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The dominating mode of two 
competing massive modes 
of quadratic gravity
Avijit Chowdhury *, Semin Xavier  & S. Shankaranarayanan 

Over the last two decades, motivations for modified gravity have emerged from both theoretical 
and observational levels. f(R) and Chern-Simons gravity have received more attention as they are the 
simplest generalization. However, f(R) and Chern-Simons gravity contain only an additional scalar 
(spin-0) degree of freedom and, as a result, do not include other modes of modified theories of gravity. 
In contrast, quadratic gravity (also referred to as Stelle gravity) is the most general second-order 
modification to 4-D general relativity and contains a massive spin-2 mode that is not present in f(R) 
and Chern-Simons gravity. Using two different physical settings—the gravitational wave energy-
flux measured by the detectors and the backreaction of the emitted gravitational radiation on the 
spacetime of the remnant black hole—we demonstrate that massive spin-2 mode carries more energy 
than the spin-0 mode. Our analysis shows that the effects are pronounced for intermediate-mass black 
holes, which are prime targets for LISA.

In quantum gravity, it is impossible to localize an event with a precision smaller than the Planck length ( ℓPl)1–4. 
From the hoop conjecture and the uncertainty principle, we can deduce the existence of a Planck-sized  ball5. 
Thus, the operational significance of the concept of space-time points is  lost6–9. Most approaches to quantum 
gravity incorporate the Planck length by considering extended structures, rather than point particles, as funda-
mental  blocks10,11. The Generalized Uncertainty Principle (GUP) is a phenomenological approach that introduces 
modifications to the Heisenberg uncertainty principle in the ultraviolet regime and studies its  consequences12,13. 
Kempf et al. considered the following simplest modification to the canonical commutation  relation12:

β is a parameter characterizing the GUP whose value needs to be fixed by observations. Since the above GUP is 
non-relativistic, it is impossible to compute GUP corrections in relativistic field theories. Recently, Todorinov 
et al.14 extended the above GUP to a generic class of covariant GUPs:

and studied the phenomenological features of such GUPs for scalar, spinor, and vector  fields15,16. γ0 is a posi-
tive numerical constant to be fixed by observations. There exists a correspondence between the GUP-modified 
dynamics of a massless spin-2 field and quadratic gravity (QG) with suitably constrained  parameters17. Specifi-
cally, the authors showed that the 4-D gravity  action18,19

 is a classical manifestation of the imposition of a momentum cutoff at the quantum gravity level when 
α = 2β = γ /κ2 . QG or Stelle gravity—unlike f(R)—has extra massive spin-2 and spin-0  modes19. Intriguingly, 
for this class of Stelle theories, the masses of the spin-0 and spin-2 modes coincide (1/

√
2γ ) . The issue of unitarity 

in these theories is not completely settled  yet20–23 and the massive spin-2 mode may be of ghost nature. See, for 
instance, the fakeon approach for the  same24,25.

Given that the Stelle gravity is the most general QG in 4-D, we ask the following questions: For identical 
masses, what is the role of the massive spin-2 mode compared to the spin-0 mode? What are the leading order 
corrections of QG compared to f(R) gravity? This work addresses these questions by evaluating the corrections 
to the radiation in QG.
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Over the last two decades, motivations for modified gravity have emerged from both theoretical and obser-
vational  levels26–30. Since f(R) and Chern-Simons gravity are the simplest generalization, they have received 
more attention. However, f(R) and Chern-Simons gravity contain only the additional scalar degree of freedom 
and hence do not contain other modes of modified theories of  gravity31. We explicitly show that the massive 
spin-2 mode carries more energy than the spin-0 mode using two different physical settings: the energy flux of 
the gravitational waves, measured by an asymptotically placed gravitational wave detector, and the backreaction 
of the emitted gravitational radiation on the spacetime of the remnant black hole. Thus, we show that the leading 
order gravitational radiation correction in QG is linear in the coupling constant compared to f(R), where the 
corrections are quadratic in flat space-time32.

To show this explicitly, we start with the GUP-inspired version of QG action (2),  where17

Varying action (2) with respect to the metric leads to:

 Linearizing the field equation (3) about the Minkowski space-time ( ηµν ), we get,

where hµν is the metric perturbation, and ǫ is a book-keeping parameter. This leads to the following linearized 
equations:

where �̄ ≡ ηµν∂µ∂ν and

As expected in higher-derivative gravity theories, Eq. (5) contains fourth-order derivatives whose trace is given 
by:

To separate the contribution of the different spin-components from linearized field equation (5), we use the 
following ansatz for the metric perturbations (See “Quadratic gravity as GR “minus” massive gravity” Section of 
the Supplementary  material33 for a detailed calculation in Ricci-flat spacetime):

where ψ = ηαβψαβ and C1,C2 are arbitrary constants, and R̂(1)
µν = R(1)

µν − 1
4η

µνR(1) is the traceless part of R(1)
µν . 

To our knowledge, this is the first time an explicit separation of metric fluctuations is used in this context, and 
we would like to emphasize the following points: First, in general relativity (GR), the constants C1 and C2 vanish 
because the linearized field equations only contain massless spin-2 (graviton) mode. Thus, in GR, ψµν reduces 
to the familiar trace-reversed metric perturbations. Second, in the case of Starobinsky model, the field equations 
contain additional contribution from the massive spin-0 mode (R(1)) only, hence C1 = −6γ and C2 = 032,34. 
Third, the existence of the massive spin-2 ghost degrees of freedom may suggest a potential pathology due to 
Ostrogradsky  instability18, in the present context it is possible to avoid such a pathology by treating the massive 
and massless spin-2 modes as a single  structure35. Lastly, like in GR, we use the de-Donder gauge on the residual 
massless graviton mode ( ψµν ) to restrict the gauge freedom:

Substituting Eq. (9) in Eqs. (6,7) and using the gauge conditions (10), we get:

where we set C1 = −2γ and C2 = 4γ . Taking cognizance of Eqs. (5, 11) and (8), we get the propagation equation 
for the graviton, the massive spin-2 and spin-0 modes as,

α = γ /κ2; β = γ /2κ2 .
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(See “Reduced equations of motion in Ricci-flat space-times” Section of the supplementary  material33 for a 
detailed derivation of the propagation equations in a Ricci-flat background). Thus, the theory (2) is described 
by a massless graviton ( ψµν ); a massive spin-2 ( ̂R(1)

µν ) and a massive spin-0 ( R(1))17–19,36 (The massive spin-2 
mode can be further decomposed into two tensor (helicity-2) modes, two vector (helicity-1) modes, and scalar 
(helicity-0) mode, whereas the massless spin-2 graviton gives rise two tensor (helicity-2) modes and the massive 
spin-0 particle has one scalar (helicity-0) mode. The different helicity modes can, in principle, be mapped to the 
six metric degrees of freedom denoting the six polarization modes of the gravitational  waves36–39). The positivity 
of the parameter γ ensures that the massive modes are non-tachyonic. Repeating the analysis for the Ricci-flat 
background by using the following ansatz:

the equations of motion for the massless (12) and massive spin-2 modes (13) in the transverse traceless gauge 
(

∇̄µψµν = 0, ḡµνψµν = 0
)

 are:

where ḡµν is the background metric, R̄µανβ is the background Riemann tensor, �̄ ≡ ∇̄σ ∇̄σ with ∇̄σ being the 
covariant derivative due to the background spacetime and the traceless tensor R̂(1)

µν is

The propagation of the massive spin-0 mode is still governed by Eq. (14), with the above-defined D’Alembertian 
operator. The mass degeneracy between the two massive (spin-0 and spin-2) modes demonstrates that they are 
not completely independent and are related by linearized Bianchi identities:

Having separated the metric fluctuations into massless and massive modes in Ricci flat background, we now 
evaluate the energy and momentum carried by the gravitational waves in degenerate-Stelle gravity. To go about 
that, we expand the field equation to second-order in ǫ:

where Ḡµν represents the background quantity, δGµν are linear in perturbations ( hµν ) and δ2Gµν are quadratic in 
hµν . Through second-order perturbations, Isaacson established a procedure to obtain an effective stress-energy 
tensor for gravitational  radiation40,41. Specifically, the effective stress-energy tensor of the emitted gravitational 
waves is obtained by averaging over a length-scale l such that �− ≪ l ≪ � , where �− is the wavelength of the 
fluctuations and � is the system size. The short wavelength components will be averaged out, yielding a gauge-
invariant measure of the effective gravitational wave (GW) stress-energy  tensor42:

In the Ricci-flat background, we get

where Aµν ,Bµν ,Cµν ,Dµν are related to the background Riemann tensor (and are explicitly given in “Coef-
ficients in the effective GW stress-energy tensor” Section of the supplementary  material33). This is the first key 
result of this work, regarding which we would highlight the following points: First, in the Minkowski limit (as 
in the case of GW detectors), Aµν ,Bµν ,Cµν ,Dµν vanish and tGWµν  is proportional to partial derivatives of ψρσ , 
R̂(1)
ρσ and R(1) . Second, the first term within the triangular bracket gives the dominant contribution—the contribu-

tion of the graviton mode as in  GR40. However, the crucial difference is the dominant contribution of the massive 
spin-2 mode. The massive spin-2 mode contribution is proportional to γ , whereas the massive spin-0 mode 
contribution is proportional to γ 2 . Thus, the above expression explicitly shows that the massive spin-2 mode 
carries more energy than the massive spin-0 mode. Third, while we have used Isaacson’s approach to obtain the 
stress-tensor, other approaches also give similar  results43. Fourth, the leading order contribution of the mas-
sive spin-2 mode is opposite to that of the graviton mode. Lastly, the corrections by QG to GR are much larger 
than f(R)  gravity32,44. Consequently, our study demonstrates that the f(R) theories overlook crucial information 
concerning the massive spin-2 mode.

In what follows, we use the GW stress-energy tensor (22) to examine the effect of the massive spin-2 mode 
under two distinct physical settings. First, we investigate the energy flux of GWs as measured by the GW detectors 
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at asymptotic infinity. We then estimate the change in the spherically symmetric metric caused by the backreac-
tion of the emitted GWs near the horizon.

Gravitational wave energy flux
The energy of the gravitational wave within a spatial volume V  is45,46

Using the stress-tensor conservation equation ( ∂µt
µν
GW = 0 ) for the far-away observer, the power carried by the 

gravitational waves  is43,46

where S is the surface enclosing the volume V and ni is the unit outward normal to S. The negative sign signi-
fies that an outward propagating gravitational wave carries away energy from the source. Thus, plugging the 
Minkowski-limit of Eq. (22) in Eq. (24) and considering S to be a spherical surface at a large distance from the 
source, the gravitational wave energy flux passing through the detector is:

 To make the calculations transparent, we assume that all the three (graviton, massive spin-2, and spin-0) modes 
of the following form:

where ζµν , θµν and φ depend on r and t,

with k0 = w0 = q0 = ω/c , k =
(

ki
)

 , w = (wi) , and q = (qi) . ω > c/
√
2γ  and q > c/

√
2γ  corresponds to oscil-

latory solution for R̂(1)
µν and R(1) , respectively. A wave propagating radially outward (�µν) at large distances from 

the source can be represented to fall-off  radially46,47:

where χµν(tr) is an arbitrary function of the retarded time tr = t − r/v , and v = c/
√

1− 1
2γ

(

c
ω

)2 is the speed 
of the massive modes. Thus,

 Substituting Eq. (26) in Eq. (25) and using Eq. (29) in the resultant expression leads to the energy flux on the 
GW detectors:

where dot denotes derivative w.r.t t. Here again, we note that the dominant contribution comes from the graviton 
mode with leading order corrections (γ ) from the massive spin-2 mode; the massive spin-0 mode contributes 
only in the second order. Hence, as expected, the measured energy energy-flux in the case of QG is lower than 
that predicted by GR. In other words, the massive spin-2 mode carries more energy than the spin-0 mode. Since, 
this analysis is for the Minkowski background, γBµν (in Eq. 22) is zero. However, in the case of curved geometry, 
γBµν contribution might be significantly larger than the linear order term in the above expression.

In the case of GW detectors, the average < . . . > is purely a temporal  average46, and the total energy flowing 
through the unit area of the detector is:

Note that the above analysis is strictly valid for ω > c/
√
2γ  and q > c/

√
2γ  corresponding to oscillatory solu-

tions for the two massive modes. In the second physical setting, we will relax this condition and obtain the 
contribution of the massive spin-2 mode.
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Backreaction of the emitted gravitational waves
To study the backreaction of the emitted GWs on the background black hole space-time, we assume that the 
background space-time is spherically symmetric Ricci flat and is an exact solution of the QG action (2). Though 
Schwarzschild solution in Stelle gravity is known to suffer from ℓ = 0 mode instability (Gregory-Laflamme 
instability) when the spin-0 mode is non-propagating48–51, in the present work, we consider the spin-0 mode to 
be dynamical and concentrate on the ℓ = 2 modes. The backreaction on the background space-time is obtained 
by evaluating the GW stress-energy tensor ( tGWµν  ) w.r.t the Schwarzschild metric. Having obtained this, we then 
solve the effective Einstein’s equations:

where the Einstein tensor Gν
µ
mod is evaluated for spherically symmetric space-time in dimensionless, Eddington-

Finkelstein (EF)  coordinates45:

ν ≡ ν(V , ρ) and � ≡ �(V , ρ) encode the corrections from the emitted GWs, and d�2 is the metric on unit 
2-sphere. Note that V and ρ are dimensionless like θ and φ . Regarding Eqs. (32, 33), the following points are in 
order: First, the ansatz (15) assumes that all the metric components are dimensionless. Hence, we have rescaled all 
the coordinates to be dimensionless. Second, V = constant hypersurfaces represent the ingoing null geodesics. As 
mentioned, the background metric is assumed to be Schwarzschild black hole; hence, e2ν = e−2� = 1− 2M0/ρ 
where M0 is the dimensionless mass parameter (setting c = G = 1 ). For M(V), the above metric gives the Vaidya 
line element. Third, the ingoing EF coordinates are smooth across the horizon for ingoing null geodesics and 
are suitable for analyzing the gravitational waveform close to the  horizon52,53 as well as the shift in the horizon 
radius due to the backreaction. Finally, since tGWµν  contains the contributions of graviton and massive modes, the 
LHS of Eq. (32) only contains the Einstein gravity. Note that the radiation from a remnant black hole decreases 
its energy content, inducing a change in the metric.

Since the dominant contributions to the GW stress-energy tensor (22) come only from the spin-2 mode, to 
evaluate their effects on the metric, we use the following ansatz:

where oµν , ιµν are constant, traceless (polarization) tensors, ψ(V , ρ) , P(V , ρ) are scalar functions and Ym
l (θ ,φ) 

are spherical harmonics. The above assumptions essentially replaces the spin-2 modes ψµν , R̂(1)µν by scalar 
functions, where we ignored the non-linear transformation among the components of the individual spin-2 
modes. To obtain the leading order corrections, we concentrate on the backreaction effect due to the ℓ = 2 and 
m = 0 mode of the gravitational waveform and obtain the average contribution over the entire solid angle. Note 
that the (ℓ = 2,m = 0) mode contributes to the non-linear memory of the GWs, which is otherwise difficult to 
observe in ground-based GW  detectors54,55 and nontrivial to extract in numerical relativity simulations. We can 
trivially extend the analysis to other modes.

We assume the modified black hole to be described by the generalized spherically symmetric metric ansatz 
proposed by Johannsen and Psaltis (JP)56,57. In the (dimensionless) EF coordinates (33), we have:

where ǫ̃0 = 1 and the first few coefficients of the expansion can be constrained from the PPN-like  parameters56. 
In the limit of ǫ̃n = 0, (n > 0) , JP metric reduces to the Schwarzschild metric. The event horizon of the corre-
sponding black hole is at ρ = 2M̃ and the (dimensionless) ADM mass is MADM = M̃(1− ǫ̃1/2)

57. As mentioned 
earlier, the remnant black hole decreases its energy content, inducing a change in the metric mass-function from 
the initial, dimensionless Schwarzschild value (M0)

58,59:

Assuming the mode functions to be regular and slowly varying in ρ close to horizon (� = ρ − 2M0 << 1)52,53,60, 
and expanding both sides of Eq. (32) for the ρ − V  component, we get (See supplementary  material33 for details):
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This is the third key result regarding which we would like to stress the following: First, the massive and massless 
spin-2 modes contribute oppositely to the change in the mass function, hence the shift in the horizon radius. Sec-
ond, since �M is proportional to the sixth power of M0 , it implies that the larger the mass of the perturbed black 
hole, the larger the corrections to the change in the mass. This assumes particular importance for intermediate-
mass black holes which are prime targets for LISA. Rezzolla and  Zhidenko57 proposed an improved parametric 
metric in which, in the near-horizon limit, the Taylor expansion is replaced by an expansion in continued 
fractions (CF). The Rezzolla-Zhidenko metric has better convergence properties and can effectively reproduce 
any known solution even in scenarios where the JP parametrization fails. The CF expansion coefficients in the 
Rezzolla-Zhidenko metric can be expressed in terms of the JP parameters; hence it is possible to extend our 
results to the Rezzolla-Zhidenko  metric57.

Summary and discussions
In this work, we examined gravitational radiation in QG. We explicitly decomposed the GWs in Stelle gravity 
into massless and massive spin-2 and spin-0 modes. We demonstrated that the dominant contribution to the GW 
stress-energy tensor comes from the graviton mode, with leading order corrections coming from the massive 
spin-2 mode, which is absent in f(R) gravity theories. We can ascertain this because the massive spin-2 and spin-0 
have the same mass in the case of GUP-inspired Stelle gravity. In contrast, the effects of the massive spin-2 mode 
are the inverse of those of the GR mode. In the context of GW detectors, this results in a decreased energy flux 
measurement. This result is consistent with a recent finding that this Stelle gravity model reduces the amplitude 
of primordial gravitational waves produced by Starobinsky  inflation61.

We also provided an estimate of the backreaction effect of the GW emission on the background spacetime, 
where we once again observe that the massive spin-2 mode decreases the rate of mass-change and the rate of shift 
in the horizon radius. Our results indicate that intermediate-mass black holes (prime targets for LISA) might 
be good candidates to test these aspects of modified gravity theories. Focusing on the ℓ = 2,m = 0 modes, our 
analysis suggests that the backreaction effect may play a crucial role in the study of nonlinear memory of GWs 
in modified gravity theories. These are currently under investigation.

The analysis in this work looks at the interesting possible signatures of strong gravity corrections in future 
GWs experiments. While the Starobinsky model and Stelle gravity are the low-energy quantum gravity action, 
these are not exhaustive. For instance, we have not included R ln (�R) and Rµν ln (�Rµν)62. It may be interest-
ing to investigate the potential ring-down signatures of these terms as these terms may exceed the Stelle gravity 
contributions in low momenta. This is currently under investigation.

The decrease in measured energy flux and the decreased rate of horizon shift and mass change due to the 
massive spin-2 mode indicate the existence of quasi-bound states of the massive spin-2 modes surrounding the 
black  hole63. In the context of rotating black hole geometries, where this may lead to the formation of superradi-
antly induced spin-2 boson clouds, the question assumes greater significance. A detailed analysis of the massive 
spin-2 dynamics can resolve this question. However, such an analysis is beyond the scope of this paper so that 
we will leave it for future work.

Data availability
All data generated or analysed during this study are included in this published article and its supplementary 
information files.
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