a long computational time, which makes them prohibitively expensive for many applications.

A recent research direction is to consider a hybrid approach which combines knowledge of physics laws and 
deep learning  architectures2,3,5,6. The idea is to encode physics laws and the conservation of geometric properties 
of the underlying systems in the design of the neural networks or in the learning process. Available physics prior 
knowledge can be used to construct physics-constrained neural networks with improved design and efficiency 
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and a better generalization capacity, which take advantage of the function approximation power of neural net-
works to deal with incomplete knowledge.

In this paper, we will consider the problem of learning dynamics for highly-oscillatory Hamiltonian sys-
tems. Examples include the Klein–Gordon equation in the weakly-relativistic regime, charged particles moving 
through a strong magnetic field, and the rotating inviscid Euler equations in quasi-geostrophic  scaling7. More 
generally, any Hamiltonian system may be embedded as a normally-stable elliptic slow manifold in a nearly-
periodic Hamiltonian  system8. Highly-oscillatory Hamiltonian systems exhibit two basic structural properties 
whose interactions play a crucial role in their long-term dynamics. First is preservation of the symplectic form, 
as for all Hamiltonian systems. Second is timescale separation, corresponding to the relatively short timescale 
of oscillations compared with slower secular drifts. Coexistence of these two structural properties implies the 
existence of an adiabatic  invariant8–11. Adiabatic invariants differ from true constants of motion, in particular 
energy invariants, which do not change at all over arbitrary time intervals. Instead adiabatic invariants are con-
served with limited precision over very large time intervals. There are no learning frameworks available today 
that exactly preserve the two structural properties whose interplay gives rise to adiabatic invariants. This work 
addresses this challenge by exploiting a recently-developed theory of nearly-periodic symplectic maps11, which 
can be thought of as discrete-time analogues of highly-oscillatory Hamiltonian  systems9.

As a result of being symplectic, a mapping assumes a number of special properties. In particular, symplectic 
mappings are closely related to Hamiltonian systems: any solution to a Hamiltonian system is a symplectic 
 flow12, and any symplectic flow corresponds locally to an appropriate Hamiltonian  system13. It is well-known 
that preserving the symplecticity of a Hamiltonian system when constructing a discrete approximation of its flow 
map ensures the preservation of many aspects of the dynamical system such as energy conservation, and leads 
to physically well-behaved discrete solutions over exponentially-long time  intervals13–17. It is thus important to 
have structure-preserving neural network architectures which can learn symplectic maps and ensure that the 
learnt surrogate map preserves symplecticity. Many physics-informed and structure-preserving machine learning 
approaches have recently been proposed to learn Hamiltonian dynamics and symplectic  maps2,3,18–35. In particu-
lar, Hénon Neural Networks (HénonNets)2 can approximate arbitrary well any symplectic map via compositions 
of simple yet expressive elementary symplectic mappings called Hénon-like mappings. In the numerical experi-
ments conducted in this paper, HénonNets2 will be our preferred choice of symplectic map approximator to use 
as building block in our framework for approximation of nearly-periodic symplectic maps, although some of the 
other approaches listed above for approximating symplectic mappings can be used within our framework as well.

As shown by  Kruskal9, every nearly-periodic system, Hamiltonian or not, admits an approximate U(1)-sym-
metry, determined to leading order by the unperturbed periodic dynamics. It is well-known that a Hamiltonian 
system which admits a continuous family of symmetries also admits a corresponding conserved quantity. It is 
thus not surprising that a nearly-periodic Hamiltonian system, which admits an approximate symmetry, must 
also have an approximate conservation  law11, and the approximately conserved quantity is referred to as an 
adiabatic invariant.

Nearly-periodic maps, first introduced by Burby et al.11, are natural discrete-time analogues of nearly-periodic 
systems, and have important applications to numerical integration of nearly-periodic systems. Nearly-periodic 
maps may also be used as tools for structure-preserving simulation of non-canonical Hamiltonian systems on 
exact symplectic  manifolds11, which have numerous applications across the physical sciences. Noncanonical 
Hamiltonian systems play an especially important role in modeling weakly-dissipative plasma  systems36–42. 
Similarly to the continuous-time case, nearly-periodic maps with a Hamiltonian structure (that is symplecticity) 
admit an approximate symmetry and as a result also possess an adiabatic  invariant11. The adiabatic invariants 
that our networks target only arise in purely Hamiltonian systems. Just like dissipation breaks the link between 
symmetries and conservation laws in Hamiltonian systems, dissipation also breaks the link between approximate 
symmetries and approximate conservation laws in Hamiltonian systems. We are not considering systems with 
symmetries that are broken by dissipation or some other mechanism, but rather considering systems which 
possess approximate symmetries. This should be contrasted with other  frameworks43–45 which develop machine 
learning techniques for systems that explicitly include dissipation.

We note that neural network architectures designed for multi-scale dynamics and long-time dependencies 
are  available46, and that many authors have introduced numerical algorithms specifically designed to efficiently 
step over high-frequency  oscillations47–49. However, the problem of developing surrogate models for dynamical 
systems that avoid resolving short oscillations remains open. Such surrogates would accelerate optimization 
algorithms that require querying the dynamics of an oscillatory system during the optimizer’s “inner loop”. 
The network architecture presented in this article represents a first important step toward a general solution of 
this problem. Some of its advantages are that it aims to learn a fast surrogate model that can resolve long-time 
dynamics using very short time data, and that it is guaranteed to enjoy symplectic universal approximation 
within the class of nearly periodic maps. As developed in this paper, our method applies to dynamical systems 
that exhibit a single fast mode of oscillation. In particular, when initial conditions for the surrogate model are 
selected on the zero level set of the learned adiabatic invariant, the network automatically integrates along the 
slow  manifold50–54. While our network architecture generalizes in a straightforward manner to handle multiple 
non-resonant modes, it cannot be applied to dynamical systems that exhibit resonant surfaces.

Note that many of the approaches listed earlier for physics-based or structure-preserving learning of Hamil-
tonian dynamics focus on learning the vector field associated to the continuous-time Hamiltonian system, while 
others learn a discrete-time symplectic approximation to the flow map of the Hamiltonian system. In many 
contexts, we do not need to infer the continuous-time dynamics, and only need a surrogate model which can 
rapidly generate accurate predictions which remain physically consistent for a long time. Learning a discrete-
time approximation to the evolution or flow map, instead of learning the continuous-time vector field, allows 
for fast prediction and simulation without the need to integrate differential equations or use neural ODEs and 
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adjoint techniques (which can be very expensive and can introduce additional errors due to discretization). In 
this paper, we will learn nearly-periodic symplectic approximations to the flow maps of nearly-periodic Hamil-
tonian systems, with the intention of obtaining algorithms which can generate accurate and physically-consistent 
simulations much faster than traditional integrators.

Outline. We first review briefly some background notions from differential geometry in Sect. ″Differen-
tial geometry background″. Then, we discuss how symplectic maps can be approximated using HénonNets in 
Sect. ″Approximation of symplectic maps via hénon neural networks″, before defining nearly-periodic systems 
and maps and reviewing their important properties in Sect. ″Nearly-periodic systems and nearly-periodic maps″. 
In Sect. ″Novel structure-preserving neural network architectures″, we introduce novel neural network architec-
tures, gyroceptrons and symplectic gyroceptrons, to approximate symplectic and non-symplectic nearly-periodic 
maps. We then show in Sect. ″Numerical confirmation of the existence of adiabatic invariants″ that symplectic 
gyroceptrons admit adiabatic invariants regardless of the values of their weights. Finally, in Sect. ″Numerical 
examples of learning surrogate maps″, we demonstrate how the proposed architecture can be used to learn sur-
rogate maps for the nearly-periodic symplectic flow maps associated to two different systems: a nearly-periodic 
Hamiltonian system composed of two nonlinearly coupled oscillators (in Sect. ″Nonlinearly coupled oscillators″), 
and the nearly-periodic Hamiltonian system describing the evolution of a charged particle interacting with its 
self-generated electromagnetic field (in Sect. ″Charged particle interacting with its self-generated electromag-
netic field″).

Preliminaries
Differential geometry background. In this paper, we reserve the symbol M for a smooth manifold 
equipped with a smooth auxiliary Riemannian metric g, and E will always denote a vector space for the parameter 
ε . We will now briefly introduce some standard concepts from differential geometry that will be used throughout 
this paper (more details can be found in introductory differential geometry  books55–57).

A smooth map h : M1 → M2 between smooth manifolds M1,M2 is a diffeomorphism if it is bijective with 
a smooth inverse. We say that fε : M1 → M2 , ε ∈ E , is a smooth ε-dependent mapping when the mapping 
M1 × R → M2 : (m, ε) �→ fε(m) is smooth.

A vector field on a manifold M is a map X : M → TM such that X(m) ∈ TmM for all m ∈ M , where 
TmM denotes the tangent space to M at m and TM = {(m, v) |m ∈ M, v ∈ TmM} is the tangent bundle 
TM of M. The vector space dual to TmM is the cotangent space T∗

mM , and the cotangent bundle of M is 
T∗M = {(m, p) |m ∈ M, p ∈ T∗

mM} . The integral curve at m of a vector field X is the smooth curve c on M such 
that c(0) = m and c′(t) = X(c(t)) . The flow of a vector field X is the collection of maps ϕt : M → M such that 
ϕt(m) is the integral curve of X with initial condition m ∈ M.

A k-form on a manifold M is a map which assigns to every point m ∈ M a skew-symmetric k-multilinear 
map on TmM . Let α be a k-form and β be a s-form β on a manifold M. Their tensor product α ⊗ β at m ∈ M is 
defined via

The alternating operator Alt acts on a k-form α via

where Sk is the group of all the permutations of {1, . . . , k} and sgn(π) is the sign of the permutation. The wedge 
product α ∧ β is then defined via

The exterior derivative of a smooth function f : M → R is its differential df  , and the exterior derivative dα of 
a k-form α with k > 0 is the (k + 1)-form defined by

The interior product ιXα where X is a vector field on M and α is a k-form is the (k − 1)-form defined via

The pull-back ψ∗α of α by a smooth map ψ : M → N is the k-form defined by

The Lie derivative LXα of the k-form α along a vector field X with flow ϕt is LXα = d
dt

∣

∣

∣

t=0
ϕ∗
t α , and for a smooth 

function f : M → R , LXf  is the directional derivative LXf = df · X.
The circle group U(1), also known as first unitary group, is the one-dimensional Lie group of complex num-

bers of unit modulus with the standard multiplication operation. It can be parametrized via eiθ for θ ∈ [0, 2π) , 
and is isomorphic to the special orthogonal group SO(2) of rotations in the plane. A circle action on a manifold 

(α ⊗ β)m(v1, . . . , vk+s) = αm(v1, . . . , vk)βm(vk+1, . . . , vk+s).

Alt(α)(v1, . . . , vk) =
1

k!

∑

π∈Sk

sgn(π)α(vπ(1), . . . , vπ(k)),

α ∧ β =
(k + s)!

k!s!
Alt(α ⊗ β).

d





�

i1,...,ik

αi1...ikdx
i1 ∧ . . . ∧ dxik



 =
�

j

�

i1,...,ik

∂jαi1...ikdx
j ∧ dxi1 ∧ . . . ∧ dxik .

(ιXα)m(v2, . . . , vk) = αm(X(m), v2, . . . , vk).

(ψ∗α)m(v1, . . . , vk) = αψ(m)(dψ · v1, . . . , dψ · vk).
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M is a one-parameter family of smooth diffeomorphisms �θ : M → M that satisfies the following three proper-
ties for any θ , θ1, θ2 ∈ U(1) ∼= Rmod 2π:

The infinitesimal generator of a circle action �θ on M is the vector field on M defined by m  → d
dθ

∣

∣

∣

θ=0
�θ(m).

Approximation of symplectic maps via Hénon neural networks. Let U ⊂ R
n × R

n = R
2n be an 

open set in an even-dimensional Euclidean space. Denote points in Rn × R
n using the notation (x, y), with 

x, y ∈ R
n . A smooth mapping � : U → R

2n with components �(x, y) = (x̄(x, y), ȳ(x, y)) is symplectic if

The symplectic condition (2.1) implies that the mapping � has a number of special properties. In particular, 
there is a close relation between Hamiltonian systems and symplecticity of flows: Poincaré’s  Theorem12 states 
that any solution to a Hamiltonian system is a symplectic flow, and it can also be shown that any symplectic 
flow corresponds locally to an appropriate Hamiltonian system. Preserving the symplecticity of a Hamiltonian 
system when constructing a discrete approximation of its flow map ensures the preservation of many aspects of 
the dynamical system such as energy conservation, and leads to physically well-behaved discrete  solutions13–17. 
It is thus important to have structure-preserving network architectures which can learn symplectic maps.

The space of all symplectic maps is infinite  dimensional58, so the problem of approximating an arbitrary 
symplectic map using compositions of simpler symplectic mappings is inherently interesting.  Turaev59 showed 
that every symplectic map may be approximated arbitrarily well by compositions of Hénon-like maps, which are 
special elementary symplectic maps.

Definition 2.1 Let V : Rn → R be a smooth function on Rn and let η ∈ R
n be a constant. We define the Hénon-

like map H[V , η] : Rn × R
n → R

n × R
n with potential V and shift η via

Theorem 2.1 (Turaev59) Let � : U → R
n × R

n be a Cr+1 symplectic mapping. For each compact set C ⊂ U  and 
δ > 0 there is a smooth function V : Rn → R , a constant η , and a positive integer N such that H[V , η]4N approxi-
mates the mapping � within δ in the Cr topology.

Remark 2.1 The significance of the number 4 in this theorem follows from the fact that the fourth iterate of the 
Hénon-like map with trivial potential V = 0 is the identity map: H[0, η]4 = IdRn×Rn.

Turaev’s result suggests a specific neural network architecture to approximate symplectic mappings using 
Hénon-like  maps2. We review the construction of HénonNets2, starting with the notion of a Hénon layer.

Definition 2.2 Let η ∈ R
n be a constant vector, and let V be a scalar feed-forward neural network on Rn , that 

is, a smooth mapping V : W × R
n → R , where W is a space of neural network weights. The Hénon layer with 

potential V, shift η , and weight W is the iterated Hénon-like map

where we use the notation V[W] to denote the mapping V [W](y) = V(W , y), for any y ∈ R
n, W ∈ W .

There are various network architectures for the potential V[W] that are capable of approximating any smooth 
function V : Rn → R with any desired level of accuracy. For example, a fully-connected neural network with a 
single hidden layer of sufficient width can approximate any smooth function. Therefore a corollary of Theorem 2.1 
is that any symplectic map may be approximated arbitrarily well by the composition of sufficiently many Hénon 
layers with various potentials and shifts. This leads to the notion of a Hénon Neural Network.

Definition 2.3 Let N be a positive integer and

• V = {Vk}k∈{1,...,N} be a family of scalar feed-forward neural networks on Rn

• W = {Wk}k∈{1,...,N} be a family of network weights for V
• η = {ηk}k∈{1,...,N} be a family of constants in Rn

The Hénon neural network (HénonNet) with layer potentials V  , layer weights W  , and layer shifts η is the 
mapping

�θ+2π = �θ (periodicity), �0 = IdM (identity), �θ1+θ2 = �θ1 ◦ �θ2 (additivity).

(2.1)
n

∑

i=1

dxi ∧ dyi =

n
∑

i=1

dx̄i ∧ dȳi .

(2.2)H[V , η]

(

x
y

)

=

(

y + η

−x +∇V(y)

)

.

(2.3)L[V [W], η] = H[V [W], η]4,

(2.4)H[V [W], η] = L[VN [WN ], ηN ] ◦ . . . ◦ L[V2[W2], η2] ◦ L[V1[W1], η1]
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A composition of symplectic mappings is also symplectic, so every HénonNet is a symplectic mapping, regard-
less of the architectures for the networks Vk and of the weights Wk . Furthermore, Turaev’s Theorem 2.1 implies 
that the family of HénonNets is sufficiently expressive to approximate any symplectic mapping:

Lemma 2.1 Let � : U → R
n × R

n be a Cr+1 symplectic mapping. For each compact set C ⊂ U  and δ > 0 there is 
a HénonNet H that approximates � within δ in the Cr topology.

Remark 2.2 Note that Hénon-like maps are easily invertible,

so we can also easily invert Hénon networks by composing inverses of Hénon-like maps.

We also introduce here modified versions of Hénon-like maps and HénonNets to approximate symplectic 
maps possessing a near-identity property:

Definition 2.4 Let V : Rn → R be a smooth function and let η ∈ R
n be a constant. We define the near-identity 

Hénon-like map Hε[V , η] : Rn × R
n → R

n × R
n with potential V and shift η via

Near-identity Hénon-like maps satisfy the near-identity property H0[V , η]4 = IdRn×Rn.

Definition 2.5 Let N be a positive integer and

• V = {Vk}k∈{1,...,N} be a family of scalar feed-forward neural networks on Rn

• W = {Wk}k∈{1,...,N} be a family of network weights for V
• η = {ηk}k∈{1,...,N} be a family of constants in Rn

The near-identity Hénon network with layer potentials V  , layer weights W  , and layer shifts η is the mapping 
defined via

and it satisfies the near-identity property H0[V [W], η] = IdRn×Rn.

Nearly‑periodic systems and nearly‑periodic maps. Nearly-periodic systems. Intuitively, a contin-
uous-time dynamical system with parameter ε is nearly-periodic if all of its trajectories are periodic with no-
where-vanishing angular frequency in the limit ε → 0 . Such a system characteristically displays limiting short-
timescale dynamics that ergodically cover circles in phase space. More precisely, a nearly-periodic systems can 
be defined as follows:

Definition 2.6 [Burby et al.11] A nearly-periodic system on a manifold M is a smooth ε-dependent vector field 
Xε on M such that X0 = ω0R0 , where

• R0 is the infinitesimal generator for a circle action �θ : M → M , θ ∈ U(1).
• ω0 : M → R is strictly positive and its Lie derivative satisfies LR0ω0 = 0.

The vector field R0 is called the limiting roto-rate, and ω0 is the limiting angular frequency.
Examples from physics include charged particle dynamics in a strong magnetic field, the weakly-relativistic 

Dirac equation, and any mechanical system subject to a high-frequency, time-periodic force. In the broader con-
text of multi-scale dynamical systems, nearly-periodic systems play a special role because they display perhaps 
the simplest possible non-dissipative short-timescale dynamics. They therefore provide a useful proving ground 
for analytical and numerical methods aimed at more complex multi-scale models.

Remark 2.3 In a  paper9 on basic properties of continuous-time nearly-periodic systems, Kruskal assumed that 
R0 is nowhere vanishing, in addition to requiring that ω0 is sign-definite. This assumption is usually not essential 
and it is enough to require that ω0 vanishes nowhere. This is an important restriction to lift since many interest-
ing circle actions have fixed points.

(2.5)= H[VN [WN ], ηN ]
4 ◦ . . . ◦ H[V2[W2], η2]

4 ◦ H[V1[W1], η1]
4.

(2.6)H[V , η]

(

x
y

)

=

(

y + η

−x +∇V(y)

)

⇒ H−1[V , η]

(

x
y

)

=

(

∇V(x − η)− y
x − η

)

,

(2.7)Hε[V , η]

(

x
y

)

=

(

y + η

−x + ε∇V(y)

)

.

(2.8)Hε[V [W], η] = Hε[VN [WN ], ηN ]
4 ◦ . . . ◦ Hε[V2[W2], η2]

4 ◦ Hε[V1[W1], η1]
4,
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It can be shown that every nearly-periodic system admits an approximate U(1)-symmetry9, known as the 
roto-rate, that is determined to leading order by the unperturbed periodic dynamics:

Definition 2.7 A roto-rate for a nearly-periodic system Xε on a manifold M is a formal power series 
Rε = R0 + ε R1 + ε2 R2 + . . . with vector field coefficients such that R0 is equal to the limiting roto-rate and the 
following equalities hold in the sense of formal series:

Proposition 2.1 (Kruskal9) Every nearly-periodic system admits a unique roto-rate Rε.

A subtle argument allows to upgrade leading-order U(1)-invariance to all-orders U(1)-invariance for integral 
invariants:

Proposition 2.2 (Burby et al.11) Let αε be a smooth ε-dependent differential form on a manifold M. Suppose αε is 
an absolute integral invariant for a smooth nearly-periodic system Xε on M. If LR0α0 = 0 then LRε αε = 0 , where 
Rε is the roto-rate for Xε.

Nearly-periodic maps. Nearly-periodic maps are natural discrete-time analogues of nearly-periodic systems, 
which were first introduced  in11. The following provides a precise definition.

Definition 2.8 A nearly-periodic map on a manifold M with parameter vector space E is a smooth mapping 
F : M × E → M such that Fε : M → M : m �→ F(m, ε) has the following properties:

• Fε is a diffeomorphism for each ε ∈ E.
• There exists a U(1)-action �θ : M → M and a constant θ0 ∈ U(1) such that F0 = �θ0.

We say F is resonant if θ0 is a rational multiple of 2π , otherwise F is non-resonant. The infinitesimal generator 
of �θ , R0 , is the limiting roto-rate.
Example 2.1 Let Xε be a nearly-periodic system on a manifold M with limiting roto-rate R0 and limiting angular 
frequency ω0 . Assume that ω0 is constant. For each ε ∈ R let Fε

t  denote the time-t flow for Xε . The mapping 
F(m, ε) = Fε

t0
(m) is nearly-periodic for each t0 . To see why, first note that the flow of the limiting vector field 

X0 = ω0R0 is given by F0
t (m) = �ω0t (m) , where �θ denotes the U(1)-action generated by R0 . It follows that 

F(m, 0) = �ω0t0(m) = �θ0(m) , where θ0 = ω0 t0 mod2π . This example is more general than it first appears 
since any nearly-periodic system can be rescaled to have a constant limiting angular frequency. Indeed if the 
nearly-periodic system Xε has non-constant limiting angular frequency ω0 then X ′

ε = Xε / ω0 is a nearly-periodic 
system with limiting angular frequency 1. The integral curves of X ′

ε are merely time reparameterizations of 
integrals curves of Xε.

Let X be a vector field on a manifold M with time-t flow map Ft . A U(1)-action �θ is a U(1)-symmetry for 
X if Ft ◦ �θ = �θ ◦ Ft , for each t ∈ R and θ ∈ U(1) . Differentiating this condition with respect to θ at the 
identity implies and is implied by F∗

t R = R , where R denotes the infinitesimal generator for the U(1)-action. 
Since we would like to think of nearly-periodic maps as playing the part of a nearly-periodic system’s flow 
map, the latter characterization of symmetry allows us to naturally extend Kruskal’s notion of roto-rate to our 
discrete-time setting.

Definition 2.9 A roto-rate for a nearly-periodic map F : M × E → M  is a formal power series 
Rε = R0 + R1ε + R2ε

2 + . . . whose coefficients are vector fields on M such that R0 is the limiting roto-rate and 
the following equalities hold in the sense of formal power series: F∗εRε = Rε and exp(2πLRε ) = 1.

A first fundamental result concerning nearly-periodic maps establishes the existence and uniqueness of the 
roto-rate in the non-resonant case. Like the corresponding result in continuous time, this result holds to all 
orders in perturbation theory.

Theorem 2.2 (Burby et al.11) Each non-resonant nearly-periodic map admits a unique roto-rate.

Thus, non-resonant nearly-periodic maps formally reduce to mappings on the space of U(1)-orbits, corre-
sponding to the elimination of a single dimension in phase space.

Nearly-periodic systems and maps with a hamiltonian structure. 
Definition 2.10 A ε-dependent presymplectic manifold is a manifold M equipped with a smooth ε-dependent 
2-form �ε such that d�ε = 0 for each ε ∈ E . We say (M,�ε) is exact when there is a smooth ε-dependent 1-form 
ϑε such that �ε = −dϑε.

exp(2πLRε ) = 1 and [Xε ,Rε] = 0.
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Definition 2.11 A nearly-periodic Hamiltonian system on an exact presymplectic manifold (M,�ε) is a nearly-
periodic system Xε on M such that ιXε�ε = dHε , for some smooth ε-dependent function Hε : M → R.

We already know from Proposition 2.1 that every nearly-periodic system admits a unique roto-rate Rε . In the 
Hamiltonian setting, it can be shown that both the dynamics and the Hamiltonian structure are U(1)-invariant 
to all orders in ε.

Proposition 2.3 (Kruskal9, Burby et al.11) The roto-rate Rε for a nearly-periodic Hamiltonian system Xε on an 
exact presymplectic manifold (M,�ε) with Hamiltonian Hε satisfies LRεHε = 0 , and LRε�ε = 0 in the sense of 
formal power series.

According to Noether’s celebrated theorem, a Hamiltonian system that admits a continuous family of sym-
metries also admits a corresponding conserved  quantity57,60,61. Therefore one might expect that a Hamiltonian 
system with an approximate symmetry must also have an approximate conservation law. This is indeed the case 
for nearly-periodic Hamiltonian systems:

Proposition 2.4 (Burby et al.11) Let Xε be a nearly-periodic Hamiltonian system on the exact presymplectic manifold 
(M,�ε) . Let Rε be the associated roto-rate. There is a formal power series θε = θ0 + ε θ1 + . . . with coefficients in 
�1(M) such that �ε = −dθε and LRε θε = 0 . Moreover, the formal power series µε = ιRε θε is a constant of motion 
for Xε to all orders in perturbation theory. In other words, LXεµε = 0, in the sense of formal power series. The 
formal constant of motion µε is the adiabatic invariant associated with the nearly-periodic Hamiltonian system.

Note that general expressions for the adiabatic invariant µε can be  obtained62. It can also be shown that the 
(formal) set of fixed points for the roto-rate is an elliptic almost invariant slow manifold whose normal stability 
is mediated by the adiabatic invariant associated with the nearly-periodic Hamiltonian  system8.

A similar theory can be established for nearly-periodic maps with a Hamiltonian structure.

Definition 2.12 A presymplectic nearly-periodic map on a ε-dependent presymplectic manifold (M,�ε) is a 
nearly-periodic map F such that F∗ε �ε = �ε for each ε ∈ E.

Theorem 2.3 (Burby et al.11) If F is a non-resonant presymplectic nearly-periodic map on a ε-dependent presym-
plectic manifold (M,�ε) with roto-rate Rε then LRε�ε = 0.

Definition 2.13 A Hamiltonian nearly-periodic map on a ε-dependent presymplectic manifold (M,�ε) is a 
nearly-periodic map F such that there is a smooth (t, ε)-dependent vector field Yt,ε with t ∈ R such that the fol-
lowing properties hold true:

• ιYt,ε�ε = dHt,ε , for some smooth (t, ε)-dependent function Ht,ε.
• For each ε ∈ E , Fε is the t = 1 flow of Yt,ε.

Lemma 2.2 Each Hamiltonian nearly-periodic map is a presymplectic nearly-periodic map.

Using presymplecticity of the roto-rate, Noether’s theorem can be used to establish existence of adiabatic 
invariants for many interesting presymplectic nearly-periodic maps.

Theorem 2.4 (Burby et al.11) Let F be a non-resonant presymplectic nearly-periodic map on the exact ε-dependent 
presymplectic manifold (M,�ε) with roto-rate Rε . Assume that F is Hamiltonian or that the manifold M is con-
nected and the limiting roto rate R0 has at least one zero. Then there exists a smooth ε-dependent 1-form θε such 
that LRε θε = 0 and −dθε = �ε in the sense of formal power series. Moreover the quantity µε = ιRε θε satisfies 
F∗ε µε = µε in the sense of formal power series, that is, µε is an adiabatic invariant for F.

When an adiabatic invariant exists, the phase-space dimension is formally reduced by two. On the slow 
manifold µε = 0 the reduction in dimensionality may be even more dramatic. For example, the slow manifold 
for the symplectic Lorentz  system8 has half the dimension of the full system.

Novel structure‑preserving neural network architectures
Approximating nearly‑periodic maps via gyroceptrons. We first consider the problem of approximating 
an arbitrary nearly-periodic map P : M × E → M on a manifold M. From Definition 2.8, there must be a corre-
sponding circle action �θ : M → M and θ0 ∈ U(1) such that P0 = �θ0 . Consider the map Iε : M → M given by

This defines a near-identity map on M satisfying I0 = IdM . By composing both sides of Eq. (3.1) on the right by 
�θ0 , we obtain a representation for any nearly-periodic map P as the composition of a near-identity map and a 
circle action,

(3.1)Iε = Pε ◦ �−1
θ0

∀ε ∈ E .
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As a consequence, if we can approximate any near-identity map and any circle action, then by the above repre-
sentation we can approximate any nearly-periodic map.

Different circle actions can act on manifolds in topologically different ways, so it would be very challeng-
ing, if not impossible, to construct a single strategy which allows to approximate any circle action to arbitrary 
accuracy. Here, we will consider the simpler case where we assume that we know a priori the topological type 
of action for the nearly-periodic system, and work within conjugation classes. Conjugation of a circle action 
�θ : M → M with a diffeomorphism ψ results in the map ψ ◦ �θ ◦ ψ−1 , and two circle actions belong to the 
same conjugation class if one can be written as the conjugation with a diffeomorphism of the other one. Note 
that although compositions of nearly-periodic maps are not necessarily nearly-periodic, the map obtained by 
conjugation of a nearly-periodic map with a diffeomorphism is nearly-periodic:

Lemma 3.1 Let P : M × E → M be a nearly-periodic map on a manifold M, and let ψ : M → M be a diffeomor-
phism on M. Then the map P̃ : M × E → M defined for any ε ∈ E via

is a nearly-periodic map.

Proof ψ and Pε are diffeomorphisms for any ε ∈ E so P̃ε is also a diffeomorphism for any ε ∈ E . Now, from 
Definition 2.8, there is a circle action �θ : M → M and θ0 ∈ U(1) such that P0 = �θ0 . Define �̃θ : M → M via 
�̃θ ≡ ψ ◦ �θ ◦ ψ−1 for any θ ∈ U(1) . Then, for any θ , θ1, θ2 ∈ U(1),

• �̃θ+2π = ψ ◦ �θ+2π ◦ ψ−1 = ψ ◦ �θ ◦ ψ−1 = �̃θ

• �̃0 = ψ ◦ �0 ◦ ψ−1 = ψ ◦ IdM ◦ ψ−1 = IdM

• �̃θ1 ◦ �̃θ2 = ψ ◦ �θ1 ◦ ψ−1 ◦ ψ ◦ �θ2 ◦ ψ−1 = ψ ◦ �θ1 ◦ �θ2 ◦ ψ−1

= ψ ◦ �θ1+θ2 ◦ ψ−1 = �̃θ1+θ2

Therefore, �̃θ is a circle action, and θ0 ∈ U(1) is such that �̃θ0 = ψ ◦ �θ0 ◦ ψ−1 = ψ ◦ P0 ◦ ψ−1 = P̃0.
As a consequence, P̃ is a nearly-periodic map.   �

We also have the following useful factorization result for nearly-periodic maps with limiting rotation within 
a given conjugacy class:

Lemma 3.2 Let �θ : M → M be a circle action on a manifold M. Every nearly-periodic map Pε : M → M whose 
limiting rotation �′

θ0
= P0 is conjugate to �θ0 admits the decomposition

where ψ : M → M is a diffeomorphism and Iε : M → M is a near-identity diffeomorphism.

We will thus assume that we know in advance the topological type of the circle action �θ for the dynam-
ics of interest, and then propose to learn the nearly-periodic map Pε by learning each component map in the 
composition

This formula may be interpreted intuitively as follows. The map ψ learns the mode structure of an oscillatory 
system’s short timescale dynamics. The circle action �θ provides an aliased phase advance for the learnt mode. 
Finally, Iε captures the averaged dynamics that occurs on timescales much larger than the limiting oscillation 
period.

Iε and ψ can be learnt using any standard neural network architecture, as long as the near-identity property is 
enforced in the representation for Iε . It is however important to invert ψ exactly, and this strongly motivates using 
explicitly invertible neural network architectures for ψ . It has been shown that those coupling-based invertible 
neural networks are universal diffeomorphism  approximators63. The parameter θ in the circle action �θ can also 
be considered as a trainable parameter. We will refer to the resulting architecture as a gyroceptron, named after 
a combination of gyrations of phase with perceptron.

Definition 3.1 A gyroceptron is a feed-forward neural network

with weights W = (WI ,Wψ) and rotation parameter θ ∈ U(1) , where

(3.2)Pε = Iε ◦ �θ0 ∀ε ∈ E .

(3.3)P̃ε ≡ ψ ◦ Pε ◦ ψ−1

(3.4)Pε = Iε ◦ ψ ◦ �θ0 ◦ ψ−1,

(3.5)Pε = Iε ◦ ψ ◦ �θ ◦ ψ−1.

(3.6)Pε[W] = Iε[WI ] ◦ ψ[Wψ ] ◦ �θ ◦ ψ[Wψ ]
−1
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• Iε[WI ] : M → M is a diffeomorphism for each (ε,WI ) such that I0[WI ] = IdM for each WI
• ψ[Wψ ] : M → M is a diffeomorphism for each Wψ

• �θ : M → M is a circle action on M

Gyroceptrons enjoy the following universal approximation property.

Theorem 3.1 Fix a circle action �θ : M → M and a compact set C ⊂ M . Let Pε : M → M be a nearly-peri-
odic map whose limiting rotation is conjugate to �θ . Let ψ[Wψ ] : M → M be a feed-forward network archi-
tecture that provides a universal approximation within the class of diffeomorphisms, and let Iε[WI ] be a 
feed-forward network architecture that provides a universal approximation within the class of ε-dependent dif-
feomorphisms with I0[W] = IdM . For each δ > 0 , there exist weights W∗

ψ and W∗
I  such that the gyroceptron 

Pε[W
∗] = Iε[W

∗
I ] ◦ ψ[W∗

ψ ] ◦ �θ ◦ ψ[W∗
ψ ]

−1 approximates Pε within δ on C.

Approximating nearly‑periodic symplectic maps via symplectic gyroceptrons. We now focus on 
approximating an arbitrary nearly-periodic symplectic map P : M × E → M on a manifold M. We will restrict 
our attention to symplectic manifolds with ε-independent symplectic forms (the ε-dependent case is more subtle 
and will not be pursued in the current study). From Definition 2.8, there must be a corresponding symplectic 
circle action �θ : M → M and θ0 ∈ U(1) such that P0 = �θ0 . As before, consider the map Iε : M → M given by

Now, the inverse of a symplectic map is symplectic and any composition of symplectic maps is also symplectic. 
Thus, the map �−1

θ0
= P−1

0  is symplectic, and as a result, Iε is symplectic on M for any ε ∈ E and it satisfies the 
near-identity property I0 = IdM . By composing both sides of Eq. (3.7) on the right by �θ0 , we obtain a repre-
sentation for any nearly-periodic symplectic map P as the composition of a near-identity symplectic map and 
a symplectic circle action:

Lemma 3.3 Let �θ : M → M be a symplectic circle action on a symplectic manifold (M,ω) . Every nearly-periodic 
symplectic map Pε : M → M whose limiting rotation �′

θ0
= P0 is conjugate to �θ0 admits the decomposition

where ψ : M → M is a symplectic diffeomorphism and Iε : M → M is a near-identity symplectic diffeomorphism.

If we can approximate any near-identity symplectic map and any symplectic circle action, then by the above 
representation we can approximate any nearly-periodic symplectic map. As before, we will assume that we know 
a priori the topological type of the circle action �θ for the nearly-periodic symplectic system of interest, and work 
within conjugation classes. Since compositions of symplectic maps are symplectic, Lemma 3.1 implies that the 
map ψ ◦ P ◦ ψ−1 , obtained by conjugating a nearly-periodic symplectic map P with a symplectomorphism 
ψ (i.e. a symplectic diffeomorphism), is also a nearly-periodic symplectic map. We will then learn the nearly-
periodic symplectic map by learning each component map in the composition

where Iε is a near-identity symplectic map and ψ is symplectic.
The symplectic map ψ can be learnt using any neural network architecture which strongly enforces symplec-

ticity. It is preferable however to choose an architecture which can easily be inverted, so that the computations 
involving ψ−1 can be conducted efficiently. The near-identity symplectic map Iε can be learnt using any neural 
network architecture strongly enforcing symplecticity with the additional property that it limits to the identity 
as ε goes to 0. The parameter θ in the circle action �θ can also be considered as a trainable parameter. We will 
refer to any such resulting composition of neural network architectures as a symplectic gyroceptron.

Definition 3.2 A symplectic gyroceptron is a feed-forward neural network

with weights W = (WI ,Wψ) and rotation parameter θ ∈ U(1) , where

• Iε[WI ] : M → M is a symplectic diffeomorphism for each (ε,WI ) such that I0[WI ] = IdM for each WI
• ψ[Wψ ] : M → M is a symplectic diffeomorphism for each Wψ

• �θ : M → M is a symplectic circle action on M

Symplectic gyroceptrons enjoy a universal approximation property comparable to the non-symplectic case.

(3.7)Iε = Pε ◦ �−1
θ0

, ∀ε ∈ E .

(3.8)Pε = Iε ◦ �θ0 , ∀ε ∈ E .

(3.9)Pε = Iε ◦ ψ ◦ �θ0 ◦ ψ−1,

(3.10)Pε = Iε ◦ ψ ◦ �θ ◦ ψ−1,

(3.11)Pε[W] = Iε[WI ] ◦ ψ[Wψ ] ◦ �θ ◦ ψ[Wψ ]
−1



10

Vol:.(1234567890)

Scientific Reports |         (2023) 13:8351  | https://doi.org/10.1038/s41598-023-34862-w

www.nature.com/scientificreports/

Theorem 3.2 Fix a symplectic circle action �θ : M → M on the symplectic manifold (M,ω) and a compact set 
C ⊂ M . Let Pε : M → M be a nearly-periodic symplectic map whose limiting rotation is conjugate to �θ . Let 
ψ[Wψ ] : M → M be a feed-forward network architecture that provides a universal approximation within the class 
of symplectic diffeomorphisms, and let Iε[WI ] be a feed-forward network architecture that provides a universal 
approximation within the class of ε-dependent symplectic diffeomorphisms with I0[W] = IdM . For each δ > 0 , there 
exist weights W∗

ψ and W∗
I  such that the symplectic gyroceptron Pε[W∗] = Iε[W

∗
I ] ◦ ψ[W∗

ψ ] ◦ �θ ◦ ψ[W∗
ψ ]

−1 
approximates Pε within δ on C.

In this paper, we will use HénonNets2 as the main building blocks of our symplectic gyroceptrons. The sym-
plectic map ψ will be learnt using a standard HénonNet (see Definition 2.3), its inverse ψ−1 can be obtained 
easily by composing inverses of Hénon-like maps (see Remark 2.2), and the near-identity symplectic map Iε will 
be learnt using a near-identity HénonNet (see Definition 2.5). The neural network architectures considered in 
this paper are summarized in Figure 1.

We would like to emphasize that symplectic building blocks other than HénonNets could have been used as 
the basis for our symplectic gyroceptrons. For instance, a possible option would have been to use  SympNets3 
since they also strongly ensure symplecticity and enjoy a universal approximation property for symplectic maps. 
However, numerical experiments conducted in the original HénonNet  paper2 suggested that HénonNets have 
a higher per layer expressive power than SympNets, and as a result SympNets are typically much deeper than 
HénonNets, and slower for prediction. This is consistent with the observations we will make later in Sect. ″Non-
linearly coupled oscillators″ where a SympNet takes 127 seconds to generate trajectories that were generated by a 
HénonNet of similar size in 3 seconds. Together with the fact that SympNets are not as easily invertible as Hénon-
Nets, the computational advantage of HénonNets makes them more desirable as building blocks than SympNets.

Numerical confirmation of the existence of adiabatic invariants
In this section, we will confirm numerically that for any random set of weights and bias, the dynamical system 
generated by the symplectic gyroceptron

introduced in Sect. ″Approximating nearly-periodic symplectic maps via symplectic gyroceptrons″, admits an 
adiabatic invariant.

In our numerical experiments, we take the circle action given by the clockwise rotation

The quantity I0(q, p) = 1
2q

2 + 1
2p

2 is an invariant of the dynamics associated to the circle action (4.2), and as 
a result

is an invariant of the dynamics associated to the composition ψ ◦ �θ ◦ ψ−1, and an adiabatic invariant of the 
dynamics associated to the symplectic gyroceptron (4.1).

Figure 2 displays the evolution of the adiabatic invariant (4.3) over 10000 iterations of the dynamical system 
generated by the symplectic gyroceptron (4.1), for different values of ε . Here, ψ is a HénonNet and Iε a near-
identity HénonNet, both with 3 Hénon layers, each of which has 8 neurons in its single-hidden-layer fully-
connected neural networks layer potential. We can clearly see that the conservation of the adiabatic invariant 

(4.1)Iε ◦ ψ ◦ �θ ◦ ψ−1,

(4.2)Rθ =

(

cos θ sin θ
− sin θ cos θ

)

.

(4.3)µ = I0 ◦ ψ−1

Figure 1.  Network diagrams. Left: Symplectic Gyroceptron. Right: Hénon Network.
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gets significantly better as ε gets closer to 0, going from chaotic oscillations of large amplitude when ε = 0.1 to 
very regular oscillations of minute amplitude when ε = 10−8.

We investigated further by obtaining the number of iterations needed for the adiabatic invariant µ to deviate 
significantly from its original value µ0 as ε is varied. More precisely, given a value of ε , we search for the smallest 
integer N(ε) such that

In other words, we record the first iteration where the value of the adiabatic invariant µ deviates from its original 
value µ0 by more than some constant factor ρ > 1 of the maximum deviations experienced in the first few K(ε) 
iterations. The results are plotted in Figure 3 for ρ = 1.1.

We can clearly see from Figure 3 that N(ε) , the number of iterations needed for the adiabatic invariant µ to 
deviate from its original value µ0 by more than ρ = 1.1 times the maximum deviations experienced in the first 

(4.4)|µN(ε) − µ0| > ρ max
k=0,...,K(ε)

|µk − µ0|, where K(ε) = ⌊10+ ε−1/4⌋.

Figure 2.  Conservation of the adiabatic invariant (4.3) over 10000 iterations for the map generated by the 
symplectic gyroceptron (4.1) as ε is increased.

Figure 3.  N(ε) as a function of ε for ρ = 1.1 and a random set of weights.
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few iterations, increases sharply as ε gets closer to 0. This is consistent with theoretical expectations. Note that 
using higher values of ρ and smaller values of ε would probably generate more interesting and meaningful results. 
Unfortunately, this is not computationally realizable since N(ε) becomes very large when ρ is increased beyond 
1.2. Even for larger values of ε , computing a single point would take several days.

Numerical examples of learning surrogate maps
Nonlinearly coupled oscillators. In this section, we use the symplectic gyroceptron architecture intro-
duced in Sect. ″Approximating nearly-periodic symplectic maps via symplectic gyroceptrons″ to learn a sur-
rogate map for the nearly-periodic symplectic flow map associated to a nearly-periodic Hamiltonian system 
composed of two nonlinearly coupled oscillators, where one of them oscillates significantly faster than the other:

These equations of motion are the Hamilton’s equations associated to the Hamiltonian

The ε = 0 dynamics are decoupled, where the first oscillator, initialized at 
(

q1(0), p1(0)
)

= (q, p) , follows a trajec-
tory characterized by periodic clockwise circular rotation in phase space, while the second oscillator remains 
immobile:

Thus, this is a nearly-periodic Hamiltonian system on R4 with associated ε = 0 circle action given by the clock-
wise rotation

We will use the nonlinear coupling potential U(q1, q2) = q1q2 sin (2q1 + 2q2) in our numerical experiments since 
the resulting nearly-periodic Hamiltonian system displays complicated dynamics as the value of ε is increased 
from 0. We have plotted in Figure 4 a few trajectories of this dynamical system corresponding to different values 
of ε.

To learn a surrogate map for the nearly-periodic symplectic flow map associated to this nearly-periodic Ham-
iltonian system, we use the symplectic gyroceptron Iε ◦ ψ ◦ �θ ◦ ψ−1 introduced in Sect. ″Approximating 
nearly-periodic symplectic maps via symplectic gyroceptrons″. In our first numerical experiments, ε = 0.01 , θ is 
a trainable parameter, ψ is a HénonNet with 10 Hénon layers each of which has 8 neurons in its single-hidden-
layer fully-connected neural networks layer potential, and Iε is a near-identity HénonNet with 8 Hénon layers 
each of which has 6 neurons in its single-hidden-layer fully-connected neural network layer potential.

The resulting symplectic gyroceptron of 549 trainable parameters was trained for a few thousands epochs on 
a dataset of 20,000 updates (q1, q2, p1, p2)  → (q̃1, q̃2, p̃1, p̃2) of the time-0.05 flow map associated to the nearly-
periodic Hamiltonian system (5.1). The training data was generated using the classical Runge–Kutta 4 integrator 
with very small time-steps, and the Mean Squared Error was used as the loss function in the training. Figure 5 
shows the dynamics predicted by the symplectic gyroceptron for seven different initial conditions with the same 
initial values of (q1, p1) against the reference trajectories generated by the classical Runge–Kutta 4 integrator 
with very small time-steps. We only display the trajectories of the second oscillator since the motion of the first 
oscillator follows a simple nearly-circular curve.

We can see that the dynamics learnt by the symplectic gyroceptron match almost perfectly the reference 
trajectories and follow the level sets of the averaged Hamiltonian H̄ = 1

2π

∫ 2π
0 �∗

θH dθ , which is given by

where J1(x) is the first-order Bessel function of the first kind, up to an unimportant constant. Using Kruskal’s 
theory of nearly-periodic systems, it is straightforward to show that this averaged Hamiltonian is the leading-
order approximation of the Hamiltonian for the formal U(1)-reduction of the two-oscillator system.

We also learned a surrogate map for the nearly-periodic symplectic time-5 flow map associated to the dynami-
cal system (5.1), using a symplectic gyroceptron where ε = 0.01 , θ is a trainable parameter, and ψ and Iε both 
have 10 Hénon layers each of which has 8 neurons in its single-hidden-layer fully-connected neural network layer 

(5.1)
{

q̇1 = p1 ṗ1 = −q1 − ε∂q1U(q1, q2)
q̇2 = εp2 ṗ2 = −εq2 − ε∂q2U(q1, q2)

(5.2)Hε(q1, q2, p1, p2) =
1

2
(q21 + p21)+

1

2
ε(q22 + p22)+ εU(q1, q2).

(5.3)q1(t) = q cos t + p sin t, p1(t) = p cos t − q sin t.

Rθ =







cos θ 0 sin θ 0
0 1 0 0

− sin θ 0 cos θ 0
0 0 0 1






.

(5.4)H̄(q2, p2) =
1

2
(q22 + p22)+

1

2π

∫ 2π

0
U(q1(t), q2)dt

(5.5)=
1

2
(q22 + p22)+

q2

2π

∫ 2π

0

(

q cos t + p sin t
)

sin
(

2
[

q cos t + p sin t
]

+ 2q2
)

dt

(5.6)=
1

2
(q22 + p22)+ q2 cos (2q2)

√

q2 + p2 J1
(

2
√

q2 + p2
)
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potential. This symplectic gyroceptron of 681 trainable parameters was trained for a few thousands epochs on a 
dataset of 60,000 updates (q1, q2, p1, p2)  → (q̃1, q̃2, p̃1, p̃2) . For comparison, we also trained a HénonNet2 and a 
 SympNet3 of similar sizes and ran simulations from the same seven different initial conditions. The HénonNet 
used has 16 layers each of which has 10 neurons in its single-hidden-layer fully-connected neural network layer 
potential, for a total of 672 trainable parameters. The  SympNet3 used has 652 trainable parameters in a network 
structure of the form L(k+1)

n ◦ (Nup/low ◦ L
(k)
n ) ◦ . . . ◦ (Nup/low ◦ L

(1)
n ) , where each L(k)

n  is the composition 
of n trainable linear symplectic layers, and Nup/low is a non-trainable symplectic activation map.

Figure 6 shows the dynamics predicted by the symplectic gyroceptron, the HénonNet, and the SympNet, for 
seven different initial conditions with the same initial values of (q1, p1) against the reference trajectories gener-
ated by the Runge–Kutta 4 integrator (RK4) with small time-steps. As before, we only display the trajectories of 
the second oscillator. We can see that the dynamics predicted by the symplectic gyroceptron match the reference 
trajectories very well, although the predicted oscillations around the level sets of the averaged Hamiltonian are 

Figure 4.  Sample trajectories in (q1, p1) and (q2, p2) phase spaces (left column: first oscillator, right column: 
second oscillator) for the nearly-periodic Hamiltonian system (Nonlinearly coupled oscillators) as the value of 
the parameter ε is increased.



14

Vol:.(1234567890)

Scientific Reports |         (2023) 13:8351  | https://doi.org/10.1038/s41598-023-34862-w

www.nature.com/scientificreports/

Figure 5.  Level sets of the averaged Hamiltonian (5.6), and the symplectic gyroceptron predictions against the 
reference trajectories for the second oscillator in the nearly-periodic Hamiltonian system (5.1) with ε = 0.01 
and a time-step of 0.05.

Figure 6.  Predictions from a Symplectic Gyroceptron, a SympNet, and a HenonNet, against the reference 
trajectories for the second oscillator in the nearly-periodic Hamiltonian system (5.1) with ε = 0.01 and the 
larger time-step of 5.
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unsurprisingly larger than when learning the time-0.05 flow map. The crucial advantage that the symplectic gyro-
ceptron offers over the other architectures considered, which only enforce the symplectic constraint, is provable 
existence of an adiabatic invariant. After training, the other architectures may empirically display preservation 
of an adiabatic invariant, but this cannot be proved rigorously from first principles. In contrast, the symplectic 
gyroceptron enjoys provable existence of an adiabatic invariant before, during, and after training.

Note that the symplectic gyroceptron generated the seven trajectories in 5 seconds, which is several orders 
of magnitude faster than RK4 with small time-steps which took 6,055 seconds. The HénonNet allowed to simu-
late the dynamics slightly faster, in 3 seconds, while the SympNet was much slower with a running time of 127 
seconds, consistently with the observations made in the original HénonNet  paper2 which motivated choosing 
HénonNets over SympNets in the symplectic gyroceptrons.

Charged particle interacting with its self‑generated electromagnetic field. Problem formula-
tion. Next we test the ability of symplectic gyroceptrons to function as surrogates for higher-dimension nearly-
periodic systems, and for systems where the limiting circle action is not precisely known.

To formulate the ground-truth model, first fix a positive integer K and a sequence of single-variable func-
tions Vk : R → R , k = 1, . . . ,K . Consider the canonical Hamiltonian system on R2 × (R2)K with coordinates 
(q, p,Q1, P1, . . . ,QK , PK ) , defined by the Hamiltonian

The equations of motion are

These equations may be regarded as a simplified model of a charged particle (q, p) interacting with its self-
generated electromagnetic field (Q1, P1, . . . ,QK , PK ) . We will describe the application of symplectic gyroceptrons 
to the development of a dynamical surrogate for this system when ǫ ≪ 1.

First, we verify that this Hamiltonian system is nearly-periodic, since this is the type of dynamical systems 
that symplectic gyroceptrons are designed to handle. So consider the limiting dynamics when ǫ = 0 . The equa-
tions of motion reduce to

While these equations of motion may appear impenetrable at first glance, the symplectic transformation of vari-
ables given by �−1

0 : (q, p,Q1, P1, . . . ,QK , PK ) �→ (q, p,Q1,�1, . . . ,QK ,�K ) where �k = Pk − Vk(Qk) simplifies 
them dramatically into

which correspond to a family (indexed by k) of harmonic oscillators with angular frequencies k. The solution map 
in these nice variables is therefore �0

t (q, p,Q1,�1, . . . ,QK ,�K ) = (q, p,Q1(t),�1(t), . . . ,QK (t),�K (t)) , where

Note that �0
t  is periodic with minimal period 2π . The solution map in terms of the original variables (Qk , Pk) is 

therefore �t = �0 ◦ �0
θ ◦ �−1

0  . Since �t is periodic in t with minimal period 2π the ground-truth equations 
are Hamiltonian and nearly-periodic. The leading-order adiabatic invariant is

Symplectic gyroceptrons are therefore well-suited to surrogate modeling for this system.

Numerical experiments. Here, we learn the nearly-periodic Hamiltonian system  (5.7) in the 6-dimensional 
case (i.e., K = 2 ) with V1(Q1) =

1
2 sin(2Q1) and V2(Q2) =

1
2 exp (−5Q2

2) . In our symplectic gyroceptron 
Iε ◦ ψ ◦ �θ ◦ ψ−1 , the circle action �θ is taken to be the rotation in Eq. (5.10) with θ treated as a trainable 
parameter, and the HénonNets ψ and Iε both have 12 Hénon layers each of which has 8 neurons in its single-hidden-
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2
ǫ
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)2

+
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)

.
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)

,
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(
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)

K
∑

m=1
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Hε = −kQk+k(Pk−Vk(Qk))V

′
k(Qk).
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layer fully-connected neural network layer potential. The resulting architecture of 1,033 trainable parameters was 
trained for a few thousands epochs on a dataset of 60,000 updates (q, p,Q1, P1,Q2, P2)  → (q̃, p̃, Q̃1, P̃2, Q̃1, P̃2).

To verify visually that we have learnt the dynamics successfully, we select initial conditions on the zero level set 
of the adiabatic invariant µ0 . There, dynamics should remain on that slow manifold which is lower-dimensional 
and thus more easily portrayed. For the Hamiltonian system (5.7), the slow manifold is the zero level set of 
µ0 = 0 , which we can see from Eq. (5.11), is the set of points (q, p,Q1, P1,Q2, P2) such that Q1 = Q2 = 0 and 
P1 = V1(Q1) = V1(0), P2 = V2(Q2) = V2(0).

On that slow manifold, the dynamics reduce to

where in particular the (q, p) dynamics are now independent of (Q1,Q2, P1, P2) and can easily be solved for 
explicitly, given some initial conditions 

(

q(0), p(0)
)

= (q, p):

Figures 7a,b show that the trained symplectic gyroceptron generates predictions for the evolution of q and p 
which remain very close to the true trajectories on the slow manifold when the initial conditions are selected 
on the zero level set of µ0.

We also generate dynamics outside the zero level set of µ0 and verify that the quantity I0 ◦ ψ−1 
matches the learnt adiabatic invariant µlearnt

0  along the trajectories generated by the symplectic gyroceptron 
Iε ◦ ψ ◦ �θ ◦ ψ−1 , where

More precisely, we check whether I0 ◦ ψ−1 = µlearnt
0  with both quantities being approximately constant along 

trajectories generated by the symplectic gyroceptron, where

(5.12)q̇ = εp, ṗ = 0, Q̇1 = 0, Q̇2 = 0, Ṗ1 = εp sin(q), Ṗ2 = εp sin(2q),

(5.13)q(t) = q+ ǫpt, p(t) = p.

(5.14)

I0(q, p,Q1,�1,Q2,�2) =
1

2

K=2
∑

k=1

k (�2
k + Q2

k),

and µlearnt
0 (q, p,Q1, P1,Q2, P2) =

1

2

K=2
∑

k=1

k ([Pk − Vk(Qk)]
2 + Q2

k).

Figure 7.  (a,  b) Symplectic gyroceptron predictions (colors) against the true trajectories (dashed) with 4 
different choices of initial conditions on the zero level set of the adiabatic invariant for the nearly-periodic 
Hamiltonian system (5.7) with ε = 0.01 . c) Evolution of I0 ◦ ψ−1 (colors) and µlearnt

0
 (dashed lines) along 

trajectories generated by the symplectic gyroceptron with 3 different choices of initial conditions for the nearly-
periodic Hamiltonian system (5.7) with ε = 0.01.
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From Figure 7c), we see that along trajectories which are not started on the zero level set of µ0 , the value of 
I0 ◦ ψ−1 remains close to the approximately constant quantity µlearnt

0  , although I0 ◦ ψ−1 displays small oscil-
lations. Since I0 ◦ ψ−1 is an adiabatic invariant for the network, these oscillations remain bounded in amplitude 
for very large time intervals. The amplitude can in principle be reduced by finding a more optimal set of weights 
for the network, but it can never be reduced to zero since the true adiabatic invariant is not exactly conserved 
(oscillations in µ0 are not visible at the scales displayed in the plot).

Discussion
In this paper, we have successfully constructed novel structure-preserving neural network architectures, gyrocep-
trons and symplectic gyroceptrons, to learn nearly-periodic maps and nearly-periodic symplectic maps, respec-
tively. By construction, these proposed architectures define nearly-periodic maps, and symplectic gyroceptrons 
also preserve symplecticity. Furthermore, it was confirmed experimentally that in the symplectic case, the maps 
generated by the proposed symplectic gyroceptrons admit discrete-time adiabatic invariants, regardless of the 
values of their parameters and weights.

We also demonstrated that the proposed architectures can be effectively used in practice, by learning very 
precisely surrogate maps for the nearly-periodic symplectic flow maps associated to two different nearly-periodic 
Hamiltonian systems. Note that the hyperparameters in our architectures have not been optimized to maximize 
the quality of our training outcomes, and future applications of this architecture may benefit from further 
hyperparameter tuning.

Symplectic gyroceptrons provide a promising class of architectures for surrogate modeling of non-dissipative 
dynamical systems that automatically steps over short timescales without introducing spurious instabilities, 
and could have potential future applications for the Klein–Gordon equation in the weakly-relativistic regime, 
for charged particles moving through a strong magnetic field, and for the rotating inviscid Euler equations in 
quasi-geostrophic  scaling7. Symplectic gyroceptrons could also be used for structure-preserving simulation of 
non-canonical Hamiltonian systems on exact symplectic  manifolds11, which have numerous applications across 
the physical sciences, for instance in modeling weakly-dissipative plasma  systems36–42.

The approach to symplectic gyroceptrons presented here targets surrogate modeling problems, where the 
dynamical system of interest is known but slow or expensive to simulate. In principle, symplectic gyroceptrons 
could also be used to discover dynamical models from observational data without detailed knowledge of the 
underlying dynamical system. However, in order to apply symplectic gyroceptrons effectively in this context 
data-mining methods must be developed for learning the topological conjugacy class of the limiting circle 
action. Given a topological classification of circle actions on the relevant state space (e.g.  see64 for the case of a 
3-dimensional state space), a straightforward approach would be to test an ensemble of topologically-distinct 
circle actions for best results. A more nuanced approach would use the observed dynamics to estimate values 
for the classifying topological invariants of a circle action. This topological learning problem warrants further 
investigation.

Data availibility
A simplified implementation of the Python codes used to generate some of the numerical results presented in 
this paper is  published65 and available at https:// github. com/ vduru iss/ Sympl ectic Gyroc eptron.
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