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Diverse electrical responses 
in a network of fractional‑order 
conductance‑based excitable 
Morris‑Lecar systems
Sanjeev K. Sharma 1,7, Argha Mondal 2,3,7*, Eva Kaslik 4,5*, Chittaranjan Hens 6 & 
Chris G. Antonopoulos 3*

The diverse excitabilities of cells often produce various spiking‑bursting oscillations that are found in 
the neural system. We establish the ability of a fractional‑order excitable neuron model with Caputo’s 
fractional derivative to analyze the effects of its dynamics on the spike train features observed in 
our results. The significance of this generalization relies on a theoretical framework of the model in 
which memory and hereditary properties are considered. Employing the fractional exponent, we first 
provide information about the variations in electrical activities. We deal with the 2D class I and class II 
excitable Morris‑Lecar (M‑L) neuron models that show the alternation of spiking and bursting features 
including MMOs & MMBOs of an uncoupled fractional‑order neuron. We then extend the study with 
the 3D slow‑fast M‑L model in the fractional domain. The considered approach establishes a way 
to describe various characteristics similarities between fractional‑order and classical integer‑order 
dynamics. Using the stability and bifurcation analysis, we discuss different parameter spaces where 
the quiescent state emerges in uncoupled neurons. We show the characteristics consistent with the 
analytical results. Next, the Erdös‑Rényi network of desynchronized mixed neurons (oscillatory and 
excitable) is constructed that is coupled through membrane voltage. It can generate complex firing 
activities where quiescent neurons start to fire. Furthermore, we have shown that increasing coupling 
can create cluster synchronization, and eventually it can enable the network to fire in unison. Based 
on cluster synchronization, we develop a reduced‑order model which can capture the activities of 
the entire network. Our results reveal that the effect of fractional‑order depends on the synaptic 
connectivity and the memory trace of the system. Additionally, the dynamics captures spike frequency 
adaptation and spike latency that occur over multiple timescales as the effects of fractional derivative, 
which has been observed in neural computation.

Neurons generate their diverse spike responses in different ways to the inputs. This shows important compu-
tational characteristics depending on the stimulus variance. Various electrical responses can be reproduced 
mathematically when we model the membrane voltage dynamics using coupled nonlinear ODEs with different 
suitable parameters and time  scales1–3. Some excitable models exhibit spontaneous firing responses with multiple 
timescale dynamics, in particular the bursting behavior, consisting of periods of repetitive firing interspersed 
by quiescent  phases2. The underlying mechanism of information processing depends on the cellular membrane 
voltages. However, a detailed description of diverse firing features and its characteristics cannot be revealed 
from a single neuron or coupled neurons using mathematical modeling. This shows a fundamental challenge 
in dynamical systems as the transition phases across different firing responses or the emergence of scale invari-
ance in membrane voltage is always  restricted2 due to various parameter regimes in neural computation. Recent 
research has been focused on fractional-order dynamics (FOD)4–9 in computational neurosciences, that can 
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generate (depending on fractional order exponents) a wide range of firing phenomena or multiple timescale 
 dynamics10–21. As such, a deeper understanding has been reached in different areas of biophysical  processes11,22–28, 
showing more realistic dynamical  features29–33. Fractional-order derivatives provide a mathematical framework 
in which memory dependent properties are considered. Earlier, a  geometrical7,34 interpretation for the fractional-
order derivative was introduced, which suggests that inhomogeneity of the time scale exists in the system. It 
may have an impact on the delays of signals or history dependent activities in comparison to the temporal order 
dynamics. In the fractional-order domain, the present state of the system is influenced by the previous states. 
History dependent spiking features are important, as the neuronal activities develop over time and continuously 
integrate the previous  information9,35. Fractional-order neuronal models have been applied to study different 
firing  responses13,18,19,36,37, firing rates and spike frequency adaptation both theoretically and experimentally. For 
some fractional-orders less than one, initially, the voltage increases faster, however, it reaches the steady state 
condition, i.e., quiescent state after longer time duration. Neurons can show adaptation in the fractional domain 
when we scale the input stimulus. The single spikes and various bursting maintain different information. The 
adaptation depends on the fractional exponent and the mean firing rates can change and adapt to the variations 
in the stimulus. The spike frequency adaptation follows power law dynamics in the fractional-order  domain10,18,38.

The primary goal of the paper is to provide a brief description in understanding the effects of fractional-
order derivative on the electrical activities of single M-L spiking neurons with class I & class II excitabilities and 
the slow-fast M-L  neurons1,2,39 with its network architecture. One approach to study such firing characteristics 
and adaptation is to consider a conductance-based model that explores the intrinsic dynamics underlying the 
fractional-order derivatives. Previous works have investigated the various spiking responses depending on vari-
ous parameter regimes, however, FOD can itself explore diverse firing  responses13,16. The M-L models are taken 
into account for their diverse responses ranging from spiking to bursting. We consider different regimes in 
the parameter space of the M-L model: tonic spiking and fast spiking. Further, the model is extended to its 3D 
counterpart, where the applied current, I is not constant, but rather varies with time. We consider the fractional-
order as the predominant parameter in the system and when it changes slowly, the spike transitions occur and 
we observe mixed-mode oscillations (MMOs) and mixed-mode bursting oscillations (MMBOs). It is one of the 
most interesting neuronal oscillations that emerge from the electrical  activities40,41. MMOs are used to describe 
the alternating trajectories between small and large amplitude oscillations (SAOs and LAOs)42,43. These make 
the system fascinating and the output provides interesting and potential applications in a dynamical system. 
The emergence of MMBOs creates a spike adding mechanism. Earlier, it was observed that the MMOs reviewed 
the dynamical and neuronal behavior of locomotion or  breathing44,45. It was observed in calcium signaling and 
electrocardiac  systems46,47. Krupa et al.48 examined the mechanism of MMOs oscillations in a two-compartmental 
model of dopaminergic neurons in the mammalian brain stem. We also investigate the impact of electrical 
coupling on a mixed population where the neurons are either quiescent or oscillatory. Here, the neurons are 
assumed to be connected through the links of the Erdös-Rényi network. The coupling induces complex firing 
activities such as periodic bursting or spike frequency adaptation for all the nodes in the network. Based on the 
observed synchronization phenomena, a reduced-order model is developed which can produce the activities 
of the entire network.

In our work, we find consistent differences in the characteristics of the neuronal functional behavior using 
the fractional exponent. The fractional-order voltage dynamics can significantly change the spiking features of 
different single neuron  models12–15,17,18,36,37. Realistic features can build the model more sensitive to neuronal 
dynamics, particularly in the potential collective behavior of the network, where past dynamical behavior might 
influence the present states.

Formulation of the excitable model dynamics and some preliminaries
In this section, we describe the fractional-order excitable conductance-based model and review the existence 
of various characteristics observed in cortical  areas2. We establish a particular parameter regime that supports 
the firing features with the variations of fractional exponent. To generate diverse spikes using fractional-order 
dynamics, we study the 2D and 3D M-L models with particular parameters and channel dynamics. Here, we 
choose the two models to separate the effects of fractional derivatives on the dynamical behavior of the model. 
Morris and  Lecar1,2 proposed a simple mathematical model to describe the oscillations in the barnacle giant 
muscle fiber consisting of the membrane voltage equation with instantaneous activation of calcium current and 
an additional recovery equation describing slow activation of potassium current. The 2D M-L model is described 
in a commensurate fractional-order domain as follows

The biophysically motivated excitable model involves a voltage-gated Ca2+ current, delayed rectifier K+ current 
and a leak current respectively. u measures the membrane voltage dynamics and v is the activation variable of K+ 
ion channels. The parameters gCa, gK and gL indicate the maximum conductance functions to Ca2+, K+ and leak 
currents respectively. VCa , VK and VL are the reversal potentials to different ionic current functions. C measures 
the membrane capacitance. φ represents the temperature scaling factor for K+ channel opening. The parameters 
V1 , V2 , V3 and V4 have fixed positive values. I indicates the applied stimulus. We would like to account the effects 
of various injected current stimulus on the fractional-order system with the fractional exponent, α ( 0 < α ≤ 1).

(1)
C
dαu

dtα
= −0.5gCa(u− VCa)((1+ tanh(u− V1))/V2)− vgK (u− VK )− gL(u− VL)+ I = h1(u, v),

dαv

dtα
= φ cosh((u− V3)/2V4)(0.5(1+ tanh((u− V3)/V4))− v) = h2(u, v).
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Slow‑fast dynamical phenomenon. First, we assume the neuron is at the onset of firing and it generates 
spike generation as the control parameter moves slowly. The slow-fast dynamics can be mathematically modeled 
 as1

where ẋ(t) = f (x, z) (fast spiking) and ż(t) = δg(x, z) (slow modulation). x ∈ R
m represents the fast variables 

and z ∈ R
n the slow variables with 0 < δ << 1 measuring the timescale separation parameter.

The following system of ODEs represents the slow-fast 3D M-L model where (u, v) denote the fast subsystem 
and w slow variable. The fractional-order modified 3D M-L  model1,13 is presented as

The system has the following characteristics. The system variable w is the external injected current which fol-
lows the power law dynamics in the fractional system and characterizes the memory effect of the membrane 
 potential1,13,16. The parameters V1, V2, V3 and V4 are suitably selected for the hyperbolic functions in order to 
explain that they can reach their equilibrium points instantaneously. The parameter value µ is less than 1 i.e., 
0 < µ < 1 which measures the ratio of time scale between oscillations and modulation. Lundstrom et al.10 studied 
that pyramidal neurons can act as fractional differentiators of the stimulus amplitude envelope for this type of 
input. FOD can generalize the derivative operator such that, to obtain the first order derivative of a function, 
differentiate twice taking the fractional-order derivative of order α = 1/2 and it results in the first  derivative4,6. 
It filters the response with a decaying time constant that depends on α.

The parameter sets for all the simulation results are considered as (for Eq. 1)1,39 Set I: C = 20, gCa = 4,

gK = 8, gL = 2, VCa = 120, VK = −84, VL = −60, V1 = −1.2, V2 = 18, V3 = 12, V4 = 17.4, φ = 0.067 (for 
class I excitable membrane model) with varying I, Set I: I = 40 , Set II: I = 45 and for the class II membrane 
model, the parameters are the same described above except Set III: gCa = 4.4, V3 = 2, V4 = 30, φ = 0.04 , and 
I = 100 . In order to study the system dynamics, we first analyze the equilibrium states and then bifurcations. 
Next, we use the following sets of parameters to deal with system (3) and its modified versions by considering 
I(w) = 0.08− 0.03w using C = 1 for the parameter sets I, II and III respectively.

S e t  I :  gCa = 0.9, gK = 2, gL = 0.5, VCa = 1, VK = −0.7, VL = −0.5, V1 = −0.01, V2 = 0.15,

V3(w) = (0.08− w), V4 = 0.04, φ = 1/3, µ = 0.003, V0 = 0.22

S e t  I I :  gCa = 1.36, gK = 2, gL = 0.5, VCa = 1, VK = −0.7, VL = −0.5, V1 = −0.01, V2 = 0.15,

V3(w) = (0.08− w), V4 = 0.16, φ = 1/3, µ = 0.003, V0 = 0.1

S e t  I I I :  gCa = 0.9, gK = 2, gL = 0.5, VCa = 1, VK = −0.7, VL = −0.5, V1 = −0.01, V2 = 0.15,

V3(w) = (0.08− w), V4 = 0.05, φ = 1/3, µ = 0.005, V0 = 0.1

Preliminaries to systems of fractional‑order differential equations
To study the fractional-order M-L model, we consider the familiar definition of the fractional derivative i.e., 
the Caputo fractional-order  derivative6,34. The commensurate fractional-order model with fractional exponent 
α ∈ (0, 1) can be described as

where either X(t) = (u(t), v(t)) ∈ R
2 or X(t) = (u(t), v(t),w(t)) ∈ R

3 , and f = (h1, h2) or f = (f1, f2, f3) for 
2D and 3D cases, respectively. The Caputo fractional differential operator is defined as

where the Gamma function is given by Ŵ(z) =
∫∞
0 e−ssz−1ds . The limits of the integration (i.e., from 0 to t) show 

that, in contrast with the classical integer-order derivative, the fractional-order derivative depends on the whole 
previous history of the function. Hence, due to the non-locality of the Caputo differential operator, a fractional-
order mathematical model is able to reflect memory properties of the system variables. It is important to note 
that for α = 1 , the Caputo derivative converges to the first-order integer derivative. An additional advantage of 
Caputo-type fractional -order derivative over other types of fractional differential operators is that the derivative 
of a constant is zero. It is efficient to integrate all the previous activities of the function weighted by a function 
that follows power-law  dynamics9,14,15.

Remark 3.1  In the investigation of the local stability properties of an equilibrium of a dynamical system, the 
classical Hartman-Grobman linearization theorem plays a fundamental role: it states that the local behavior of 

(2)
ẋ(t) = f (x, z),
ż(t) = δg(x, z),

(3)

C
dαu

dtα
= −0.5gCa(u− 1)((1+ tanh(u− V1))/V2)− vgK (u− VK )− gL(u− VL)+ I(w) = f1(u, v,w),

dαv

dtα
= φ cosh((u− V3)/2V4)(0.5(1+ tanh((u− V3)/V4))− v) = f2(u, v,w),

dαw

dtα
= µ(V0 + u) = f3(u, v,w).

(4)DαX = f (X),

(5)DαX(t) =
dαX

dtα
=

1

Ŵ(1− α)

t∫

0

(t − τ )−α X ′(τ )dτ ,
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a dynamical system in a neighborhood of a hyperbolic equilibrium is qualitatively equivalent to the behavior 
of its linearization near the equilibrium. It is important to remark that a fractional-order counterpart of this 
linearization theorem has been obtained  in30. If X⋆ is an equilibrium of system system (4), i.e. f (X⋆) = 0 , the 
corresponding linearized system at X⋆ is:

where Jf (X⋆) is the Jacobian matrix of the function f computed at X⋆ . Therefore, the equilibrium X⋆ of the non-
linear system (4) is asymptotically stable if and only if the trivial solution of the linearized system (6) is asymp-
totically  stable49–51. Furthermore, based on the well-known Matignon’s  theorem49, the linearized fractional-order 
system (6) is asymptotically stable if and only if | arg(�)| > απ

2  , for any eigenvalue � of the Jacobian matrix Jf (X⋆).

Definition 3.1 If some eigenvalues of the Jacobian matrix Jf (X⋆) satisfy | arg(�)| > απ
2  and some other eigen-

values satisfy | arg(�)| < απ
2  , then the equilibrium X⋆ is a called a saddle point52,53.

Remark 3.2 In a 3D nonlinear fractional-order system, an equilibrium X⋆ is called a saddle of index one if one 
of the eigenvalues of the Jacobian matrix Jf (X⋆) is unstable (i.e. | arg(�1)| < απ

2  ) and other two eigenvalues are 
stable | arg(�2,3)| > απ

2  . On the other hand, if two eigenvalues associated to the equilibrium X⋆ are unstable, 
while only one eigenvalue is stable, the saddle point X⋆ is called saddle of index two53.

We numerically simulated the model (Eqs. 1 and 3) using the L1  scheme4,12,18 and approximated the fractional-
order derivative as described in Appendix.

Qualitative analysis and theoretical considerations
Analysis of the 2D system. System (1) is a particular case of the 2D fractional-order conductance-based 
excitable model:

where u and v are the membrane voltage and the gating variable of the neuron, I is an applied current, Ĩ(u, v) 
represents the ionic current, ℓ(v) is the rate constant for opening ionic channels and v∞(v) represents the fraction 
of open ionic channels at steady state, respectively.

In particular, we have from model (1):

and

The equilibrium points of system (7) are the solutions of the algebraic system:

which is equivalent to

The function I∞(u) satisfies the following basic properties:

• I∞ ∈ C1(R);
• lim

u→−∞
I∞(u) = −∞ and lim

u→∞
I∞(u) = ∞;

• I ′∞ has exactly two real roots umax < umin.

Denoting by Imax = I∞(umax) and Imin = I∞(umin) the maximum and minimum values of I∞ , respectively, the 
function I∞ is increasing on the intervals (−∞, umax] and [umin,∞) and decreasing on the interval (umax , umin).

Hence, depending on the external input I, there are exactly three branches of equilibrium points, denoted by 
(ui(I), v∞(ui(I))) , i ∈ {1, 2, 3} , where:

Consequently, one of the following situations may hold:

• If I < Imin or if I > Imax , then system (1) has a unique equilibrium point.

(6)DαX = Jf (X
⋆)X ,

(7)
{

C · Dαu(t) = I − Ĩ(u, v),
Dαv(t) = φℓ(u)(v∞(u)− v),

(8)Ĩ(u, v) = gCam∞(u)(u− 1)+ gK · v(u− VK )+ gL(u− VL),

m∞(u) =
1

2

(

1+ tanh

(
u− V1

V2

))

, v∞(u) =
1

2

(

1+ tanh

(
u− V3

V4

))

, ℓ(u) = cosh
(u− V3

2V4

)

.

I = Ĩ(u, v), v = v∞(u),

I = Ĩ(u, v∞(u)) := I∞(u), v = v∞(u).

I1 = I∞|(−∞,umax ], u1 : (−∞, Imax] → (−∞, umax], u1(I) = I−1
1 (I)

I2 = I∞|(umax ,umin), u2 : (Imin, Imax) → (umax , umin), u2(I) = I−1
2 (I)

I3 = I∞|[umin ,∞), u3 : [Imin,∞) → [umin,∞), u3(I) = I−1
3 (I)
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• If I = Imin or if I = Imax , then system (1) has two equilibrium points.
• If I ∈ (Imin, Imax) , then system (1) has three equilibrium points.

The Jacobian matrix associated to the system (1) at an arbitrary equilibrium state (u⋆, v⋆) = (u⋆, v∞(u⋆)) is:

In this case, the necessary and sufficient conditions for the asymptotic stability of an equilibrium point (u⋆, v⋆) 
reduce to the following  inequalities54:

where

We first remark that the second branch of equilibrium points is completely unstable. Indeed, any equilibrium 
point (u2(I), v∞(u2(I))) with I ∈ (Imin, Imax) , satisfies I ′∞(u2(I)) < 0 , and hence, δ(u2(I)) < 0 . In fact, the nega-
tive sign of the Jacobian’s determinant guarantees that each equilibrium point of the second branch is a saddle 
point, no matter what fractional-order α is considered in system (7).

On the other hand, along the first and third branches of equilibrium points, it is easy to find that the deter-
minant of Jacobian is positive. Hence, the stability of the equilibrium points particularly depends on the trace τ . 
Obviously, if τ(u⋆) < 0 , the equilibrium point (u⋆, v⋆) is asymptotically stable, irrespective of the fractional-order 
α considered in system (7). However, if τ(u⋆) ≥ 0 , an equilibrium point (u⋆, v⋆) of the first or the third branch 
is asymptotically stable, if and only if

We will further assume that Vk < umax < umin < 1 . We can easily evaluate:

and hence, if (u⋆, v⋆) = (u⋆, v∞(u⋆)) is an equilibrium point of the third branch such that u⋆ > 1 , it follows that 
Ĩu(u

⋆, v∞(u⋆)) > 0 , and hence τ(u⋆) < 0.
Furthermore, we can also express

and hence, if (u⋆, v⋆) is an equilibrium point of the first branch such that u⋆ < VK  , we deduce that 
Ĩu(u

⋆, v∞(u⋆)) > 0 , and similarly as above, we get τ(u⋆) < 0.
Based on the above calculation, we also remark that:

for either um = umax or um = umin , and assuming that φ is small enough, it can be observed that the inequality 
τ(um) > 0 might hold. Therefore, the function τ(u) might have two roots u′ ∈ (VK , umax) and u′′ ∈ (umin, 1) , 
respectively. Based on the numerical data, we can further assume that if they exist, these roots are unique in the 
aforementioned intervals.

In conclusion, the stability of equilibrium states may depend on the fractional-order α only in the following 
two cases:

• the equilibrium point belongs to the first branch and u⋆ ∈ (u′, umax);
• the equilibrium point belongs to the third branch and u⋆ ∈ (umin, u

′′).

In this case, the critical value α⋆ given by (9) corresponds to a Hopf-type bifurcation (i.e. the Jacobian matrix 
has a pair of complex conjugate eigenvalues such that | arg(�)| = απ

2  ). In other words, the position of the Hopf 
bifurcation points in the (I, u)-plane, situated on the first and / or third branches, respectively, depending on 
the fractional-order α considered in system (7). Obviously, this will have a direct effect on the type of spiking 
and bursting behavior both in the 2D system (7) as well as in the 3D slow-fast system, as it will be unveiled in 
the next section.

As an example, first we show the bifurcation scenario of the classical 2D M-L model with Hopf bifurcation 
points by considering I as a bifurcation parameter (Fig. 1a). Next, we consider the effect of fractional order on 
the dynamics of system (1) and showed that how it stabilizes the system as we decrease the value of α (Fig. 1b). 
Then, Fig. 2 presents the phase portraits of the 2D M-L model with the parameters from Set II, for different 

J =
[

−Ĩu(u
⋆, v∞(u⋆))/C − Ĩv(u

⋆, v∞(u⋆))/C
φℓ(u⋆)v′∞(u⋆) − φℓ(u⋆)

]

.

δ(u⋆) > 0 and τ(u⋆) < 2
√

δ(u⋆) cos
(απ

2

)

,

τ(u⋆) = trace(J) = −
1

C
Ĩu(u

⋆, v∞(u⋆))− φℓ(u⋆),

δ(u⋆) = det(J) =
φ

C
ℓ(u⋆)[Ĩu(u⋆, v∞(u⋆))+ v′∞(u⋆) · Ĩv(u⋆, v∞(u⋆))] =

φ

C
ℓ(u⋆)I ′∞(u⋆).

(9)α < α⋆(u⋆) =
2

π
arccos

(
τ(u⋆)

2
√
δ(u⋆)

)

.

Ĩu(u, v∞(u)) = gCa[m′
∞(u)(u− 1)+m∞(u)] + gk · v∞(u)+ gL,

Ĩu(u, v∞(u)) = I ′∞(u)− v′∞(u)Ĩv(u, v∞(u)) = I ′∞(u)− v′∞(u) · gk(u− VK ),

τ(um) = −
1

C

[
I ′∞(um)− v′∞(um) · gk(um − VK )

]
− φℓ(um) =

1

C
v′∞(um) · gk(um − VK )− φℓ(um),
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values of the fractional-order α . In this case, there is only one unstable equilibrium point for the system, namely 
(u⋆, v⋆) = (5.08955, 0.311245) (at the intersection of the nullclines), situated on the third branch. The critical 
value of the fractional-order corresponding to the Hopf bifurcation at the equilibrium point is α⋆ = 0.787825 , 
computed by the formula (9). In the integer-order case, α = 1 , a large-amplitude limit cycle attractor is present, 
corresponding to spiking behavior. As the fractional-order α decreases, the large-amplitude attractive quasi-
periodic limit cycle approaches the unstable equilibrium point and as α approaches the critical value α⋆ for Hopf 

Figure 1.  Bifurcation scenarios of the 2D M-L model (1) for set I and set II. (a) I as a bifurcation parameter: 
HB ( I = 97.65 for α = 1 ) and SN ( I = 39.96 ) represent the existence of Hopf bifurcation and saddle-node 
bifurcation in the system (1). The solid green lines and dotted blue line indicate the stable and unstable 
equilibrium branch of the system respectively. However, the dotted brown line represents the emergence 
unstable limit cycle at HB. (b) I and α as bifurcation parameters: green, blue and black curves represent the 
dynamics of the system (1) at fractional orders 0.75, 0.85, and 1, respectively.

Figure 2.  Phase portraits (including nullclines) in the (u, v)-plane for the 2D Morris-Lecar model for gCa = 4 , 
VCa = 120 , V1 = −1.2 , V2 = 18 , gK = 8 , VK = −84 , gL = 2 , VL = −60 , φ = 0.067 , V3 = 12 , V4 = 17.4 , 
C = 20 , I = 45 with the fractional-orders (from left to right): (a) α = 1 ; (b) α = 0.85 ; (c) α = 0.83 ; (d) α = 0.8 ; 
(e) α = 0.78 , respectively.
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bifurcation, a more complex quasi-periodic orbit emerges, involving smaller-amplitude oscillations around the 
equilibrium, as well as large-amplitude spikes. When α < α⋆ , the equilibrium becomes asymptotically stable. 
In Fig. 3, we show corresponding time series to further verify the numerical results, noting that the computed 
critical values of the fractional-order are α⋆ = 0.757245 for Set I and α⋆ = 0.834537 for Set III, respectively.

Analysis of the 3D system. In line with the previously presented aspects, the 3D slow-fast fractional-
order model (3) can be written as:

where Ĩ(u, v) is given by (8) and

We will assume that I(w) and V3(w) are decreasing functions, and that V0 + VK < 0 (according to the considered 
parameter sets). The unique equilibrium point of system (10) is (u⋆, v⋆,w⋆) , where u⋆ = −V0 , v⋆ = ṽ(u⋆,w⋆) , 
and w⋆ is the unique root of the strictly decreasing function w  → I(w)− Ĩ(−V0, ṽ(−V0,w)).

The Jacobian matrix at the equilibrium point (u⋆, v⋆,w⋆) is

and its charactersitic equation is:

where

(10)







C · Dαu(t) = I(w)− Ĩ(u, v),

Dαv(t) = φℓ̃(u,w)(ṽ(u,w)− v),
Dαw(t) = µ(u+ V0),

ṽ(u,w) =
1

2

(

1+ tanh

(
u− V3(w)

V4

))

, ℓ̃(u,w) = cosh
(u− V3(w)

2V4

)

.

J =





−Ĩu(u
⋆, v⋆)/C − Ĩv(u

⋆, v⋆)/C I ′(w⋆)/C

φℓ̃(u⋆,w⋆)ṽu(u
⋆,w⋆) − φℓ̃(u⋆,w⋆) φℓ̃(u⋆,w⋆)ṽw(u

⋆,w⋆)

µ 0 0



 .

�
3 + a�2 + b�+ c = 0,

Figure 3.  Time series of class I & class II excitable 2D single M-L model (1) for different fractional exponents, 
(a–e) α = 1 , 0.85, 0.83, 0.80, 0.75 with I = 40 ; (f–j) α = 1 , 0.84, 0.82, 0.80, 0.75 with I = 45 (parameter sets I 
and II); and (k–o) α = 1 , 0.86, 0.85, 0.84, 0.81 with I = 100 (parameter set III).
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The positivity of the coefficient c follows from

As c > 0 , it follows that the product of the eigenvalues of the Jacobian matrix is negative, and hence, one of the 
eigenvalues is a negative real number and the other two eigenvalues are either complex conjugated, or are real 
and have the same sign. We will further assume that at least one of the coefficients a or b is negative (based on 
the parameter sets under consideration), and hence, it is clear that the Routh-Hurwitz conditions are not satis-
fied for the characteristic polynomial. Hence, denoting by � the discriminant of the characteristic polynomial, 
we distinguish two cases:

• if � > 0 , the Jacobian matrix J has one negative and two positive eigenvalues, and consequently, the equilib-
rium point (u⋆, v⋆,w⋆) is a saddle point of index two, for any fractional-order α (e.g. in the case of parameters 
from Set I and Set II);

• if � < 0 , the Jacobian matrix J has one negative eigenvalue and two complex conjugate eigenvalues with posi-
tive real part (e.g. in the case of parameters from Set III). Consequently, there exists a critical value α⋆ of the 
fractional-order such that the equilibrium point (u⋆, v⋆,w⋆) is asymptotically stable for α < α⋆ and unstable 
for α > α⋆ . At α = α⋆ , a Hopf-type bifurcation occurs in a neighborhood of the equilibrium point, resulting 
in the appearance of persistent oscillations. The critical value α⋆ is found using the method presented  in55 
( α⋆ = 0.62477 for Set III).

Analysis of diverse oscillatory responses
We start our discussion with the fractional-order class I and class II single M-L neurons and then extend it to the 
slow-fast dynamics. We simulated the spikes from the single model, and the membrane voltage dynamics depends 
on the voltage-gated conductances. The input stimulus is considered as I. We tuned the fractional-order exponent, 
α , with different parameter regimes: tonic spiking and fast spiking zone for class I and class II excitabilities. We 
next show the modulations of the electrical activities for a long time scale and the spike frequency adaptive effects. 
We considered two different suitable current stimuli, I = 40 and 45 for class I neuron and I = 100 for class II 
case. We choose these types of input stimuli as it shows the tonic spiking and fast spiking for the classical-order 
dynamics, however, when we change it in the fractional domain, the dynamical model produces variations in 
the firing features not explored earlier to the best of our knowledge. The bifurcation analysis is performed and 
the numerical results are supported by the stability analysis and there is a good agreement between the analytical 
and numerical findings.

First, we consider the class I excitable M-L neuron with parameter sets I and II. The classical-order neuron 
shows tonic spiking when stimulated, when the input stimulus current is on ( I = 40 ), the neuron continues to 
exhibit a train of spikes, called tonic spiking. Then, as the fractional exponent decreases to α = 0.85 , it shows 
tonic spiking however, the interspike interval increases, i.e., firing frequency decreases. With further decrease 
of α = 0.83 and 0.80, it generates regular bursting and then regular bursting with low firing frequency. Then, it 
goes to quiescent state with a lower fractional exponent α = 0.75 , which is in good agreement with analytical 
results (see Fig. 3a–e). Next, with parameter set II, the integer order single neuron shows fast spiking while the 
input stimulus is on I = 45 . With the decrease of α = 0.84 , the firings transform into regular bursting, then 
with α = 0.82 and 0.80, it produces bursting however, the firing frequency decreases and more burst produces. 
Finally, it switches to quiescent state at α = 0.75 (see Fig. 3f–j).

Class II excitable neurons cannot generate low-frequency spikes. They are either in quiescent states or fire 
a train of spikes with larger frequency by a strong input current. The single M-L neuron with parameter set III 
shows fast spiking with α = 1 for I = 100 . With the decrease of α = 0.86 and 0.85, it generates MMBOs and 
MMOs. The firings switch to regular MMOs with further decrease of α = 0.84 , however it shows MMOs with 
lower firing frequency, i.e., the inter spike interval increases. Then, it goes to quiescent state α = 0.81 , i.e., con-
verges to the fixed point of the system (see Fig. 3k–o).

Now, we extend our study with the excitable slow-fast single 3D M-L neuron model (3) in the fractional 
domain with various parameter regimes that generate different bursting features, i.e., the number of spikes in 
each burst varies with diverse small and large amplitudes. With parameter set I, the single M-L model at α = 1 
produces bursting with several number of spikes in each burst, however with the decrease of α = 0.9 and 0.8, 
the firing frequency decreases with longer time period, i.e., interspike interval increases between two burst and 
the amplitude of each spike decreases in the simultaneous bursting. For this parameter set, the unique fixed 
point is a saddle point of index two. It is observed that spike frequency adaptation occurs with the decrease of 
fractional-order exponents. Then it generates more spike frequency adaptation with further decrease of α = 0.7 
(see Fig. 4a–d). Similarly, with parameter set II, the classical single neuron model shows bursting. With decreasing 
α = 0.95 and 0.75, it shows various bursting and then spiking behavior is observed with spike frequency adapta-
tion and first spike latency at α = 0.5 (see Fig. 4e–h). Finally, for set III, the single neuron changes it behavior 

a =
1

C
Ĩu(u

⋆, v⋆)+ φℓ̃(u⋆,w⋆),

b =
φ

C
ℓ̃(u⋆,w⋆)

[
Ĩu(u

⋆, v⋆)+ Ĩv(u
⋆, v⋆)ṽu(u

⋆,w⋆)
]
−

µ

C
I ′(w⋆),

c =
µφ

C
ℓ̃(u⋆,w⋆)

[
Ĩv(u

⋆, v⋆)ṽw(u
⋆,w⋆)− I ′(w⋆)

]
> 0.

Ĩv(u
⋆, v⋆) = gk(u

⋆ − VK ) = −gk(V0 + Vk) > 0.
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from bursting to fast spiking while α changes from one to α = 0.98 and 0.8. It switches to stable steady state with 
α = 0.6 , i.e., it converges to the locally asymptotically fixed point of the system (see Fig. 4i–l).

Network analysis of the fractional‑order 2D M‑L model
We investigate various dynamics of fractional-order M-L model in a random network architecture, where all the 
neurons are connected randomly with each other and with connection probability p̃ . We construct an Erdös-
Rényi  network56,57 of N = 100 M-L oscillators that is considered with mean node-degree �k� ∼ 7 for numerical 
simulations. The elaborate discussion of the network architecture is explained in the following subsections.

Dynamics of the network with two subpopulations. To capture different firing activities of the net-
work, first we consider a heterogeneous network of two different subpopulations depending on fractional-order 
(α) . Further, we consider that the fractional-order M-L neurons are electrically coupled through first state vari-
able (u). The dynamics of network is studied using the following mathematical model

The electrical coupling of the network is given by ge > 0 . The connection matrix of the network is represented 
by M =

(
cij
)

N×N
 . Further, we divide the population of size N into two subpopulations depending on fractional-

order as

m number of nodes have identical fractional-order α , reflecting oscillatory behavior and the remaining n nodes 
have fractional-order, β , reflecting excitable behavior. Thus, the total population size N can be expressed as 
N = m+ n . First, we study the behavior of randomly connected class I excitable M-L neurons with two frac-
tional-order exponents i.e., α = 1 and β = 0.75 . The total number of nodes in the network is N = 100 , and 
m = 60 & n = 40 i.e., we consider the network of N neurons with 60% oscillatory and 40% excitable neurons. In 

(11)

C dαi ui
dtαi = −0.5gCa(ui − VCa)((1+ tanh(ui − V1))/V2)− vigK (ui − VK )− gL(ui − VL)+ I + ge

∑N
j=1 cij

∑N
j=1 cij(uj − ui),

dαi vi
dtαi = φ cosh((ui − V3)/2V4)(0.5(1+ tanh((ui − V3)/V4))− vi), i = 1, 2, 3, . . . ,N .

αi =



α, . . . α,
� �� �

m

β , . . . β
� �� �

n



.

Figure 4.  Time series of slow-fast excitable 3D single M-L model (3) for different fractional exponents, (a–d) 
α = 1 , 0.9, 0.8, 0.7; (e–h) α = 1 , 0.95, 0.75, 0.5; and (i–l) α = 1 , 0.98, 0.8, 0.6 (parameter sets I, II and III).
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the absence of coupling ( ge = 0 ), each oscillatory neuron in the network shows tonic spiking and the remaining 
neurons stay in quiescent state. With small increase in the electrical coupling ge = 0.0001 , oscillatory subpopu-
lation still remains in tonic spiking mode and another subpopulation shows quiescent state. The time signals of 
two randomly connected nodes from two subpopulations are marked with red and blue lines (see Fig. 5a). The 
red signal is randomly chosen from the quiescent nodes and blue signal from the spiking nodes. The spatiotem-
poral plot reveals that the spiking nodes (1–60) are desynchronized to each other (Fig. 5e). The system behavior 
changes if we increase the coupling 100 folds ( ge = 0.01 ). Now, the subpopulation which was in quiescent state 

Figure 5.  Time series and spatiotemporal dynamics of randomly connected network of class I & class II 2D 
M-L neurons (11) two different types of fractional exponents. First panel: (a–d) Set I: α1 = . . . = α60 = 1 
and β61 = . . . = β100 = 0.75 with ge = 0.0001, 0.01, 0.08, 1 . Third panel: (i–l) Set II: α1 = . . . = α60 = 1 and 
β61 = . . . = β100 = 0.75 with ge = 0.0001, 0.05, 0.08, 1 . Fifth panel: (q–t) Set III: α1 = . . . = α60 = 0.86 and 
β61 = . . . = β100 = 0.81 with ge = 0.0001, 0.01, 0.5, 1 . Corresponding spatiotemporal patterns are shown in 
second, fourth and sixth panels respectively. We have randomly picked two nodes from two sub-populations to 
plot the time signals. The time evaluation of one node marked with red line is chosen from the subpopulation 
having quiescent states (when ge = 0 ). The blue signal is chosen from the nodes which was kept at spiking states 
in the absence of coupling.
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starts to exhibit bursting dynamics. Notably, the time interval of each burst is not periodic. Another subpopula-
tion shows desynchronized irregular tonic spiking (see Fig. 5b, f). It is clear, if the coupling is increased in the 
mixed population, the periodic as well as quiescent nature vanishes and irregular bursting or spiking appears 
in the network. The entire network shows bursting dynamics with finite number of spikes in each burst with 
small increase of ge = 0.08 (see Fig. 5c, g). Here, two clusters with different amplitudes but the same phases are 
generated. Finally, at ge = 1 , the coupled network exhibits almost synchronized behavior by changing the firing 
activity to tonic spiking (Fig. 5d, h).

Next, we increase the current stimulus I = 45 and the oscillatory subpopulation shows fast spiking and the 
other subpopulation remains in quiescent state. At weak coupling ( ge = 0.0001 ), the behavior of both subpopula-
tions do not change. With the increase of coupling ge = 0.05 and 0.08, both the subpopulations start firing and 
show bursting dynamics. Finally, the activity of the random network changes to synchronized periodic spiking 
at ge = 1 (Fig. 5i–p). Next, we study the class II excitable M-L neurons in the same network architecture, i.e., 
one subpopulation is in quiescent state ( β = 0.81 ) and another subpopulation shows MMOs ( α = 0.86 ) in the 
absence of coupling. At weak coupling, the neurons are in desynchronized state ( ge = 0.0001, 0.01 ). Further 
increase of coupling, all the nodes in the network show spike frequency adaptation ( ge = 0.5 and ge = 1 ). It is 
clear that each of the two sets of oscillators exhibits almost complete synchronization showing similar type of 
bursting with identical phases and amplitudes (see Fig. 5q–x).

The reduced‑order model with two subpopulations. In this section, a general and low-dimensional 
model description have been described to show that the reduced network exhibits the same feature as observed 
in the complete random network. In the intermediate coupling, we have observed a two cluster synchroniza-
tion state that appears in the system. Motivated by this fact, we can write u1 = u2 = u3 = · · · = u60 = uα , and 
u61 = u62 = · · · = u100 = uβ . As we have considered the Erdös-Rényi graph, we can approximate the degree of 
each node/neuron by the average degree of the considered  network56–62. Therefore, we can assume the degree of 
the j node kj = �k� . The number of spiking oscillators in the neighborhood of each oscillator is expected to be 
(1− pe)k = pok and the value will be pek for the quiescent oscillators. Therefore, we can reconstruct a reduced-
order model with two oscillators as follows

Figure 6.  Evolution of neuronal responses for different coupling strengths of reduced-order two-coupled 
2D M-L model (Eq. 12) for class I (set I & II) and class II (set III) excitable neurons with two different 
fractional exponents. (a–d) Set I: α = 1, β = 0.75 and ge = 0.0001, 0.01, 0.08, 1 respectively. (e–h) Set 
II: α = 1, β = 0.75 and ge = 0.0001, 0.05, 0.08, 1 respectively. (i–l) Set III: α = 0.86, β = 0.81 and 
ge = 0.0001, 0.01, 0.5, 1 respectively.
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where pe = n
N  and po = m

N  represent the probabilities of excitable and oscillatory neurons respectively. We 
perform numerical simulations with the reduced order two coupled models, in which each subpopulation is 
captured by the identical fractional-order exponent exhibiting synchronous behavior for class I and class II M-L 
models. The numerical results suggest that the dynamics of the reduced-order model follows the same pattern 
as the entire graph when the two subpopulations follow cluster synchronization (see Fig. 6). For instance, burst-
ing with two spikes can emerge for intermediate coupling in class I excitable system (Fig. 5k) separated by two 
clusters in the full network. Similar firing pattern exists in the reduced order model (Fig. 6g).

Conclusions
In this study, first we focused on the single neuron’s dynamics that can change their response to various input 
statistics depending on the fractional exponents. We discussed the excitabilities of class I and class II conduct-
ance-based 2D M-L neurons that can be captured in realistic cortical neurons  experimentally2. We examined 
corresponding bifurcation analysis of the classical-order model. The fractional exponent can trigger the firing 
variations that cannot be observed in the classical-order dynamics. The ability of the 2D M-L model for diverse 
spike responses including MMOs and MMBOs with fractional derivative is explored with spike frequency adap-
tation while decreasing the fractional exponent. The results demonstrate that the slow-fast 3D M-L in fractional 
domain provides various bursting patterns. It also changes its behavior from bursting to single train of spikes and 
fast spiking to irregular bursting for different suitable set of parameters that can not be captured in the classical-
order model for a fixed set of parameters. The FOD shows an alternative representation of the spiking-bursting 
responses with the changes of fractional exponents in the dynamical models. The approach summarized the 
multiple behavior of the single excitable model to certain stimulus variance with a memory dependent activi-
ties. We investigated the role of electrical coupling in a random network, where certain fraction of nodes are in 
quiescent states. If the oscillatory nodes are in MMBOs, the entire population would exhibit spike frequency 
adaptation. On the other hand, if the uncoupled oscillatory nodes are kept at fast tonic spiking zone, the entire 
population split into two clusters revealing periodic bursting in intermediate coupling and at higher coupling 
all the nodes show tonic spiking. Motivated by the cluster synchronization phenomena, we were also able to 
reduce the network into two coupled dynamics, which successfully captured the dynamics of the entire network 
during cluster synchronization.

We established distinct effects on different membrane voltage features considering the fractional-order deriva-
tive. We showed that the differences in the neuronal characteristics are due to the memory effects. Fractional-
order derivative provides rich dynamics and it is possible to explore realistic phenomena. These results demon-
strate that the model and network provide a tractable approach to examine neuronal dynamics.

Data availibility
All numerically simulated data generated or analysed during this study are included in this submitted article.

Appendix: Numerical methods
In what follows, we present the numerical scheme used in our numerical simulations to approximate the solutions 
of the system of fractional-order differential equations of a variable X ≡ (u, v)T described by

where α ∈ (0, 1) , f ≡ (h1, h2)
T and the Caputo-type derivative given by

The Caputo-type fractional-order derivative is consistent with the physical initial and boundary conditions. 
In this case, the firing characteristics of the system are strongly independent of the initial  conditions4,12. We 
can define, the initial conditions for the fractional-order system that can be handled using an analogy with the 
classical-order derivative. It includes a memory effect with a convolution between the classical-order derivative 
and a power of time. It is efficient to integrate all the previous activities of the function weighted by a function 
that follows power law dynamics. The numerical simulations of the systems are performed using the time step 
�t = 0.1 . The simulation results with a smaller time step do not show any significant differences. The bifurcation 
diagrams of the fixed points of the dynamical model were computed using the MatCont software  package63. We 
simulated the model (Eq. 3) using the L1  scheme4,12,18 and approximated the fractional-order derivative as follows:

(12)

C dαuα
dtα = −0.5gCa(uα − VCa)((1+ tanh(uα − V1))/V2)− vαgK (uα − VK )− gL(uα − VL)+ I + gepe(uβ − uα),

dαvα
dtα = φ cosh((uα − V3)/2V4)(0.5(1+ tanh((uα − V3)/V4))− vα),

C
dβuβ
dtβ

= −0.5gCa(uβ − VCa)((1+ tanh(uβ − V1))/V2)− vβgK (uβ − VK )− gL(uβ − VL)+ I + gepo(uα − uβ),
dβvβ
dtβ

= φ cosh((uβ − V3)/2V4)(0.5(1+ tanh((uβ − V3)/V4))− vβ),

(13)DαX = f (X, t),

(14)Dα

[
u(t)
v(t)

]

=
1

Ŵ(1− α)

t∫

0

(t − τ)−α

[
u′(τ )
v′(τ )

]

dτ .
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The numerical solution of (13) can be formulated as (combining (13) and (15) )

where, tk represents the kth time step and tk = k�t . Hence, the numerical solution of (2) can be summarized as 
the difference between the Markov term weighted by the gamma function and the memory trace. The memory 
trace integrates all the past activities and it has no effect for α = 1 . The nonlinearity in the memory trace increases 
as we decrease the fractional-order α from 1 and the system dynamics depends on time.
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