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Spatiotemporal bias of the human 
gaze toward hierarchical visual 
features during natural scene 
viewing
Kazuaki Akamatsu 1, Tomohiro Nishino 2 & Yoichi Miyawaki 1,3*

The human gaze is directed at various locations from moment to moment in acquiring information 
necessary to recognize the external environment at the fine resolution of foveal vision. Previous 
studies showed that the human gaze is attracted to particular locations in the visual field at a 
particular time, but it remains unclear what visual features produce such spatiotemporal bias. In this 
study, we used a deep convolutional neural network model to extract hierarchical visual features from 
natural scene images and evaluated how much the human gaze is attracted to the visual features in 
space and time. Eye movement measurement and visual feature analysis using the deep convolutional 
neural network model showed that the gaze was more strongly attracted to spatial locations 
containing higher-order visual features than to locations containing lower-order visual features or to 
locations predicted by conventional saliency. Analysis of the time course of gaze attraction revealed 
that the bias to higher-order visual features was prominent within a short period after the beginning 
of observation of the natural scene images. These results demonstrate that higher-order visual 
features are a strong gaze attractor in both space and time, suggesting that the human visual system 
uses foveal vision resources to extract information from higher-order visual features with higher 
spatiotemporal priority.

Humans acquire visual information about the external world by moving their eyes to direct their gaze toward 
various locations. Eye movement is essential for accurate visual recognition because the spatial resolution of 
human vision is not uniform over eccentricity—i.e., the foveal vision possesses visual acuity higher than that of 
peripheral  vision1. Given this constraint, the human visual system prioritizes particular locations by directing 
the gaze and processes the information using foveal vision at a high spatial resolution. However, which visual 
features determine such gaze biases in observed images remains under debate.

Conventionally, the spatial contrast in lower-order visual features such as luminance, color, and orientation 
has been considered influential in attracting the human  gaze2,3. Classical saliency is computed as a mixture of 
these components. Since classical saliency is currently used in much wider definitions, we instead call the sali-
ency of low-level features that are measured through the Itti–Koch model “the Itti–Koch saliency” in this paper. 
Computational models have also revealed that fixation locations can be predicted using a saliency map that 
quantifies a value of the Itti–Koch saliency at each spatial location in observed  images2,3. However, the Itti–Koch 
saliency requires computation at not only a local scale but multiple scales including broad spatial  coverage2,3. It 
is thus difficult to infer what visual cortical area is primarily involved in multiscale feature extraction processes 
and the generation of gaze bias. On the other hand, it may be possible to define another type of saliency based 
on higher-order visual features extracted in the ventral visual pathway.

Recent studies showed that activation of a higher layer of deep convolutional neural network (DCNN) models 
can be used to predict the gaze bias to particular locations in observed images. The prediction accuracy is much 
higher than that of the conventional saliency  map4–8 (see also MIT/Tuebingen Saliency Benchmark for the list of 
saliency models and their  evaluation9,10). These results suggest that higher-order visual features are more informa-
tive than lower-order visual features in predicting the fixation locations in space, possibly being assisted by the 
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complexity of DCNN models with a large number of flexible parameters. However, in these studies, the DCNN 
models were combined with an additional multilayer neural network module whose parameters were tuned 
to predict the fixation locations, and the combination obscured whether the gaze was really attracted toward 
the spatial locations containing the higher-order visual features. In fact, the spatial distribution of the fixation 
locations was even better predicted by a combination of lower-order visual features and the multilayer neural 
network module than by the higher-layer activation of the DCNN  model8. Hence, it remains unclear whether 
the gaze is attracted to spatial locations containing higher-order visual features.

Similar issues exist when considering which visual features attract the gaze earlier in time. Previous studies 
suggest that spatial locations having a higher contrast in the visual stimulus, thus having a higher intensity of 
the Itti–Koch saliency, attract the gaze within a short period after the stimulus  onset11,12. On the other hand, a 
recent study argues that the gaze within a short period after the stimulus onset can be predicted by activation of 
the higher layer of DCNN models more accurately than by using a lower-order visual feature like the Itti–Koch 
 saliency13. However, since Schütt et al.13 attached an additional neural network module to the higher layer of 
the DCNN model  (VGG1914) and tuned parameters of the attached module, it remains uncertain whether the 
feature extraction by the hierarchical network is essential for the accurate fixation prediction.

To resolve the above issues, we examine the direct relationship between the spatiotemporal gaze bias and the 
visual features by mapping fixation locations and DCNN-extracted hierarchical visual features into observed 
images. Here, we use a DCNN model that was pretrained using an independent dataset of natural  images15 as 
a hierarchical visual feature extractor without any additional modules for fixation prediction. As many studies 
have demonstrated, DCNN models can be considered a good model of hierarchical visual systems of the human 
brain, with each layer responding to visual features of different levels of complexity along its  hierarchy16–18. This 
similarity allows us to infer what visual areas or levels of visual information processing in the brain affect the 
gaze bias in observed images. Furthermore, because the DCNN models are used as an independently pretrained 
filter to extract visual features at each layer in its hierarchical architecture, we can examine what and when visual 
features attract the gaze. In other words, this methodology is expected to reveal spatiotemporal characteristics 
of the gaze bias to visual features in observed images. Our approach will provide not only systematic knowledge 
about feature-based human gaze control but also a useful insight into effective visual designs.

Results
We selected various images from large-scale natural scene  datasets19,20 and used them as visual stimuli in experi-
ments. Using these visual stimuli, we performed encoding runs in which participants observed the visual stimuli 
with free eye movements, followed by recognition runs in which the participants observed the visual stimuli with 
free eye movements and answered whether the observed stimuli were presented in the preceding encoding run. 
The recognition task accuracy was significantly higher than the chance level for all participants (Supplementary 
Fig. 2; binomial test p < 0.05 for each participant; mean ± standard deviation across participants, 91.25 ± 6.74%), 
indicating that all participants engaged in the experiment. We also performed a similar experiment without 
the recognition task (the scene images were just exposed to participants, without any task followed), but the 
results did not change significantly. Thus, the following results were independent of the presence or absence of 
the recognition task.

The eye movement of the participants was measured using an infrared camera system at a sampling rate of 
1000 Hz, which is fast enough to capture the participants’ fixation location. The eye movement was recorded 
for both the encoding and recognition runs (Fig. 1), but only results for the encoding runs are presented in this 
section and the recognition runs were not analyzed because half of the visual stimuli in the recognition runs had 
been presented in the encoding runs, which might affect perceptual states.

Gaze attraction of visual features. For each visual stimulus, we generated the spatial distribution of 
visual features using  AlexNet15 pretrained with the ImageNet  database21 to classify images into 1000 object cat-
egories and the SmoothGrad  technique22.

AlexNet is a DCNN model consisting of five convolutional layers and three fully-connected layers, and hier-
archical visual features are extracted through its layered architecture. For example, simple visual features like 
grating patterns are represented in layer 1, and more complex features like texture- or object-like patterns are 
represented in the higher layers of the model. It is one of the most accepted DCNN models for the hierarchical 
human visual system because of its similarity in the architecture and activation  characteristics16–18, particularly 
regarding with the hierarchical correspondence between the brain and DCNN models based on bidirectional 
(DCNN-to-brain and brain-to-DCNN)  predictability23 (see also another evaluation by Schrimpf et al.24 based 
on predictability of neural activity from DCNN model).

SmoothGrad is a method to back-project activation values in a layer of a DCNN model into the pixel space 
of the input image to make a graded map representing which locations have high/low values corresponding 
to the activation of the specified layer. Since if particular locations in the presented image have visual features 
that can activate a particular layer in the DCNN model, the locations can be considered to have “intense” visual 
features for the corresponding layer. Thus we can interpret that the graded value represents “feature intensity,” 
and its map is called a “feature map” (Fig. 2A). Here we focused on only the five convolutional layers as the 
target to apply SmoothGrad to analyze the visual features. In addition, we also calculated the Itti–Koch saliency 
map (Fig. 2A) as a typical example of the lower-order visual feature conventionally used in human gaze studies. 
Because the intensity of visual features is presumed to affect the fixation, we discretized the feature intensity by 
evenly dividing them into ten levels between the minimum to the maximum value for each entire stimulus and 
treated feature maps at the different intensity levels separately.
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Combining the above experimental datasets of eye movement recording and the feature maps for each pre-
sented stimulus, we defined an index representing how much a particular feature exists in the fixated area 
(defined by the 1-deg circular region around the fixated point) by calculating the ratio of the area occupied by 
the corresponding feature in the fixated area (Fig. 2B, see “Methods”). We can interpret a high value of this index 
as a consequence of the gaze being attracted to the location by the visual feature existing there. We thus call this 
index “gaze attraction of the visual feature” (Fig. 2B).

Since the eye movement data consisted of a sequence of multiple fixations over time, we quantified the gaze 
attraction of a particular visual feature at a particular intensity level for every fixation for each presented stimulus. 
Then taking the average over all presented stimuli, we can illustrate the time course of the gaze attraction of the 
visual feature at each intensity level (Fig. 2B).

Time course of gaze attraction. Figure 3 shows the representative examples of the time courses of the 
gaze attraction of the visual features for the three intensity levels of 1 (lowest), 5 (middle), and 10 (highest), 
compared with the chance level calculated from the randomized fixation locations (see “Methods”). For the 
visual features at low-level intensity (top row in Fig. 3), the gaze attraction was almost at the same level as chance 
(Layers 1–5) or lower (the Itti–Koch saliency). There was no major difference between visual features except the 
Itti–Koch saliency because all feature intensities were low and their characteristics were thus lost. The difference 
from the chance level became evident as the intensity increased (middle to bottom rows in Fig. 3), indicating that 
the gaze was attracted to locations with intense visual features. The difference in the gaze attraction between the 
visual features also became prominent for the higher intensity levels (middle to bottom rows in Fig. 3).

Spatial gaze bias. By taking the mean of the gaze attraction of the visual features over time, we can simply 
ignore the temporal evolution and quantify an index of how the gaze was spatially biased toward certain features. 
We call this index “spatial gaze bias” (see also “Methods”). The spatial gaze bias progressively increased with 
the hierarchy of the convolutional layers (Fig. 4; two-way ANOVA, Bonferroni-corrected p < 0.05 for multiple 
comparisons; the spatial gaze bias increased in the order of Itti–Koch, Layer 1, 2, 3, 4, and 5 (pair-wise signifi-
cance was not found between Layer 3 and 4; all other pair-wise comparisons were significant), indicating that 
the higher-order visual features activating higher layers of the DCNN model were stronger gaze attractors than 
the lower-order visual features activating lower layers of the DCNN model. These results are consistent with 
previous studies showing higher-order features outperforming conventional saliency in the prediction of the 
fixation  map8.

An unexpected result was found for the Itti–Koch saliency, showing locations with low feature intensity were 
seen less than the chance level. We assumed that this result was not due to such locations being avoided but due 

Figure 1.  Experimental design. The experiments comprised encoding and recognitions runs. In the encoding 
runs, the participants were asked to observe presented visual stimuli with eye movements allowed. In the 
recognition runs, the participants were asked to observe presented visual stimuli with eye movements allowed 
and to answer whether each image had been presented in the preceding encoding runs. The encoding and 
recognition runs were combined and performed in the order presented in the figure, preceded by calibration of 
the eye tracker. This sequence was performed five times for each participant.
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to the center bias of  fixations25 and the artifactual outcomes of the Itti–Koch saliency computation that output 
low intensity near the edge of visual stimuli (Supplementary Fig. 3). More details are described in “Discussion” 
section.

Temporal gaze bias. The difference between visual features was also evident in the temporal characteristics 
of the gaze attraction (here, the “temporal” characteristics mean the development of the gaze attraction over 
time). The time course of the gaze attraction of the visual feature was not flat over time but peaked after the 
stimulus presentation (at approximately 500 ms), particularly for the visual features corresponding to the higher 
layers (middle to bottom rows in Fig. 3) at higher feature intensity. To quantify this temporal inhomogeneity, we 
defined the temporal gaze bias, which is a measure of how fast the gaze is attracted to the visual feature (Fig. 5A; 
see details in “Methods”). Figure 5B shows that the temporal gaze bias was greater for the higher-order visual 
features activating higher layers of the DCNN model than the lower-order visual features activating lower layers 
of the DCNN model and the Itti–Koch saliency, particularly at the higher level of feature intensity. Statistical 
analyses showed that the temporal gaze bias increased in the following order: the Itti–Koch saliency, Layer 1, 2, 3, 
4, and 5 (two-way ANOVA, Bonferroni-corrected p < 0.05 for multiple comparisons; pair-wise significance was 
not found between the Itti–Koch saliency vs. Layer 1, Layer 1 vs. 2, Layer 2 vs. 3, Layer 3 vs. 4; all other pair-wise 
comparisons were significant). The temporal gaze bias increased as a function of feature intensity, except in the 
lower layers such as Layer 1 and 2 (p < 0.05 for interaction between visual features and feature intensity, two-way 
ANOVA), indicating that the gaze is attracted to the spatial locations with visual features that strongly activate 
the higher layers of the DCNN model, particularly during the initial period after the stimulus onset.

Note that a temporal gaze bias smaller than the chance level was also found for the Itti–Koch saliency for the 
same reason described in the previous section (see also the Discussion section).

Figure 2.  Feature maps and gaze attraction. (A) Feature maps corresponding to hierarchical layers of the 
DCNN and the Itti–Koch saliency. The unit activation in each layer of the DCNN model is back-projected to the 
image-pixel space using the SmoothGrad technique for each visual stimulus. The feature intensity is represented 
by pseudocolor (blue, low; red, high). The intensity of the Itti–Koch saliency is also represented similarly. (B) 
Time course of the gaze attraction of visual features. The combination of fixation data and the feature map 
provide how much of a visual feature is contained in each fixation area for a specified feature intensity level. This 
procedure defines the gaze attraction of each visual feature for the intensity level at the time when the fixation 
occurs. The average of these values over all visual stimuli then produces the time course of the gaze attraction of 
each visual feature for each intensity level.
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Latency of gaze bias. To examine how fast the effect of the gaze attraction of the visual features emerges, 
we evaluated the latency (the onset time of the fixation relative to stimulus onset) of each fixation (up to the 10th 
fixation) and what visual features attracted the gaze at each fixation order. The first fixation had peak latency at 
the 260–280 ms bin, which is similar to the result of a previous study using natural scenes as  stimuli13, though a 
much faster gaze was observed in the distribution. Another small peak was found for the first fixation latency at 
the 80–100 ms bin, but this would be the anticipatory component independent of the visual stimulus observation 
that remains even after removing such eye movements (see “Methods”). We then examined what visual feature 
attracts the first fixation by comparing the gaze attraction of each visual feature. Figure 6B shows that the gaze 
attraction at the first fixation was significantly higher for the visual feature corresponding to Layer 5 than other 
features (one-way ANOVA for the gaze attraction at the first fixation, Bonferroni-corrected p < 0.05 for multiple 
comparisons). Figure 6B only shows results at the largest feature intensity level (level 10) as representative exam-
ples, but the significance of the Layer 5 feature to attract the first fixation was found at level 2 and above (one-way 
ANOVA for the gaze attraction at the first fixation, Bonferroni-corrected p < 0.05 for multiple comparisons). 
These results indicate that the higher-order features attract the human gaze strongly even at the first fixation, and 
such biases can emerge earlier than 260–280 ms.

Figure 3.  Time courses of gaze attraction of visual features. Three levels of feature intensity (top row, level 
1; middle row, level 5; bottom row, level 10) are shown as representative examples. Results from each visual 
feature are aligned in the column direction. In each graph, the colored solid line and shading indicate the mean 
and standard deviation over participants, and the gray solid line and shading indicate the mean and standard 
deviation of the chance level over participants, respectively. The time origin indicates the onset of visual stimulus 
presentation.

Figure 4.  Spatial gaze bias for visual features. The spatial gaze bias for each visual feature is plotted against 
the feature intensity level. In each graph, the colored solid line and shading indicate the mean and standard 
deviation over participants, and the gray solid line and shading indicate the mean and standard deviation of the 
chance level over participants, respectively.
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Discussion
In this study, we examined what and when visual features are fixated on by measuring eye movements and 
analyzing visual features embedded in the presented visual stimulus. To reveal the direct relationship between 
the human gaze and visual features, we used a DCNN model by which feature maps can be identified for each 
visual feature along the DCNN model hierarchy from the lower layer (Layer 1) to the higher layer (Layer 5). 
We also used the Itti–Koch saliency map for the purpose of comparison as the most conventional visual feature 
that has been extensively studied in human gaze studies. Using the measured fixation data and the feature maps, 
we quantified the gaze attraction of the visual features by how much they were contained in the fixated area. In 
contrast with the previous model, our approach did not combine any read-out module with the DCNN model 
to predict fixation locations but analyzed visual features at the fixation locations, allowing us to clarify the direct 
contribution of each visual feature to attract the fixations.

As a result, we revealed that higher-order visual features corresponding to the higher layers were a stronger 
gaze attractor than lower-order visual features corresponding to the lower layers and the Itti–Koch saliency. 
The spatial locations containing much higher-order visual features were fixated prominently in the early period 
after visual stimulus presentation, even at the first fixation (Fig. 6B), and the preference for the higher-order 
visual features continued during observation of the visual stimulus (Fig. 3). Analyses further showed that this 
tendency strengthened with the feature intensity (see “Results” and “Methods” for its definition), suggesting that 
the higher-order visual features contribute to attracting the fixations. This is clear experimental evidence of the 
importance of the higher-order visual features over the lower-order visual features and the conventional saliency 
to explain the human gaze bias during the observation of natural scenes.

According to these results, one might assume that the fixation locations could be better predicted from acti-
vation in the higher layer of the DCNN model than that in the lower layer. Since the purpose of this study was 
to see the relationship between the human gaze and hierarchical visual features, we did not perform fixation 
prediction using activation in each layer in the DCNN model. However, as previous  studies8,13 partially showed 
that the higher layer activation in the DCNN model is useful for accurate prediction of the fixation locations, it 
is highly likely that the prediction accuracy for the fixation locations would be higher if using activation in the 
higher layers than in the lower layers in the DCNN model we currently used.

What brain areas play an important role in extracting these higher-order visual features to attract the human 
gaze? AlexNet, the DCNN model we used in this study, was developed for the image-based object recognition 
task, and its architecture is designed to resemble hierarchical visual systems in the brain, particularly along the 
ventral pathway. Previous studies showed that neural activity in the higher visual cortex in the ventral pathway 
of the monkey brain can be predicted from unit activation patterns in the higher layer of  AlexNet18. Human 

Figure 5.  Temporal gaze bias for visual features. (A) Procedure in quantifying the temporal gaze bias from the 
time course of the gaze attraction. The time course of the gaze attraction is integrated cumulatively and then 
normalized by the maximum value. The convexity of the normalized cumulative integral curve indicates how 
fast the time course of the gaze attraction reaches a peak value, and the area under the curve serves as a measure 
of the temporal gaze bias. (B) Temporal gaze bias calculated in this procedure. Results are plotted against 
the feature intensity level. In each graph, the colored solid line and shading indicate the mean and standard 
deviation over participants, and the gray solid line and shading indicate the mean and standard deviation of the 
chance level over participants, respectively.
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imaging studies also showed that functional magnetic resonance imaging signals of the higher visual cortex in 
the ventral pathway can be predicted from unit activation patterns in the higher layers of the DCNN  model16 and 
vice  versa17. These studies indicate a correspondence between the hierarchical structures of the brain and those 
of the DCNN model. This homologous relationship suggests that the higher-order visual features are extracted 
in the higher visual areas in the ventral pathway and contribute to attracting the human gaze. The strong gaze 
attraction of a higher-order feature was observed even at the first fixation (Fig. 6B), whose peak latency was 
approximately 260–280 ms. The exact identification of the shortest latency of the first fixation is difficult because 
of the contamination of anticipatory components, but a reasonable estimate could not be earlier than 120 ms 
corresponding to the trough of the latency distribution of the first fixation and also roughly corresponding to the 
shortest end of the second fixation latency distribution (Fig. 6A). If we adopt this value as the shortest latency 
of the gaze bias to the higher-order visual feature, it is still slower than the putative activity latency of the higher 
visual areas of the human  brain26. It is thus consistent in terms of behavioral and neural latency if the feature 
extraction in the higher visual areas is the origin of the gaze bias.

The conventional saliency defined by the Itti–Koch  model2 has been considered a good fixation predictor, 
particularly in the early period after the stimulus  presentation11,12. Such a tendency was actually observed in our 
data. When the feature intensity was high, its gaze attraction was greater than chance during the period of visual 
stimulus presentation, with a peak in the early period after the stimulus onset [the transient peak was detected 
at 580 ms for level 8, 575 ms for level 9, and 592 ms level 10, respectively, within the period during which the 
gaze attraction showed statistically higher values (t-test, p < 0.05) than the steady state (the last 1-s period of 
each trial)], showing that the temporal gaze bias was larger than chance when the feature intensity was larger 
than level 8. However, compared with the higher-order visual features, the gaze attraction of the Itti–Koch sali-
ency was limited. The gaze attraction of the higher-order visual features was overwhelmingly high in the early 
period after the visual stimulus presentation, and it continued at a certain level beyond chance until the end of 
the visual stimulus presentation (Fig. 3). These results are consistent with those of a previous  study13 analyzing 
the relationship between visual features activating higher layers in a DCNN model and eye movements, though 
their model was indirect to clarify the contribution of visual features to the gaze bias, suggesting the explanatory 
power of the higher-order visual features for the spatiotemporal gaze bias.

Another concern about the Itti–Koch  saliency2 is its multiscale nature based on a Gaussian  pyramid27, which 
may complicate the discussion on brain areas involved in its computation. Our results show that the gaze attrac-
tion of the Itti–Koch saliency was approximately between Layers 2 and 3 at its highest intensity level (Fig. 3), 
although the saliency computation was based on visual features for which the early visual area has a  preference28. 

Figure 6.  Latency of fixations. (A) Latency distribution of fixations sorted by its order (up to the 10th fixation; 
bin width, 20 ms). (B) Gaze attraction of visual features sorted by the fixation order. Only results for feature 
intensity at level 10 are shown here. In each graph, the colored solid line and shading indicate the mean and 
standard deviation over participants, and the gray solid line and shading indicate the mean and standard 
deviation of the chance level over participants, respectively.
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There could be a discrepancy between brain areas that are supposed to be necessary for the feature preference 
and the feature extraction scale.

Among the visual features tested in this study, only the Itti–Koch saliency had a gaze bias lower than the 
chance level when the feature intensity was low. This result could be interpreted as if the gaze was less directed 
at the locations of low intensity for the Itti–Koch saliency. However, it is highly likely that the result would be 
an artifact due to the procedure to compute the Itti–Koch saliency near the edge of the presented stimuli. The 
Itti–Koch saliency defined by their model for the particular locations requires its surrounding pixel values, but 
the pixel values cannot be fully provided near the edge of the presented stimuli since a part of them are outside 
of the stimuli where the pixel values are undefined. Consequently, the intensity of the Itti–Koch saliency should 
be low near the edge of the presented stimuli. In addition, the human gaze was more directed around the center 
of the presented stimuli (center bias  effect25). Therefore, the result looks as if the gaze would be less directed to 
the locations with lower intensity of the Itti–Koch saliency, which are actually distributed near the edge of the 
presented stimuli, than the chance level that was computed by random assignment of coordinates to the fixated 
locations with uniform probability across the whole presented stimuli, irrespectively of the center bias effect.

We used AlexNet, one of the most typical DCNN models, to define hierarchical visual features. This proce-
dure was based on the assumption that AlexNet is a proxy of the human hierarchical visual systems. Although 
many studies suggest the similarity between them, there should also be differences that might affect the results 
observed in this study. For example, the human brain has feedback connections from multiple areas, but AlexNet 
does not. It plays an important role in visual information processing and perhaps in gaze control as well. The 
difference in model architecture, training procedure, and stimuli to evaluate the layer activation could also 
influence the  results29–31. It might be interesting issues in future work to address how such differences influence 
the human gaze.

In this study, we found that the higher-order visual features are strong gaze attractors, particularly immedi-
ately after the onset of the visual stimulus presentation. This evidence suggests the possibility that the human 
gaze could be guided to specified locations by incepting higher-order visual features with sufficient intensity. 
Such techniques could be adopted in a critical test of the current findings. The artificial manipulation of visual 
features could also be useful in designing traffic signs, fail-free user interfaces, and effective advertisements. 
Thus, our approach could provide a new method of exploring and even utilizing the relationship between visual 
features and induced eye movement.

Methods
Participants. Twenty participants [16 males, 4 females; age ranging between 20 and 26  years (mean, 
21.7 years)] participated in the experiment. All participants had normal or corrected-to-normal vision acuity. 
They were compensated by 1000 JPY per hour for their participation. All participants gave written informed 
consent before participating in the experiments. The procedure was approved by the institutional review board 
of the University of Electro-Communications. All methods were performed in accordance with the relevant 
guidelines and regulations.

Visual stimuli. Images of natural scenes were selected from the ADE20K  dataset20 and the PASCAL-Context 
 dataset19, in which objects are segmented separately and annotated with corresponding object categories. We 
used color images of more than four object categories with an aspect ratio of 4 (horizontal) vs. 3 (vertical) as 
visual stimuli for the experiment. The number of selected images was 496 from the ADE20K dataset and 154 
from the PASCAL-Context dataset. Each image was rescaled to 800 × 600 pixels (width × height).

Apparatus. Visual stimuli were presented on a 21-inch CRT monitor [FlexScan T966, EIZO NANAO Inc.; 
frame rate, 60 Hz; resolution, 1024 × 768 pixels (width × height)]. Participants were seated at a distance of 86 cm 
from the monitor, and the visual stimuli subtended a field of view of approximately 20° × 15° (width × height). A 
chin rest was used to keep the participant’s head still. During the visual stimulus presentation, the participant’s 
right eye movements were recorded with EyeLink 1000 (SR Research Ltd.) desktop mount system at a sampling 
rate of 1000 Hz. An image of a small white square was displayed synchronously with the visual stimuli at the left 
side of the CRT monitor, and a light sensor was attached on the monitor to detect the onset of visual stimulus 
presentation. The detected onset was used to define the time origin for the recorded eye movement precisely. The 
light sensor was covered with a dark cloth so that participants saw neither the white square nor the light sensor 
during the experiment. Visual stimulus presentation was controlled by MATLAB (The MathWorks, Natick, MA) 
using Psychophysics Toolbox Version  332–34).

Experimental design. The experiments comprised encoding and recognition runs. In the encoding runs, 
the participants were asked to observe presented visual stimuli with eye movements allowed. In the recognition 
runs, the participants were asked to observe presented visual stimuli with eye movements allowed and to answer 
whether each stimulus had been presented in the preceding encoding runs.

After the eye tracker was calibrated using a nine-point fixation presented on the monitor, three sets of the 
combination of an encoding run and a recognition run were performed (Fig. 1). There were 40, 39, and 39 
stimulus presentation trials in the encoding runs, each of which was followed by eight stimulus presentation 
trials in the recognition runs. This sequence (calibration and the three sets of the combination of the encoding 
and recognition runs) was repeated five times, resulting in 590 (450 from the ADE20K dataset and 140 from the 
PASCAL-Context dataset) and 120 (92 from the ADE20K dataset and 28 from PASCAL-Context dataset, with 
half being the same images as those in the encoding runs for the recognition task) natural scene presentations 
for encoding and recognition, respectively. The eye tracker was recalibrated between runs when necessary.
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In the encoding runs, the participants pressed the space key on a keyboard to start each trial. A white fixa-
tion cross (0.3° × 0.3°) was then presented for 500 ms at the center of the CRT monitor on a black background, 
and an image of a natural scene was subsequently presented as a visual stimulus. The participant was instructed 
to observe the presented stimulus with free eye movements while keeping their head still on the chin rest. The 
presented stimulus automatically disappeared at 5000 ms after the onset of the stimulus presentation, and the 
monitor turned black until the participant pressed the space key to start the next trial (the instruction to press a 
button appeared on the screen; see Fig. 1A). The participant’s right eye movements were continuously monitored 
during the trial. The eye tracker automatically recognized saccade events if the speed of eye movement exceeded 
30°/s, and the remaining events were recognized as fixation events after removing blinks. The spatial coordinates 
and event time of each fixation were recorded by the eye tracker. Fixation events that happened 80 ms after 
stimulus presentation were considered anticipatory and excluded from the  analysis35.

In the recognition runs, the participants again pressed the space key on a keyboard to start each trial. A white 
fixation cross (0.3° × 0.3°) was presented for 500 ms at the center of the CRT monitor on a black background, 
and an image of a natural scene that was either one presented in the preceding encoding run or one new to the 
experiment was then presented as a visual stimulus. There were four previously presented stimuli in each recogni-
tion run; i.e., the probability of seeing a previously presented image was 50%. The participant was instructed to 
observe the visual stimuli with free eye movements while keeping their head still on the chin rest. The presented 
stimuli automatically disappeared at 2000 ms after the onset of the stimulus presentation and the monitor turned 
black. The participant was instructed to press the “z” key on the keyboard during this period if they thought the 
stimulus had been presented in the preceding encoding run or press the slash key if not, without a time constraint 
(the instruction to press a button appeared on the screen; see Fig. 1A). After answering the task, the participants 
pressed the space key to start the next trial.

Visual feature analysis. DCNN feature map. DCNN feature maps for each stimulus were computed us-
ing AlexNet (Fig. 2A) pretrained with the ImageNet  database21 to classify images into 1000 object categories. 
AlexNet comprised five convolutional layers and three fully-connected layers. Each of the five convolutional 
layers consisted of convolutional image filtering followed by nonlinear rectification, maximum value selection 
within the spatial window (max pooling), and normalization. The three fully-connected layers were not con-
sidered as the target of analysis because we were interested in preserving spatial information of extracted visual 
features as much as possible, as in the previous  studies7,8,13.

The feature maps were then generated from the five convolutional layers using  SmoothGrad22. SmoothGrad is 
a method originally used with DCNN models for object classification. DCNN-based object classification is typi-
cally done by comparing activation values of all neural network units at the final layer, and each unit corresponds 
to each object category. SmoothGrad can back-project the activation of each unit in the final layer into the pixel 
space of the input image, allowing visualization of the areas that are important for the classification of the target 
object. However, it can be generally used to identify spatial locations in an image important to yield activation 
in any layers of DCNN models by back-projecting the activation into the pixel space of the image. In this paper, 
we utilized this function of SmoothGrad and applied it to each layer’s activation induced by stimuli presented 
to participants in our experiments, generating maps that represent the contribution of each spatial location in 
the stimulus to the activation in each layer. The generated maps have a graded value, which indicates the dif-
ference in contribution to evoke activation in each layer. In the case of AlexNet, since each layer is known to be 
activated by hierarchical visual features, such as lower-order visual features activating layer 1 and higher-order 
visual features activating layer  515, pixel values back-projected from the activation in each layer by SmoothGrad 
can be considered to represent the spatial distribution of visual features that activate the corresponding layer. 
In this sense, we may interpret the graded value as “feature intensity” because a spatial location with a higher 
value for a particular feature is expected to yield larger activation in the corresponding layer. Thus we call the 
map made by SmoothGrad a “feature map”. Since our purpose is to visualize the spatial distributions of visual 
features corresponding to each layer, not to a particular single unit in the layer, of the DCNN model, activation 
values of all units in each layer were back-projected into the pixel space of the presented stimulus to generate 
the feature map. This procedure was repeated for all stimuli and for all five convolutional layers of the DCNN 
model, resulting in five feature maps for each stimulus (Fig. 2A).

Itti–Koch saliency map. The Itti–Koch saliency map for each stimulus was computed using  SaliencyToolbox3, a 
conventional saliency model that combines conspicuity maps of luminance contrast, color contrast, and orienta-
tion with equal weights. The Itti–Koch saliency map shows a distribution of the intensity of the feature, similar 
to the feature maps defined by the DCNN model and SmoothGrad (Fig. 2A).

Quantitative evaluation of gaze attraction of visual features. We defined the gaze attraction of a particular visual 
feature as how much of the visual feature was contained in the fixated location (Fig. 2B). Here the visual feature 
indicates a pixel pattern in the region that activates either layer 1–5 of the DCNN model (AlexNet). In addition, 
we also used the Itti–Koch saliency as a visual feature. To consider the effect of the intensity difference in visual 
features (the definition of “intensity” was defined earlier), we first rescaled the feature intensity into the range 
between 0 (minimum) and 1 (maximum) for each stimulus and discretized it into ten levels. Here we treated the 
visual features of different intensities as different features (for example, visual features corresponding to Layer 1 
of level 1 and Layer 1 of level 2 were treated separately).

Given the feature maps labeled with the feature intensity levels, we could identify what visual features were 
dominant at the fixated point and thus derive a quantity for the gaze attraction. However, this procedure might 
be inaccurate because the fixation locations identified by the eye tracker contain measurement errors, which are 
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expected to be within 1° of the visual angle according to the specifications of the eye tracker. In addition, since 
the human fovea is about 2° in its  diameter36, it would be reasonable to assume that the target visual information 
is collected during fixation at this spatial resolution. Therefore, instead of using a single point in the stimulus, we 
defined “fixation area” as a circular region of 1° radius around each fixated location and calculated how much of 
the fixation area was occupied by each visual feature in the region. If there is a difference in the total area occupied 
by each visual feature in the entire image, it yields spurious biases in the occupancy rate of each visual feature in 
the fixation area since it was calculated by counting the number of pixels in the fixation area and divided by the 
total number of pixels in the fixation area. To avoid such effects, we divided the occupancy rate of each visual 
feature in the fixation area by the total occupancy rate of each visual feature in the entire image (the number of 
pixels for the corresponding visual feature in the entire image divided by the total number of pixels in the entire 
image). This relative occupancy rate thus indicates how dominant each visual feature is in the fixation area, which 
we defined as the gaze attraction of the visual feature.

This procedure can be described in the mathematical expression as follows. Suppose there is the visual feature 
F that has the feature intensity level L in the image In , the gaze attraction of the visual feature at time t after the 
onset of the image presentation, GA(FL, t, In) , can be expressed as

where NFA
FL

 is the number of pixels corresponding to the visual feature F at the feature intensity level L in the fixa-
tion area (FA), NFA

all
 is the total number of pixels in the fixation area, NIn

FL
 is the number of pixels corresponding 

to the visual feature F at the feature intensity level L in the entire area of the image In , and NIn

all
 is the total number 

of pixels in the entire area of the image In , respectively. Here the numerator, 
N

FA
FL

N
FA

all

 , corresponds to the occupancy 

rate of the visual feature F at the intensity level L in the fixation area and the denominator, 
N

In
FL

N
In

all

 , corresponds to 
the occupancy rate of the same visual feature in the entire image. Then by taking an average over all presented 
images In (n = 1…NI ; NI , number of images), we get the time course of the gaze attraction of the visual feature 
F at the intensity level L as

Since this is the time course from a single participant, we further took an average over participants and 
obtained the mean time course of the gaze attraction of the visual feature at different intensity levels (Fig. 3).

Spatial gaze bias. To show how often the fixation was directed to each location in the presented stimuli, con-
ventional studies, whether experimental or computational approaches, have computed fixation maps. The fixa-
tion map is typically defined by counting all fixations during the stimulus presentation while ignoring when the 
fixation happens after the stimulus onset. Similarly, to evaluate how frequently the gaze was attracted to spatial 
locations containing each visual feature with a specified intensity level, we simply took the average of the time 
course of the gaze attraction of each visual feature at the intensity level. We defined this quantity as the spatial 
gaze bias to the visual feature.

Temporal gaze bias. The gaze attraction of the visual feature is not constant but changes dynamically over time. 
As shown in Fig. 3, some visual features had a clear peak in the early period after the visual stimulus presentation 
and others did not. To quantify such a difference in temporal characteristics, we took a cumulative integral over 
the time course of the gaze attraction (Fig. 5A). The time course of the gaze attraction comprises non-negative 
values, and its cumulative integral thus becomes convex if the time course shows higher values close to the stim-
ulus onset whereas it becomes concave if the time course shows the opposite tendency. Thus, the convexity of 
the cumulative integral of the time course of the gaze attraction reflects how quickly the visual feature is fixated 
after the stimulus onset. We here quantified the convexity using the area under the cumulative integral of the 
time course of the gaze attraction. We defined this quantity as the temporal gaze bias to the visual features. Note 
that the time course of the gaze attraction was normalized such that its minimum-to-maximum range becomes 
0 to 1 before computing the temporal gaze bias because the constant component of the time course affects the 
convexity of the cumulative integral although it is irrelevant to the temporal gaze bias. The cumulative integral 
was also normalized such that its minimum-to-maximum range became 0 to 1 so as to evaluate its convexity 
independently of the absolute values of the cumulative integral.

We confirmed that this procedure faithfully measures the temporal gaze bias by simulation analysis using 
hypothetical time courses of the gaze attraction (see Supplementary information). The temporal gaze bias varied 
consistently with model parameters that control the peak time (Supplementary Fig. 1A,B) and the magnitude 
of the transient component (Supplementary Fig. 1C,D) of the time course of the gaze attraction, as expected.

Chance levels of spatial and temporal gaze bias. It is difficult to define the chance levels of the spatial and tem-
poral gaze bias theoretically, and we thus adopted the following empirical procedure to define them. For each 
participant, fixation coordinates measured for all 590 trials in the encoding runs were discarded and random 
coordinates uniformly sampled from the entire stimulus dimension were reassigned for all fixation data while 

GA(FL, t, In) =











N
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N
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all

/
N

In
FL
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0 otherwise

,
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their timing information remained unchanged. The time course of the gaze attraction was then computed in 
the same way as for the original fixation data. This operation was conducted 100 times and the time courses 
were averaged. The averaged time course of the gaze attraction with randomized coordinates keeps the mean 
frequency of the fixation at each timing (because the timing information is preserved), but the occupancy rate of 
each visual feature in a reassigned fixation location changes and asymptotically approaches the mean density of 
each visual feature in the entire stimulus, serving as the time course of the chance-level gaze attraction of each 
visual feature for each participant. The chance level for the spatial and temporal gaze bias was calculated from the 
time course of the chance-level gaze attraction using the same procedure explained above.

Data availability
The datasets generated and analyzed during the current study are available from the corresponding author on 
reasonable request.
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