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This paper investigates to what extent there is a ‘traditional’ career among individuals with a Ph.D. in 
a science, technology, engineering, or math (STEM) discipline. We use longitudinal data that follows 
the first 7–9 years of post‑conferral employment among scientists who attained their degree in the 
U.S. between 2000 and 2008. We use three methods to identify a traditional career. The first two 
emphasize those most commonly observed, with two notions of commonality; the third compares 
the observed careers with archetypes defined by the academic pipeline. Our analysis includes the use 
of machine‑learning methods to find patterns in careers; this paper is the first to use such methods 
in this setting. We find that if there is a modal, or traditional, science career, it is in non‑academic 
employment. However, given the diversity of pathways observed, we offer the observation that 
traditional is a poor descriptor of science careers.

What is a typical career for a Ph.D. scientist? Is there a professional path that merits characterization as ‘tradi-
tional’ or ‘nontraditional?’ There are two primary ways to answer this question. The first is to have a standard 
path determined by preference, expectation, or a hierarchy of potential options, and the second is for a standard 
to be determined by patterns among observed careers. In informal parlance, this is the difference between defin-
ing traditional as the ‘ideal’ in the former or the ‘real’ in the latter. The two are neither mutually exclusive nor 
exhaustive, but there is an imbalance in research and discussion between the two.

Given the two potential definitions of tradition as ideal versus real, what are the ideal and real science careers? 
The former is not necessarily explicitly chosen or agreed upon. However, careers in science are often expressed 
as a pipeline: educational and workforce processes that are linear and path dependent, with attrition at every 
stage and each stage necessary for the next. This attrition-focused framework creates the de facto ideal career as 
the job representing never have leaked: a tenured research professor. The pipeline has long been criticized for 
its supply-side orientation, its propensity to incorrectly predict worker shortages, and its inability to account 
for varied career paths, among numerous other  shortcomings1–5. Despite these criticisms, the pipeline persists 
as the default frame for discussing career paths in both the national STEM workforce and academia writ large, 
leaving a tenured academic as the ideal career. In the past few years, over a dozen new articles were published 
about the STEM pipeline, tenure pipeline, or the STEM-tenure  pipeline6–22.

In this paper, we counterbalance the pipeline ‘ideal’ career with ‘real’ observations, and analyze the career 
trajectories of 9000 STEM Ph.D.s who graduated from a U.S. university between 2000 and 2008. We use up to 
nine years of longitudinal data on each STEM Ph.D. from the Survey of Doctorate Recipients (SDR) to identify, 
to the extent that it exists, a traditional career for a Ph.D. scientist based on observed trajectories. Our aim is to 
add evidence to both offset the emphasis on the pipeline and to help scientists making career choices by giving 
them rich information into their labor market. Aware that the ‘ideal’ career is influenced by expectations in 
professional culture, and that as researchers we are embedded in that culture, we apply multiple techniques in 
the identification of the ‘real’ career, including machine learning (ML). The use of ML methods is not completely 
insulated from researcher influences, but privileges algorithmic identification of data patterns.
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Data and methods
We integrate data from the Survey of Earned Doctorates (SED) and the Survey of Doctorate Recipients (SDR). 
The SED is a census of all graduates earning a research doctorate each year. The SED captures information about 
personal demographics, Ph.D. field and institution, and employment intentions (i.e., where the individual has 
accepted, but not started, employment). A subset of individuals from the SED are followed longitudinally in 
the SDR. The SDR captures information about these graduates once they enter the workforce, including type of 
employment and changes in employment. The SED subsample followed in the SDR is linked at the person level.

STEM fields are defined based on the NSF’s Science, Engineering and Health (SEH) definition used in the 
SED and SDR. This a slightly broader definition of STEM which includes the physical, life, social, engineering, 
and mathematical sciences as well as health sciences (e.g., physiology and nursing science), and some education 
and business and management degrees. Rather than construct competing or narrower definitions of STEM, we 
defer to the definition used by the National Science Foundation in the data but also show our results by discipline. 
Our sample includes doctoral recipients who responded to the SED at the time of Ph.D. conferral and in two 
post-conferral waves of the SDR within a timeframe specified below. These criteria capture approximately 9076 
doctoral recipients in all STEM disciplines (4072 women and 5004 men) who graduated between 2000 and 2008.

There are three career observations per doctoral recipient in our data: placement (from the SED), 3–5 years 
after Ph.D. conferral (SDR), and 7–9 years after Ph.D. conferral (SDR). In each of the three observations, there are 
different employment states. At Ph.D. conferral, these are the placements that graduates have secured: academic, 
nonacademic, postdoctoral fellowship, and not working (or not placed). At 3–5 and 7–9 years from conferral, 
these are employment positions: tenure-track, non-tenure-track academic (research, teaching, research and 
teaching, neither research nor teaching), nonacademic, postdoctoral fellowship, and not working. An ordered 
set of employment states for an individual forms an individual trajectory (career path).

We use three methods to identify patterns in observed careers. First, we use an empirically driven, bottom-
up categorization: we examine the most common trajectories, treating each sequence of states as a unique pat-
tern. Second, we use a machine learning technique, algorithmic sequence analysis, which is another bottom-up 
approach that consolidates trajectories by shared subsequences. Finally, we classify trajectories with types defined 
by the pipeline to compare the applicability of the most common framework to observed careers.

To our knowledge, we are the first to apply machine-learning methods to analyzing science careers. The 
machine learning analysis uses the R package,  TraMineR23. The trajectory analysis is a two-step process. First, the 
distance between each unique trajectory is calculated. Next, the trajectories are joined into agglomerating clusters, 
sequentially. To join, the algorithm iterates through each trajectory’s distance metric and joins the two closest 
into a cluster, eventually joining clusters with more clusters, until they form a single cluster. In agglomerative 
clustering, the algorithm starts with k = N unique trajectories, and groups the remaining trajectories iteratively 
by clustering the trajectories with the shortest distance between them into a group. This continues until k = 1 
cluster remains. Agglomerative clustering seeks to minimize the distance between the trajectories within each 
cluster (maximizing similarity within the trajectory cluster) and maximize the distance between trajectories 
across clusters (maximizing the “distinctiveness” of trajectory clusters). We observe 222 unique trajectories; the 
first agglomeration results in 221 clusters (220 unique trajectories and a cluster of the two most similar), the next 
agglomeration results in 220, and then 219, and so forth, until all the trajectories are joined.

Although it is notionally a machine learning technique, the trajectory analysis is influenced by researcher 
decisions. The researcher must decide how to measure distance between trajectories; we use the longest common 
subsequence (LCS), which identifies common sequences of states among trajectories, with no preference for the 
trajectory having a similar start or finish. There are two alternatives: longest common prefix (LCP) and optimal 
matching (OM). The LCP method, as it sounds, weights the start of sequences, which we felt was inappropriate 
for our question. OM calculates the ‘edit distance’ between sequences based on two parameters (insert/deletion 
costs and substitution-cost matrix) set by the researcher; it is more fitting in longer sequences. In addition to 
distance metric, the researcher must decide how many clusters are appropriate in the agglomerative clustering 
process. We tested robustness to this choice, presenting the results from k = 5 clusters to easily compare with the 
five researcher-defined archetypes in the subsequent section. We then compare the algorithmically identified 
clusters of career trajectories with the other two classifications and determine how well the pipeline framework 
fits the evidence.

Human subjects. The RAND Human Subjects Protection Committee (IRB) reviewed and approved this 
study on 6/7/2019. All methods were performed in accordance with the relevant guidelines and regulations.

The study did not collect primary data and instead used secondary data collected by the National Science 
Foundation National Center for Science and Engineering Statistics (NCSES). Written informed consent was 
provided (by NCSES) to survey respondents at each wave of participation in accordance with NSF’s IRB. All 
survey participants were above the age of 18 at time of survey completion.

No new or specific consent was provided for this study as it fell under approved uses of previously collected 
data. NSF NCSES reviewed our application for use of this data to ensure that privacy would be protected through 
anonymous analysis.

Findings
Method one: empirically defined career trajectory classifications. Figure 1 is a histogram show-
ing the distribution of the full sample at each period by employment state. At placement, new Ph.D.s have four 
potential observable positions: academic, not academic, postdoc, or not working. In the years after, academic 
positions are divided into tenure-track or non-tenure-track, which is further divided into research positions, 
teaching positions, research and teaching positions, or neither research nor teaching positions. In this method, 
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we simply observe the distribution of employment in each state and the most common paths. Non-academic is 
the largest group at each observation, postdocs are much less common after initial placement, and not working 
is relatively rare.

In Fig.  2, we show the ten most common observed career trajectories (linking employ-
ment states within an individual), which account for 72% of all careers. The most common path is 

Figure 1.  Distribution of employment of SDR sample by observation.

Figure 2.  Ten most common career trajectories in the SDR.
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Nonacademic–Nonacademic–Nonacademic, followed by Postdoc–Nonacademic–Nonacademic. Again, we do not 
know at placement if the postdoc is academic or nonacademic. The next three are those that end up in tenure 
track, either because they started in an academic position, a postdoc, or a nonacademic position. These are 
followed more trajectories into nonacademic, one more trajectory into tenure-track, and a final trajectory into 
academic non-tenure-track research.

By this metric, if there is a typical career for scientists, it is to move straight from the Ph.D. to a non-academic 
position. However, it is indicative of the variation in pathways that the first nine most commonly observed tra-
jectories arrive at just two outcomes—tenure-track academic and nonacademic. In addition, it is important to 
note that the nonacademic positions are not further delineated by whether they are research positions related 
to the field of PhD, and further research should explore nonacademic positions in more detail than was allowed 
in this project.

Method two: algorithm‑defined career trajectory classifications. Rather than counting the most 
common of unique pathways, in Fig. 3, we show the algorithmically derived trajectory classifications identified 
through the TraMineR distance and clustering sequence. Group 1, about 37% of the observed careers, is pri-

Figure 3.  Classifications of Ph.D. career trajectories, as identified by TraMineR clustering.
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marily not academic at each observation but includes some who are not working at placement or academic at 
placement. Group 2, about 8.3% of observed careers, is distinguished by non-tenure track academic employment 
after initial placement. Group 3, 26.5% of observed careers, is distinguished by tenure track academic employ-
ment after initial placement. Group 4, 15% of observed careers, start in a postdoc and transition to nonacademic. 
Group 5, 12.9% of the sample, is distinguished by multiple postdoc observations (from one or more postdoc 
positions) and move into academic (tenure-track or not).

Recall that the clusters group trajectories based on a distance function calculated over the total observed 
period. Looking to these clusters to make conclusions about typical career paths for scientists, their lack of uni-
formity is indicative of the diversity of career paths, even if those careers arrive at a similar place, and possibly 
less path dependency in trajectories.

We chose five clusters, but the algorithm creates 1–222 groups. If we were to add more clusters, each additional 
cluster would ‘split off ’ from one of the five above, rather than rearrange the current clusters. The central result—
that a bottom-up, pattern-based approach still does not yield uniformity in trajectories toward careers—is not 
sensitive to the choice of group number, up to a point. Having 100 clusters, for example, would result in multiple 
uniform paths, but the number is so high as to be uninformative.

Method three: comparison to researcher‑defined career trajectory classifications. Finally, we 
classify the individual career paths of Ph.D.s into four trajectories. The first three adhere to the pipeline frame-
work: those who never enter the tenure pipeline, remaining non-academic or academic non-tenure-track for 
their career; those who enter the tenure pipeline but drop out; and those who are in the tenure pipeline for 
their career. The fourth trajectory is any remaining career paths, which by design would only include those who 
moved into a tenure track position from outside of a tenure track position, either a nonacademic position or a 
non-tenure-track academic position. For brevity, we refer to these four paths as the “Nevers”, the “Droppers”, the 
“Pipers”, and the “Hoppers”. In order to provide additional detail, we divide the Droppers into two groups based 
on when they were observed in a non-tenure-track positions—early (3–5 years) or late (7–9 years)—bringing 
the total trajectories to five.

The categorization requires some discretion, due to survey limitations in the SED. We cannot tell in an initial 
placement if a postdoctoral fellowship is with an academic or nonacademic research institution; we categorize 
it as part of the academic pipeline, even though some may be at a non-academic research institution. We also 
cannot tell in an initial academic placement if the position is tenure-track or non-tenure-track; we categorize it as 
part of the academic pipeline, even though some may be in non-tenure-track positions. Both of these assumptions 
would overestimate Droppers or Pipers and underestimate Nevers. Finally, the SED employment observation 
indicates where, at the time of conferral, an individual had secured a job. It is likely that graduates ‘not working’ 
at placement secured a job at a later date. We classify individuals who are not working as not in the academic 
pipeline, but individuals could have placed there after graduation.

In Table 1, we present the distribution of observed career trajectories in the SDR by the classifications defined 
above and the number of observations in each discipline. Less than one quarter of trajectories fit the Piper 

Table 1.  Distribution of observed career trajectories in researcher-defined pipeline categories, by discipline. 
Source Authors’ analysis of the SED and the SDR.

Nevers (%) Early droppers (%) Late droppers (%) Pipers (%) Hoppers (%) Nevers + hoppers (%)

All Ph.D.s
N = 9075 39 24 5 21 11 50

Agriculture
N = 351 42 19 6 18 15 57

Biological and Biomedical 
Sciences
N = 1922

24 34 11 17 13 37

Computer and Information 
Sciences
N = 348

47 16 3 24 10 57

Engineering
N = 1595 60 17 2 12 9 69

Health Sciences
N = 599 33 21 5 25 16 49

Mathematics
N = 347 25 17 5 39 15 40

Physical Sciences
N = 1405 39 30 4 18 9 48

Psychology
N = 1195 44 28 3 15 10 54

Social Sciences
N = 1105 30 16 4 37 13 43

Other, Business, Education, 
Humanities
N = 208

38 19 2 30 11 48
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classification, adhering to the pipeline framework. Across all disciplines, 29% drop from the tenure pipeline by 
7–9 years post-conferral after an initial tenure-track placement, 21% remain on the tenure track, 39% of Ph.D.s 
never enter the tenure pipeline, and 11% move at some point from non-tenure track to the tenure track. Com-
bining the last two categories, 50% of observed Ph.D. careers either opt out of the academic pipeline (Nevers) 
or subvert it (Hoppers).

Specific disciplines vary in this distribution. Biological and Biomedical Sciences has the highest share of 
Droppers at both the early (34%) and late (12%) periods. Pipers are most common in Mathematics and Social 
Sciences (39 and 37%), and least common in Engineering and Psychology (12 and 15%). Health sciences has the 
highest share of Hoppers (16%), while Engineering and Physical Sciences have the least (both 9%). Engineering 
and Computer and Information Sciences have the most Nevers (60 and 47%, respectively), while Biological and 
Biomedical Sciences have the least (24%). Given the final column of non-pipeline careers, the pipeline framework 
is least applicable to Engineering (69%), Agriculture (57%), and Computer and Information Sciences (57%). 
In only two disciplines, Mathematics and Biological and Biomedical Sciences, do more half of careers fit in the 
academic pipeline (63 and 60%, respectively).

The distribution looks very similar for men and women. A slightly higher percentage of women are early or 
late Droppers (31 and 6%, compared to 25 and 5%) but slightly lower percentage are Pipers (23% compared to 
24%). Men are a higher percentage of Nevers (46 percent compared to 40%) but have identical percentage of 
Hoppers (13%).

In Table 2, we examine only those individuals who were in a tenure-track position 7–9 years after their Ph.D. 
conferral and show what percentage are Hoppers versus Pipers (these number do not match with Table 2, since 
Hoppers can leave a tenure track position after moving into it). Across all disciplines, 29% of all graduates are in 
a tenure-track position 7–9 years after Ph.D. conferral. Of those in the tenure-track, around a third, or 32%, did 
not follow the pipeline path, but moved at some point from a non-academic position. The discipline with the most 
graduates on the tenure track is Mathematics (52%), and they have a relatively low Hopper share (25%). Social 
Sciences is similar (49% tenure-track, 24% Hopper). Engineering, on the other hand, is only 20% tenure-track 
but 38% Hopper. The highest share of Hoppers in a tenure-track position is in Agriculture (41%).

The differences in the share of tenure-track who are Hoppers does not vary by gender when considering all 
disciplines (both are 32%). In certain disciplines, a higher share of tenure-track men are Hoppers (Agriculture, 
Biological and Biomedical Sciences, Engineering, Physical Sciences, Social Sciences), while in others tenure-track 
women have a higher share of Hoppers (Computer and Information Sciences, Health Sciences, Mathematics, Psy-
chology, and Other). To explore whether there was a pattern within the Hoppers subgroup, we regressed a binary 
variable indicating whether an individual was a Hopper on: individual descriptors (gender, age at conferral, mari-
tal status at conferral), Ph.D. institution descriptors (public, HBCU), Ph.D. department descriptors (the average 
number of publications per faculty member, number of programs, average number of citations per publication, 
percent of faculty that are female), and economic descriptors (an indicator for graduating during a recession). 
We did this for the full population, and the 7–9 year tenure track population, and for separate disciplines. Most 
predictors were not significant in most specifications, and few were significant across specification. We do not 
show the regression output, both for brevity and because we do not want to risk overinterpreting weak results.

Synthesis of findings: real and ideal. Each method in our analysis was chosen deliberately. Method 
1, which is akin to an accounting, establishes modal career trajectories and that the academic “pipeline” is not 
included in them. Method 2, the ML trajectory analysis, offers a way to approach the data while minimizing the 
influence of our own experiences or expectations. It does not require path dependence, though it could detect 

Table 2.  Share of graduates in tenure-track position 7–9 years after Ph.D. conferral, by researcher-defined 
pipeline categories, by discipline. Source Authors’ analysis of the SDR.

All graduates Tenure-track 7–9 years post

Total Ph.D.s
Tenure-track 7–9 years 
post

Share grads on tenure-
track (%) Tenure-track hoppers Tenure-track pipers

Share hoppers in tenure-
track (%)

All Ph.D.s 9075 2647 29 841 1806 32

Agriculture 351 107 30 44 63 41

Biological and Biomedical 
Sciences 1922 518 27 187 331 36

Computer and Information 
Sciences 348 117 34 32 85 27

Engineering 1595 315 20 119 196 38

Health Sciences 599 235 39 84 151 36

Mathematics 347 179 52 44 135 25

Physical Sciences 1405 359 26 104 255 29

Psychology 1195 276 23 96 180 35

Social Sciences 1105 541 49 131 410 24

Other, Business, Education, 
Humanities 208 83 40 20 63 24
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it, and does not rank outcomes, only differentiates between them as separate states. In effect, this removes what 
“should” happen in scientist careers and what is “best” from the analysis of the data; it is simply an analysis of 
sequential states. Method 3 offers a contrast to 2, where “should” and “best” are applied to careers via the pipeline 
categorization, allowing for a clear identification of its failures as a heuristic.

Our analysis of observed careers finds that there is no single traditional scientist career; rather, trajectories 
evince numerous pathways. The exception is those that spend their careers outside of academia (from method 
1) have little pathway variation. However, our grouping of ‘all non-academic’ is blunt; with data that supported 
more non-academic categories, we suspect we would find similar diversity in pathways. In addition, we also find 
(from method 2), when the characterization was on commonality between paths, rather than path-dependence, 
that there are diverse ways to arriving at similar positions. Even within tenure-track academics 7–9 years after 
PhD conferral (from method 3), one-third had not followed the pipeline path.

Our findings suggest that the prevailing notion of an ideal career in science as an academic who followed 
the tenure-track—the “pipeline”—has two shortcomings: it is not a common career, and it excludes alternative 
pathways to tenure. The pipeline is not readily applicable to scientist careers, and when it is applied, it renders 
many potentially satisfying careers as suboptimal (to the extent “leaks” are seen as negative outcomes).

We are not the first to find that the pipeline has shortcomings. The pipeline is a supply-focused concept; in 
order for there to be sufficient workers at the end, there must be a large enough initial stock. Its specific applica-
tion to science, technology, engineering, and math (STEM) workers originated in the 1970s, and, beginning in the 
1980s, was used by the National Science Foundation to predict potential future worker shortages in professions 
key to national  competitiveness2. As early as 1992, the House Committee on Science, Space, and Technology 
held hearings on NSF-produced pipeline studies and noted that criticism of the model was  disregarded1,24. Other 
researchers have noted that the prediction for scientist shortages are not  accurate25, partly because a separate 
criticism, that the pipeline does not take into account varied career  paths2,26.

The pipeline’s emphasis on supply-side factors often makes it a default explanation for shortages, giving it a 
central role in discussions of the gender or racial composition of academic  departments26. The lack of diversity 
at senior, tenured levels is often attributed to how slowly changes make their way through the pipeline, and the 
relative “leak” rates of different groups are used to identify potential interventions. Again, the appropriateness of 
the pipeline has also long been criticized in this context as well, for ignoring other structural and cultural barriers 
to success, enabling inaction, and even serving as a deterrent of specific career  paths4,5.

Our findings of numerous pathways not only add to the pipeline criticism, but also suggest an alternative 
metaphor: a lattice, akin to a netting. A lattice supports lateral and forward movement, removes the notion of 
‘leaking,’ and emphasizes numerous pathways over preferred pathways. Lattice pathways, while not required to be 
unidirectional, can still include barriers to progress or participation but offer more than one means of identifying 
them. Further, by eliminating path dependence, the lattice also subverts the debate of predictive shortages, as 
each pathway creates a potential pool for supply. It also naturally enumerates policy interventions. A pipeline’s 
solution centers around more supply in a single path; a lattice identifies numerous supplying paths, or channels, 
that can then be improved or augmented. As a career framework, the lattice could also provide context for future 
studies of career pathways that investigate trajectories as they vary by gender, race, immigration status, Ph.D. 
institution, or other relevant demographic and academic characteristics, or how trajectories are influenced by 
constraints and preferences, such as family-partner coordination or geographic preferences.

Conclusion
This paper examines the career trajectories of Ph.D. scientists for up to 9 years after their Ph.D. conferral in an 
effort to understand what is a traditional career for scientists. Based on commonality alone, the most traditional 
career is to work outside of academia upon graduation. However, further examination and classification of career 
trajectories instead emphasizes the diversity of career pathways into employment states. We found this was the 
case even for tenure-track academics, a third of whom did not follow the pipeline process. This raises the ques-
tion of whether the notion of ‘traditional’ is well applied to scientists.

Our findings have limitations. First, we do not observe full careers; we focus on the first 7–9 years after Ph.D. 
conferral. Second, our understanding of career pathways does not permit a detailed investigation of pathways 
with non-academic employers. In particular, we cannot discern job- or employer-specific tenure, whether the 
non-academic employment is in research or related to the individual’s Ph.D. training, nor if non-academic 
employment is in fact entrepreneurship. Third, our sample, while large, did not have sufficient power to detect 
demographic or academic differences in regression predictions of trajectory type.

The findings of this paper motivate additional research into discipline-specific analysis of trajectories and how 
they relate to labor markets, such as the number of tenure-track positions relative to Ph.D. students, the source 
of funding for graduate students and faculty, and the pay and benefits of non-academic positions. In addition, 
the findings motivate a mapping of non-academic employment with more detailed job information.

Data availability
The analyses in this study were conducted using restricted-use data files from the Survey of Earned Doctorates 
and the Survey of Doctoral Recipients under data license #156. Data from these sources cannot be shared publicly 
because of the restricted use guidelines put in place by NCSES. IPEDS data is publicly available and accessible 
at https:// nces. ed. gov/ ipeds/ use- the- data, and data from the National Research Council is available at https:// 
www. nap. edu/ downl oad/ 12994. Our data are restricted-use and we cannot provide even a minimal data set 
due to the sensitivity of the data and the terms of our usage license. A project application for restricted access 
to NCSES data (such as the SED/DRF and SDR used in this project) can be submitted through this NSF portal. 
The application needs to include the data requirements (data products, years), a research plan, and a list of the 

https://nces.ed.gov/ipeds/use-the-data
https://www.nap.edu/download/12994
https://www.nap.edu/download/12994


8

Vol:.(1234567890)

Scientific Reports |         (2023) 13:8119  | https://doi.org/10.1038/s41598-023-34809-1

www.nature.com/scientificreports/

specific restricted-use variables needed (here’s a recent data dictionary). After the application is approved, the 
researcher must complete a notarized license application, which includes NCSES security training. Upon license 
approval, researchers are able to access restricted-use data, either by remoting into a secure portal or visiting a 
Federal Statistical Research Data Center. The application and licensing process is currently overseen by Darius 
Singpurwalla, who can be reached at NCSES_Licensing@nsf.gov or dsingpur@nsf.gov.
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