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A simple model for pink noise 
from amplitude modulations
Masahiro Morikawa 1* & Akika Nakamichi 2

We propose a simple model for the origin of pink noise (or 1/f fluctuation) based on the waves with 
accumulating frequencies. These waves arise spontaneously in a system with synchronization, 
resonance, and infrared divergence. Many waves with accumulating frequencies can produce signals 
of arbitrary small frequencies from a system of small size. This beat mechanism can be understood as 
amplitude modulation. The pink noise can appear after the demodulation process, which produces a 
variety of pink noise in many fields. The pink noise thus formed from the beat has nothing to do with 
dissipation or long-time memory. We also suggest new ways of looking at pink noise in earthquakes, 
solar flares, and stellar activities.

Pink noise is ubiquitous. This noise is characterized by the power-law behavior in the very low-frequency region 
of the power spectrum density (PSD) with power −α , ( 0.5 < α < 1.5 ). This noise is also known as 1/f fluctua-
tion or flicker noise.

Since the first discovery of pink noise in a vacuum tube  current1, the same noise has been observed in many 
systems: semiconductors, thin metals, biomembranes, crystal oscillators, very long-term temperature variations, 
the loudness of orchestral music, fluctuations in the Earth’s rotation speed, fluctuations in the intensity of cosmic 
rays, heartbeats, postural control, magnetoencephalography, and electroencephalography in the brain, etc.2,3.

There have been many discussions about the origin of pink  noise2–5, but there seems to be no clear conclusion. 
Many models have been proposed that give rise to pink noise, but no universal mechanisms have been discovered.

Since pink noise is ubiquitous, the mechanism should be simple enough. However, all the applications of 
the basic concepts and techniques of the standard statistical mechanics seem to have encountered conflicts 
and disputes. Then people have tended to consider more fundamental concepts that can rewrite the theory of 
standard statistical mechanics.

A typical mechanism for producing arbitrary low-frequency fluctuations would be the wave beat, or amplitude 
modulation, of the primary high-frequency fluctuations. This amplitude modulation would be successful for pink 
noise if the frequencies were more concentrated in a small range. Then the secondary beat wave can have lower 
frequencies. One of the authors has already proposed this mechanism for the pink noise of sounds and  music6.

Furthermore, this concentration should be cooperative and systematic to form the power-law PSD. We pro-
pose at least three types of cooperative systems that can produce pink noise. They are (a) synchronization, (b) 
resonance, and (c) the infrared (IR) divergence.

If the pink noise were an amplitude modulation, the demodulation mechanism should also exist. This is 
because the entire modulated data has only high-frequency information, while the data after demodulation can 
explicitly show the low-frequency information, including the pink noise. The demodulation mechanism can be 
intrinsic to the system or be prepared in the measurement procedure. Many demodulation mechanisms make 
the pink noise phenomena diverse: taking the square of the original signal, rectification, thresholding, etc. For 
example, when the electrical current or voltage exceeds the threshold in the biological body, ignition occurs 
and produces spikes in the nerve cells. Thus the possible pink noise in the electric current is transferred to the 
nerve signal.

We begin our discussion in the next section Method, listing crucial clues to the origin of pink noise; all point-
ing to the possibility that pink noise is amplitude modulation. We then propose three mechanisms that lead to 
the modulation. We first discuss the most typical mechanism synchronization. We show that (a) exponential 
synchronization yields a power index of −1, and power-law synchronization yields a power index slightly dif-
ferent from −1 . Next, (b) resonance also yields pink noise since the concentration of the excited eigenmodes 
around the fiducial frequency is systematically approximated by the exponential function in the relevant domain. 
Further, (c) infrared divergence in the bremsstrahlung can give pink noise. Finally, we discuss the robustness of 
pink noise and several demodulation mechanisms that yield a variety of pink noise. In the conclusion section, 
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we summarize our proposal and possible verifications based on the points presented in the Method section. We 
also summarize our prospects of amplitude modulation on a variety of systems.

Method: some crucial clues for pink noise
We will now list some crucial clues to the origin of the pink noise. This process is quite important because it can 
clarify which principles of statistical mechanics are useful and which are not useful to describe the pink noise. 

1. Wave Systems that exhibit pink noise are often waves: sound waves, electric current, air-fluid, liquid flow, 
etc. Waves can interfere with each other. Thus the interference of waves can be a clue to getting pink noise.

2. Small system and seemingly long memory It is bizarre that an ultra-low frequency signal can come from 
a tiny system. As an extreme  example7, the semiconductor films of 2.5 nm layers give observable pink 
noise. A small semiconductor can have pink noise down to 10−7 Hz8, and voltage fluctuations through 
a semiconductor show pink noise from about 1Hz to 10−6.3 Hz9. These remarkable low frequencies 
sound almost impossible for ordinary small systems. In this context, if the Wiener-Khinchin theorem 
S(ω) =

∫∞

−∞
dτ

∫∞

−∞
dt�x(t)x(t − τ)�e−2π iωτ were correct, then the strong low-frequency signal in S(ω) of 

the pink noise would necessarily indicate the non-vanishing long-time correlation �x(t)x(t − τ)� . Probably, 
the time average in this theorem cannot be physical: It may not be well-defined for a non-stationary time 
series and cannot be accurately evaluated for a finite range of data.

3. Apparent no lower cutoff in the PSD It is often discussed that the pink noise does not seem to have an 
explicit lower cutoff in the PSD determined by any physics governing the system. The system exhibiting pink 
noise may not be stationary. Therefore, it may be useless to have discussions based on the stationarity of the 
system.

4. Independence from dissipation Remarkably, the pink noise appears even in the Hamiltonian mean-field 
(HMF) model, which is a strictly conservative  system10 and has nothing to do with dissipation. Thus the usual 
fluctuation-dissipation theorem of the type 

〈
δx2

〉
∝ RkT may not hold for the pink noise(R is the electric 

resistance and kT is the temperature).
5. Square of the original signal When deriving the pink noise, it is often the case that the original time 

sequence is squared before the PSD analysis. For example, in the case of  music11, the sound wave data should 
always be squared for PSD; the authors claim that this squared data is loudness. Similarly, in the case of the 
HMF  model10, the authors always take a square of the original variables to obtain the pink noise. In both 
cases, the original data before taking the square shows no pink noise. In the case of the electric current, this 
procedure is not manifest, although the seminal  paper1 emphasizes the square of voltage V2 for PSD.

From the above five clues, we speculate that the beats of many waves with accumulating frequencies may be the 
origin of 1/f noise. A simple superposition of two waves sin(ωt + �t)+ sin(ωt − �t) = 2 cos(�t) sin(ωt) with 
ω ≫ � > 0 has no low frequency component around � in the PSD. On the other hand, the square of the super-
posed wave above has a low-frequency signal, i.e., the beats, around 2� in its PSD. Incidentally, it is sometimes 
confusing that the sound wave beat is “audible” although the PSD of the original superposition of the two waves 
does not show the corresponding low-frequency signal.

The above argument reminds us of a typical musical instrument, the  Theremin12, which uses the wave beat. 
By mixing the high-frequency signals of 1000 kHz and 999.560 kHz generated by an electric circuit, the low-
frequency signal of 440 Hz can be extracted as audible sound. The latter frequency can be varied slightly by 
the player’s hand, antenna distance, and capacitance to produce the desired frequency signal. Thus amplitude 
modulation can produce arbitrary low-frequency signals within a small-size system. The modulated signal has 
no intrinsic memory and has nothing to do with dissipation.

Another familiar device is the AM radio which clearly shows the wave beat or amplitude modulation (AM). 
By using 526.5 kHz to 1606.5 kHz radio waves, the low-frequency audible signal is extracted. In this case, the 
rectification (demodulation) process is essential to obtain audible low-frequency signals. This demodulation 
process is also essential for the pink noise in our proposal. In later sections, we will see a variety of pink noises 
in the many ways to demodulate.

The above five points will also be an elementary verification of our proposal. This will be discussed in later 
sections.

There appear to be several causes of the wave beat that forms pink noise, but the concentration of the wave 
frequencies is the essence of low-frequency signals. We will now focus on such causes separately in the following 
sections: (a) synchronization, (b) resonance, and (c) infrared divergence.

Beats from synchronization
In this section, we will analyze the cause of wave beats, especially when the frequencies of the waves spontane-
ously approach with each other. We consider cooperative systems that exhibit this behavior.

Exponential approach. The most typical type of synchronization would be the exponential approach, such 
as in the case of the Kuramoto  model13, ω = e−�t where ω is the frequency and � is the approach speed, and t is 
the time. Then the frequency distribution function P(ω) and the time distribution function p(t) are related to 
each other by P(ω)dω = p(t)dt . If we assume the stationarity of the fluctuation, we set p(t) ≡ p = const . Then,

It is interesting that the exponential function gives the power index exactly −1.

(1)P(ω) = p(t)|dω/dt|−1 = p�−1ω−15ω−1.



3

Vol.:(0123456789)

Scientific Reports |         (2023) 13:8364  | https://doi.org/10.1038/s41598-023-34816-2

www.nature.com/scientificreports/

The observed beat is the interference of the pair of frequency distributions above, and the beat frequency �ω 
has its probability distribution function Q(�ω) as

which again is proportional to (�ω)−1with small modification factor of ln[...�ω] . The detail of the full form 
Q(�ω) depends on the boundaries of the integration domain ω1 < �ω < ω2 . Typical examples are shown in 
Fig. 1.

The pink noise is robust, and the frequency distribution is directly reflected in the PDF of the waves at those 
frequencies,

where ω is a fiducial frequency, c is a mixing constant, ri the Poisson random variable in some range for each 
sinusoid, and i runs from 1 to some upper limit. This general model, though static, represents the superposition 
of accumulating frequencies, including many dynamical systems. This is demonstrated in Fig. 2 where the PSD 
of φ2 is shown.

The pink noise is robust, and the randomization of each phase of the sin-wave does not change the PDF except 
that the power index is slightly reduced, as shown in Fig. 3.

It is essential that the square of the signal φ2 does show pink noise in PSD as in Fig. 1 while the original signal 
itself φ does not show any feature at low-frequency region as shown in Fig. 4. This fact manifestly demonstrates 
the pink noise comes from the wave beat.

(2)

Q(�ω) =

∫ ω2

ω1

dωP(ω +�ω)P(ω)

=
p2

�2�ω
ln

[
ω2(ω1 +�ω)

ω1(ω2 +�ω)

]

(3)φ(t) =
∑

i

sin
(
2πω(1+ ce−ri )t

)
,

Figure 1.  Examples of Q(�ω) in Eq. (2) for the cases p = 1, � = 1,ω2 = 105 and ω1 = 10−4, 10−6 (solid and 
dashed curves, respectively). The detailed behavior of Q(�ω) depends on the upper and lower bounds of the 
integration.

Figure 2.  The PSD of φ2 is shown with ω = 10 , c = 0.2 , and r is a random field in the range [0, 30]. One 
thousand sine waves are superimposed according to Eq. (3). The power index can change up to about 0.1 for 
each run. This PDF shows the pink noise of index −1 for four decades.
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Power approach. Another popular type of synchronization would be the power approach ω = t−α . Repeat-
ing the same calculations as above, we obtain the frequency distribution function as

where c ≡ pα−1,β ≡
(
1+ 1

α

)
. The probability distribution function Q(�w) of the beat frequency Q(�w) is 

given by

Then,

if we expand with respect to small ω1 and small �ω. The exponent is less than −1 for α > 0 , and greater than −1 
for α < 0 but the fiducial power is −1 . Typical examples are shown in Fig. 5.

A typical wave signal can be constructed as before,

and PSD for φ2 are shown in Fig. 6 for α = 3 , and in Fig. 7 for α = −3.
Although the above demonstrations are typical simple models of the waves with accumulating frequencies, 

the frequencies are fixed. However, it is also possible to consider dynamical cooperative systems with time-
dependent frequencies, and they often show pink noise; macroscopic coupled spin  models14 and the Hamiltonian 

(4)
P(ω) = p(t)

︸︷︷︸

p const.

|dω/dt|−1 = cω−β

(5)Q(�ω) =

∫ ω2

ω1

dωP(ω +�ω)P(ω)

(6)

Q(�ω) =
1

�ω(1− β)
[

c2ω1−β(�ω + ω)1−β
2F1

(

1, 2− 2β; 2− β;−
ω

�ω

)]ω2

ω1

∝ �ω−1−(2/α),

(7)φ =
∑

i

sin
(
2πω(1+ cr−α

i )t
)
,

Figure 3.  Same as Fig. 2, but the sine waves are superimposed with random phase θi , (0 ≤ θi < 2π) and the 
random amplitude ai (0 ≤ ai ≤ 1) for each: φ(t) =

∑

i ai sin
(
2πω(1+ ce−ri )t + θi

)
 . The power index drops a 

bit to −0.9 , but this PDF shows the robustness of the pink noise from the wave beat.

Figure 4.  Same as Fig. 2, but this is PDF for the original signal φ . Pink noise never appears in this case, 
indicating that the noise arises from the wave beat.
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mean-field  model10. Since the discussion of these is beyond the scope of this paper, we will cover them in a 
separate paper soon.

Figure 5.  Examples of Q(�ω) for the cases p = 1, � = 1,ω2 = 105 and ω1 = 10−4, c = 1,β = 1.2 and 1.33 
(solid and dashed curves, respectively).

Figure 6.  The PSD is shown for φ2 with α = 3,ω = 10 , c = 0.3 , and ri is a random field in the range [0,20]. 
One hundred sine waves are superimposed according to Eq. (7). This PDF shows the pink noise of index −1.4 
for four decades.

Figure 7.  The PSD is shown for φ2 with α = −3,ω = 10, c = 0.03 , and ri is a random field in the range [0,1]. 
One thousand sine waves are superimposed according to Eq. (7). This PDF shows the pink noise of index −0.8 
for three decades.
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Beats from resonance
We now consider the resonance, which produces the spontaneous concentration of frequencies and the wave 
beats. When the system with the intrinsic eigenfrequency � is stimulated (repeatedly), it emits the wave mode of 
the frequency � as well as those close to � . Resonance thus ensures the concentration of frequencies in a small 
range. Since these frequencies are close to each other, the waves of these frequencies beat and produce a signal 
in low-frequency regions.

Suppose a typical case of the resonance characterized by the resonance curve, the Cauchy distribution

where � is the resonance frequency and κ characterizes the sharpness of the resonance. We will interpret this 
function R[ω] as proportional to the number of ω-modes in the resonator. Then the frequency distribution func-
tion P(ω) is given by the inverse function of R[ω] , as

where we have chosen the upper half of the inverse of R[ω] , since the lower half is symmetric to the upper half.
It is possible to make a naive approximation of Eq. (9) by the exponential function ω = Ae−Bt , where the 

constants A, B are determined at the inflection point of Eq. (9), as shown in Fig. 8. We already know that this 
exponential function gives the exact pink noise of slope −1 in PSD.

This is demonstrated in Fig. 9, where the PSD is plotted for the square φ(t)2 of the time sequence φ(t) gener-
ated by

(8)R[ω] =
1

(
κ
2

)2
+ (ω −�)2

,

(9)ω = R−1[t] =

√

−t
(
κ2t − 4

)

2t
+�,

(10)φ(t) =
∑

i

sin
(
2πR−1(ri)t

)
.

Figure 8.  Demonstration of Eq. (9) in the log-linear graph. The function ω(t) can be approximated by the 
exponential function (dotted straight line) with the same inclination at the inflection point of ω(t) , especially in 
the large-t range that is relevant for the low-frequency beats.

Figure 9.  PSD of the time sequence φ(t)2 generated by Eq. (10) with κ = 0.1,� = 10, and the domain of the 
random field ri is [0, 10]. We have superimposed 100 sine waves, and this PSD shows the approximate power law 
of the index −1.3.
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However, the system analysis is not easy. Using the relation P(ω)dω = p(t)dt with p(t) ≡ p = const , we 
obtain the frequency distribution function P(ω) as

which cannot be reduced to a single power form if κ is finite.
Further complications arise from the actual resonant system, which has complicated overtones and multiple 

eigenfrequencies that systematically contribute to the pink noise. A fully systematic derivation of pink noise for 
each concrete resonant system requires further investigation. Since this is beyond the scope of this paper, we do 
not discuss it further here, but it will be analyzed in a separate paper soon.

Beats from IR divergence
We now consider the third cause of the spontaneous concentration of frequencies from the infrared divergence. 
This class of systems exhibiting pink noise is quite diverse but can be reduced to the system composed of electrons 
and photons described by electrodynamics.

In this context, a quantum origin of pink noise was once proposed by using quantum interference of an 
electron between its pre- and post-scattering  states15,16. They claim that the post-scattered electron state, after 
emission of a photon of frequency ω , and the pre-scattered electron state interfere with each other to produce a 
beat of frequency ω . However, this theory has been  criticized17,18, mainly because quantum interference does not 
really occur; the pre- and post-scattered states are orthogonal with each other and have no chance to interfere. 
Even the introduction of the coherent state basis does not work. Incidentally, some other criticisms are not valid.

The essence of the pink noise may not be the self-interference of an electron, but the phase modulation of 
more macroscopic semi-classical objects associated with the emission of massless particles. In this section, we 
focus on such a semi-classical description of electromagnetism.

In the semiconductor, the electrons can be classical beyond the scale of the free streaming length, about 
10 nm, which is several tends of the lattice size. When the system size is about 1 mm, there are 1010 such local 
coherent elements in the system. The electrons in such a coherent element can be described in terms of the wave 
packet,

where φ(k) represents the weight function and vg = dω/dk is the group  velocity19. The center of the wave 
packet represents the classical limit of the electron motion, and the expanse of the wave packet can represent 
interference.

When the wave packet of electrons meets impurity, the emission of photons changes its frequency by the 
emitted energy. The photon emission probability of energy �ω is proportional to ω−1and the frequency modula-
tion of the wave packet amounts to ω : this is the infrared divergence in the quantum electrodynamics (QED)20.

These wave packets in the system propagate in the same direction and cascade, bifurcate, and coalesce; 
the frequency modulation mixes up with each other along their propagation. We assume that the fiducial 
frequency of the wave packet is ω0 , which is determined by the applied voltage and the conductivity. Then 
the original wave packets transform into the superposition of an enormous number of local packets with 
frequencies ω0 − ωi , i = 1, 2, . . . . Each pair of these packets makes beats with all the possible differences 
(ω0 − ωi)−

(
ω0 − ωj

)
= ωj − ωi . The system is thus filled with enormous number N of local wave packets 

ψi(x, t) , i = 1, 2, . . . N . The total electric current is the superposition of all of them

where the quadratic form of the wave packets corresponds to the demodulation of each packet, and thus the 
pink noise appears in this current. This process is the same as the previous case of the exponential approach, 
and many wave packets with slightly different frequencies interfere to give the wave beat as in Eq. (2) and thus 
the pink noise appears as in Fig. 2.

It is important to notice that the full quantum interference, including the emitted photons, is not needed for 
generating pink noise, but a tremendous number of wave packets with synchronized waves are crucial. The 
emitted photons are easily absorbed in the system, and therefore the Faraday cage surrounding the system, if 
any, does not affect the current fluctuations at  all18.

In this context, the coherent dressed state formalism for QED was developed to cancel the infrared divergence 
associated with the massless  photon21,22. Although most authors assume (semi-)classical background currents 
ab initio, the classical degrees of freedom are not correctly derived. The derivation of the classical degrees of 
freedom in QED is possible in the closed time-path formalism of the effective action associated with an unstable 
state. The IR divergence of the theory requires the separation of the classical statistical kernel from the complex 
effective action. Then the Langevin equation with classical noise is derived from the effective action and can 
describe the classical evolution of  currents23.

This formalism requires a more systematic discussion than we can give here. However, we will report this 
theory in a separate paper, including the classical-quantum interference.

(11)P(ω) = p|dω/dt|−1 =
32p(ω −�)

(
κ2 + 4(ω −�)2

)2
,

(12)ψ(x, t) = ei(k0x−ω0t)

∫

φ
(
k0 + k′

)
exp

[
ik′

(
x − vgt

)]
dk′

(13)
−→
J =

e

2im

N∑

i=1

〈

ψi(x, t)
†−→∇ ψi(x, t)− ψi(x, t)

−→
∇ ψi(x, t)

†
〉

,
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Discussions
So far, we have proposed three kinds of origin of the synchronizing waves, which give systematic beats and pro-
duce pink noise. Since the pink noise is generated by the wave beat or the amplitude modulation, any demodula-
tion process is required for observation. This demodulation process may be (a) intrinsic mechanisms associated 
with the system or (b) operational processes associated with the data reduction for PSD. In either case, the 
demodulation process provides robustness and a variety of pink noise. This section is devoted to showing some 
examples of such robustness and variety. 

 1. Fiducial The fiducial signal is the one discussed in "Exponential approach", with the same parameters of 
Fig. 2: ω = 10 , c = 0.2 , and ri is a random field in the range [0, 30]. There, 103 sinusoids are superimposed 
according to Eq. (7). The squared signal φ2shows a clear pink noise of slope −1.0 as in Fig. 2.

 2. The threshold for φ2 We set the new data zero for the φ2 data that is smaller than the mean and leave the 
other data as they are. The PSD shows pink noise with a slope of −1.0 , almost unchanged from the fidu-
cial case. This case may apply to the nerve system, where only a voltage greater than some threshold can 
produce a spike signal.

 3. On–off threshold for φ2 We set the new data zero for the φ2 data that is less than the mean and set the other 
data to 1. The PSD shows pink noise with a slope of −0.94.

 4. On–off inverse threshold for φ2 This is the opposite of case 3. We set the value 1 for the φ2 data that is smaller 
than the mean and set the other φ2data to 0. The PSD shows pink noise with a slope of −0.94 , the same as 
in case 3.

 5. Threshold for original data φ we set the new data zero for the φ data smaller than the mean and set the other 
data as is. The PSD shows pink noise with a slope of −0.98.

 6. Rectification of the original data φ We set the new data to zero for the φ data that is negative and leave the 
other data as is. The PSD shows pink noise with a slope of −1.2 . This may apply to some electric circuits 
containing transistors, diodes, and vacuum tubes.

 7. Sequence of locally averaged φ2 We divide the entire time sequence of φ into 103 segments and apply a 
quadratic average in each segment. The PSD shows pink noise with a slope of −1.1 . This is the data treat-
ment in the original  experiment1.

 8. Sequence of locally averaged φ Same as case 7, but we apply a simple average in each segment. The PSD 
shows NO pink noise, and the power is positive +0.8.

 9. Coarse time resolution for φ2 We reduce the number of sample points to half of the original. The PSD shows 
an almost pink noise with a slope of −1.1.

 10. Fewer superimposed waves We reduce the number of superimposed waves from the fiducial 103 to 10. The 
PSD shows NO pink noise.

 11. More superimposed waves We increase the number of superimposed waves from the fiducial 103 to 104 . The 
PSD shows pink noise with a power of −0.94.

 12. Longer time sequence We extend the time sequence from the fiducial 104 to 105 . The PSD shows pink noise 
with a slope of −1.0 ; the same as before, but with a power law extended by a decade.

 13. Multiple fiducial frequencies We changed the fiducial frequency from the original single to 5, randomly 
selected from 0 to 20. The PSD shows pink noise with a slope of −1.5.

As examined above, there are multiple demodulation processes. They are classified as (a) system-intrinsic and 
(b) operational in the data reduction, although the classification is not exclusive. Examples of (a) are threshold-
ing and rectification: cases 3,4,5,6. Examples of (b) are data squaring: cases 1, 2, 7. Cases 9, 11, 12, 13 show some 
robustness of pink noise.

We have considered pink noise widely by defining the noise with power-law of the index −α , ( 0.5 < α < 1.5 ) 
and studied a model which shows this behavior. However, there is a class of systems that shows exactly the power 
−1 . Our model cannot explain this exact power −1 , except the exponential approach in Sect. "Exponential 
approach". We would like to explore how extent the exponential approach model can be general in the future.

Conclusions and prospects
We have discussed the origin of pink noise from the beat of waves with accumulating frequencies. We have 
examined three possible causes for this cooperative effect: synchronization, resonance, and IR divergence. There 
may be more mechanisms. We point out the verifiability/falsifiability of our model based on the five crucial 
observations for the pink noise in Sect. "Method: some crucial clues for pink noise". 

1. Wave The wave is essential for producing beat and amplitude modulation. The wave may be hidden inside 
the system, and the data may be obtained after it passes through the threshold. If we cannot find a coherent 
wave in the system, our model cannot be applied.

2. Small system and apparent long memory The Wiener-Khinchin theorem, when applied to the pink noise, 
may indicate an extremely long memory. However, according to our model, this long memory is not indis-
pensable. Our model will not be essential if we find real long memory in the system that shows pink noise.

3. Apparent no lower cutoff in the PSD The beat of the waves with accumulating frequencies or the amplitude 
modulation can yield an infinitely low-frequency signal from inside a finite system within the observational 
constraints. Therefore, if an intrinsic lower-cutoff frequency is found in the pink noise, our model cannot 
be applied.
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4. Independence from dissipation The beat of the wave or the amplitude modulation is a secondary fluctua-
tion caused by wave synthesis. Therefore, the dissipation may destroy the pink noise because it may cancel 
the fragile wave beats.

5. Square of the original signal (necessity of the demodulation process) The amplitude modulation needs 
some demodulation process for observation. The primary fluctuations before the demodulation do not appear 
in the PSD. Our model for pink noise predicts the demodulation process as either (a) intrinsic to the system 
or (b) operational in the data reduction. If the demodulation is found in the system of pink noise, and the 
pink noise disappears when the demodulation process is removed, then our model is strongly favored.

Although we have proposed a basic model of pink noise, we still have many problems with elaborating on the 
present formalism. Some have already been described in appropriate places with the keyword ’separate paper’. 
They are dynamical cooperative systems, actual resonant systems, and systems with IR divergence. Among them, 
we summarize the possibly resonant systems in Table 1.

The list in Table 1 is tentative and imperfect. It will be completed in our future publications, including the 
verification of our simple pink noise model.

Data availibility
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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