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Assessing thermal imagery 
integration into object detection 
methods on air‑based collection 
platforms
James E. Gallagher 1 & Edward J. Oughton 1,2*

Object detection models commonly focus on utilizing the visible spectrum via Red–Green–Blue (RGB) 
imagery. Due to various limitations with this approach in low visibility settings, there is growing 
interest in fusing RGB with thermal Long Wave Infrared (LWIR) (7.5–13.5 µm) images to increase 
object detection performance. However, we still lack baseline performance metrics evaluating RGB, 
LWIR and RGB‑LWIR fused object detection machine learning models, especially from air‑based 
platforms. This study undertakes such an evaluation, finding that a blended RGB‑LWIR model 
generally exhibits superior performance compared to independent RGB or LWIR approaches. For 
example, an RGB‑LWIR blend only performs 1–5% behind the RGB approach in predictive power 
across various altitudes and periods of clear visibility. Yet, RGB fusion with a thermal signature overlay 
provides edge redundancy and edge emphasis, both which are vital in supporting edge detection 
machine learning algorithms (especially in low visibility environments). This approach has the ability 
to improve object detection performance for a range of use cases in industrial, consumer, government, 
and military applications. This research greatly contributes to the study of multispectral object 
detection by quantifying key factors affecting model performance from drone platforms (including 
distance, time‑of‑day and sensor type). Finally, this research additionally contributes a novel open 
labeled training dataset of 6300 images for RGB, LWIR, and RGB‑LWIR fused imagery, collected from 
air‑based platforms, enabling further multispectral machine‑driven object detection research.

Despite the recent growth and proliferation of Machine Learning (ML) object detection algorithms, most 
approaches commonly focus on the visible light portion of the electromagnetic spectrum, for example, using 
Red–Green–Blue (RGB)  images1–4. Hitherto, thermal Long Wave Infrared (LWIR) spectrum has received less 
research attention for ML object detection activities. While machine-assisted RGB models are effective dur-
ing daytime periods, machine-assisted LWIR-models are generally more effective at night or during periods 
of decreased  visibility5–8. Unlike RGB, LWIR provides superior edge enhancement of radiant object classes to 
further increase edge detection in object detection algorithms. Given the contrasting strengths and weaknesses 
between RGB and LWIR, a growing area of multispectral research examines the blending of these different 
capabilities with the ultimate aim of providing superior object  detection9–11. For developing both RGB and 
LWIR models most software techniques are relatively similar. Although the pricing of LWIR sensors is becoming 
more economical, cost has traditionally been a prohibiting factor, limiting the amount of multispectral research 
activities taking place.

Another complementary technology that is rapidly proliferating and becoming easier to access is commer-
cially available off-the-shelf drone  platforms12,13. Increasingly, Uncrewed Aerial Systems (UASs) are being out-
fitted with not only RGB sensors to collect overhead imagery, but also with an array of other infrared-related 
sensors, such as LWIR (7.5–13.5 µm), to collect valuable multispectral  data14.

Given these limitations, the literature currently lacks scientific evaluation metrics on how different thermal 
image fusion techniques affect model performance when utilizing object detection methods from drone plat-
forms. This research therefore intends to investigate the following research question:

1. How do fused RGB-LWIR object detection models perform against separate RGB and LWIR approaches 
when measured at various fixed altitudes and different times of the day?
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The key contribution of this research is providing new quantitative scientific information for how RGB, 
LWIR, and RGB-LWIR object detection models perform from air-based drone platforms. The research focuses 
on identifying common object classes (cars, trucks etc.), as these provide generalizable insights for a wide range 
of object detection use cases in industrial, consumer, government, and military applications. Figure 1 illustrates 
the comparative differences between fused RGB-LWIR imagery versus traditional RGB imagery in a low vis-
ibility setting.

RGB-LWIR models deployed from UAS can be leveraged to solve a variety of spatial problems across diverse 
disciplines. An example use-case is the energy industry using RGB-LWIR object detection to assess pipeline 
 integrity15. Deploying RGB and LWIR object detection on critical infrastructure can also increase operational 
efficiency, while also help prevent catastrophic  failures16. Moreover, energy companies can use RGB-LWIR 
object detection to evaluate electricity transmission and distribution infrastructure  performance17. Within 
transportation, RGB-LWIR object detection has also been used to monitor and rapidly identify faults in railway 
 infrastructure18. Recently, RGB and LWIR air-based object detection can be applied to construction applications 
to detect harmful legacy substances, such as asbestos, as well as monitor home insulation  efficiency19,20. Addition-
ally, search and rescue teams can utilize UAS-deployed RGB-LWIR object detection to identify victims in any 
environment, regardless of ambient illumination and  temperature21,22. The agriculture industry can also benefit 
by tracking and identifying specific livestock based not only on the thermal signature but also on the visible 
image of the  animal23. RGB and LWIR object detection are also critical systems for both autonomous driving 
and advanced driver assistance  systems24. Lastly, military and law enforcement entities can benefit by improving 
upon existing collection and surveillance  capabilities25,26.

In the following section a literature review is undertaken. Then results are presented in Section "Results", 
before returning to the discussion to reevaluate the key research question in Section "Discussion". A method is 
described in Section "Methods" capable of answering the research question identified.

Literature review
The existing literature identifies two key benefits for integrating LWIR with RGB to enhanced ML object detec-
tion models. Firstly, RGB sensors are limited in their capacity to detect in low visibility settings, or in situations 
where visibility is limited due to foliage, smoke or  fog27,28. Therefore, integrating LWIR imagery enhances both 
human and machine three-dimensional (3D) depth perception when compared to traditional RGB imagery, 
providing an overall increase in situational  awareness29.

Secondly, LWIR sensors are superior at segmenting the object of interest from the image background (‘edge 
detection’)16, provided that the object of interest is radiating a thermal signature (as illustrated visually already 
in Fig. 1). LWIR object detection is regularly adopted in military and homeland security use cases to detect illicit 
activity and identify targets, especially at  night30,31. However, most infrared (IR) sensors for military and national 
security applications use near-infrared (NIR), which operates between 0.75 and 1.3 µm and does not work well 
for drone-based ML object detection  models32.

In terms of the wider literature, one recent study evaluated ML object detection models that analyzed RGB 
and LWIR imagery to better identify humans from a ground-based  system30. In adverse weather conditions, when 
attempting to identify humans, the LWIR model achieved a mean Average Precision (mAP) of 97.9% while the 
RGB model achieved a mAP of 19.6%30. Indeed, both LWIR and RGB models were tested, although no baseline 
performance metrics were provided for a blended RGB-LWIR approach. The research used ground-based sen-
sors and utilized version 3 of the pre-trained convolutional neutral network ‘You Only Look Once’ (YOLOv3). A 
thermal dataset was used to attempt to identify humans and animals during various weather conditions ranging 

Figure 1.  Comparative example of a nighttime scene with a blended RGB-LWIR approach on the left, and a 
traditional RGB image on the right.
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from clear conditions to inclement conditions with limited visibility. Although their LWIR model outperformed 
the RGB model, the performance gap was most significant when visibility was limited. The thermal ML model 
was also highly accurate in differentiating multiple object classes in a single image, reaching a recall of 98% with 
an F1 score of 97%30.

A separate research study recently used LWIR imagery to train an object detection model that achieved an 
average accuracy of 91.9% during periods of limited  visibility33. However, it was identified that a shortfall of LWIR 
object detection is that LWIR cameras have difficulty identifying object classes at longer distance. As the object 
class is farther away, the thermal edges begin to blur and the thermal signature resolution deteriorates, making 
it difficult for the ML model to conduct edge  detection34. Thus, because of this resolution decrease over distance, 
this supports the conjecture that fusing RGB with LWIR provides additional value in model performance.

Another research study that used LWIR sensors from a low-flying multirotor quadcopter collected thermal 
data to create a human detection model that identifies human heat signatures. The approach was applied to a 
rescue operations use case following natural disasters by using object segmentation and fusion technique called 
4-channel35. The 4-channel ML model conducted “early fusion” of RGB-thermal images, performing better than 
the traditional “late fusion” model. This study focused on object segmentation of LWIR images taken from the 
UAS post-flight and did not conduct object detection from LWIR images or RGB-LWIR fused images.

The reliability of LWIR sensors to work in complex environments has led to adoption in numerous tech-
nologies. For example, LWIR sensors are used to advance semantic segmentation, classifying pixels in an image 
associated to a label class, with key use cases in autonomous  driving36–38. However, a key issue in the application 
of this technology to autonomous driving is the low resolution and heavy noise present in LWIR images when 
compared to RGB  methods39.

LWIR based object detection does present several key challenges for ML algorithms. One such issue is blur-
ring in LWIR imagery caused by object movement or LWIR camera  movement40. One study addressed this 
issue using a LWIR image restoration algorithm that conducts super-resolution reconstruction and deblurring 
while simultaneously running the object detection  algorithm40. Although the methods to deblur LWIR images 
does increase the overall accuracy of the object detection results, it also requires increased computer processing 
to conduct simultaneous image restoration and object detection when conducting real-time inference on edge 
devices. In this research study there is an undetermined level of image blurring induced by the moving airframe 
with RGB-LWIR cameras.

Another issue with LWIR object detection is that there exists a shortage of publicly available LWIR datasets or 
pre-trained LWIR  models41. Indeed, there are multiple pre-trained RGB ML models and datasets to choose from, 
but very few LWIR datasets and pre-trained models. Labeled LWIR datasets are scarce because they are expen-
sive to collect and produce, and LWIR cameras are not widely available to the same degree as RGB  cameras41,42.

A key benefit to blended RGB-LWIR is the ability to adjust fusion levels between the RGB-LWIR sensors as 
ambient and ground temperatures increase, creating an effect called thermal crossover. When the target object 
is the same temperature as the ground, thermal cross over takes place leading to a loss of contrast between the 
target object and the  ground43. Depending on the environment and season, thermal crossover typically occurs 
twice a day. Via a ground based LWIR ML object detection model approach, thermal crossover is not as large an 
issue because the horizon provides a dark background to contrast against thermal target objects. However, from 
a UAS the bird’s-eye view of the ground offers significantly lower contrast with the target object. When using 
an LWIR camera without an RGB camera or having the ability to conduct RGB-LWIR fusion, the ambient and 
ground temperature must be factored in prior to flight.

Thermal object detection is also advantageous because of the ability to conform an image to a desired color 
 palette44, thereby reducing the overall number of colors compared to RGB  images45. Often, RGB images can 
have backgrounds that blend in with the object of  interest46, making object detection a more challenging task. 
In contrast, thermal imagery highlights the object of interest and provides a consistent color  palette47. The study 
results will now be presented.

Results
The mAP results are reported for RGB, LWIR and RGB-LWIR models at various fixed elevations to measure 
performance changes, as well as daily time periods. Therefore, the findings are segmented for eight elevations, 
including 15 m (50 ft), 30 m (100 ft), 45 m (150 ft), 61 m (200 ft), 76 m (250 ft), 91 m (300 ft), 106 m (350 ft), 
and 121 m (400 ft). The test area selected was a busy four-way intersection in Gaithersburg, Maryland. This 
intersection was selected because of the complex environmental blend of objects among various lighting shades. 
The collection site also provided multiple vantage points of vehicles entering and leaving the intersection, thus 
helping to generate realistic data.

The best overall predictive performance was exhibited by the RGB-LWIR model (with a mean mAP of 59.8%), 
followed by the traditional RGB model (58.6%). In contrast, the LWIR model performed the poorest (with a mean 
mAP of 36.3%). The best individual performing instance was the blended RGB-LWIR hybrid at 47 m elevation 
during the Pre-Sunrise period (with a mean mAP of 94.6%). Moreover, the worst performing instance was the 
LWIR model at 125 m during the Post-Sunrise period (with a mean mAP of 2.1%).

Figure 2A graphically depicts all 120 model performance data points for each model type, elevation, and time-
of-day period. The RGB-LWIR model performed very strongly during periods of limited visibility (Pre-Sunrise 
and Post-Sunset), while the RGB models exhibited superior performance during daytime periods of visibility. 
In particular, the RGB-LWIR fusion approach demonstrated strong predictive power during the Pre-Sunrise 
and Post-Sunset periods between elevations of 16 m and 67 m. During periods of clear visibility, RGB and RGB-
LWIR mAP decreases gradually as elevation increases. Conversely, during periods of limited visibility mAP 
model performance decreases at a quicker rate, with performance declining upwards of 78 m. Although largely 
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inferior in performance when compared to the other models, the LWIR performance was generally consistent 
across all five illumination periods.

As visualized within Fig. 2B, when using the traditional RGB model as a baseline, the RGB-LWIR model 
had up to a 49.9% increase in performance during the Post-Sunset period. Out of the eighty total elevation 
and time-of-day data points, the RGB-LWIR approach ranked in all top fifteen places with mean mAP values 
averaging 82.7%. In contrast, while the LWIR model achieved the bottom twelve lowest ranking positions with 
mean performance averaging 8.6%. The RGB-LWIR model performed best overall at 47 m during Pre-Sunrise 
hours (with a mean mAP of 94.6%) and performed worst overall at 121 m, also at Pre-Sunrise hours (with a 
mean mAP of 16.7%).

The RGB approach achieved the highest mAP during periods of clear visibility (Post-Sunrise to Pre-Sunset). 
Figure 2B visualizes model performance against the RGB baseline, demonstrating that RGB approaches are 
best suited for daytime conditions while the RGB-LWIR approach is best suited for nighttime conditions. The 
greatest difference between the RGB and RGB-LWIR model performance during clear visibility conditions was 
at Noon (7.25% difference in mean mAP), followed by Post-Sunrise (3.2% difference in mean mAP) and then 
Pre-Sunset (1.2% difference in mean mAP). The RGB model performed best at 16 m at Noon (94.5% in mean 
mAP) and performed worst at 125 m during Post-Sunset hours (5.8% in mean mAP).

The LWIR approach had the lowest predictive power of all three models, with a negative performance change 
of up to − 69.2% when compared to the RGB model baseline. The three least performing instances for LWIR 
occurred at the Post-Sunrise period with negative performance values ranging between − 59.0% and 69.2%. 
Noon was the next lowest performing period for LWIR, with the top 3 negative performance values reaching 
RGB baseline differences between − 52.03% and 39.95%. The LWIR model also suffered the sharpest decrease 

Figure 2.  Panel plot of model performance metrics for key uncertainty factors. Conference intervals reported at 
1 standard deviation.
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in performance over elevation, with the worst performance localized between 94 and 121 m. The LWIR model 
performed best at 16 m during the Post-Sunset period (74.3% mAP) and performed worst at the Pre-Sunset 
period at 94 m (9.5% mAP).

During Post-Sunrise, RGB and RGB-LWIR approaches both performed similarly below 94 m, with RGB-
LWIR performing consistently between − 4% and 8% of the RGB baseline. LWIR regularly performed far below 
the RGB baseline, ranging between − 9% and − 69.3%, explained by factors already well identified in the literature 
(e.g., increases in distance lead to decreased resolution when compared to RGB). Both LWIR and RGB-LWIR 
performance deteriorated rapidly at 109 m and 125 m when compared to the RGB baseline (for example, between 
− 11% to − 69.3% below the traditional RGB approach). The LWIR model performed the worst during periods 
of clear visibility, for example, with the worse LWIR performance occurring Post-Sunrise (− 24.7% from RGB 
baseline), Pre-Sunset (− 12.1% from RGB baseline) and Noon (− 11.3% from RGB baseline).

In Fig. 3A, when analyzing model performance by elevation and daytime periods (Post-Sunrise, Noon, Pre-
Sunset) both RGB and RGB-LWIR models performed similarly at all elevations. Both models had near identi-
cal mAP performance between 16 and 62 m. Both RGB and RGB-LWIR models also shared comparable mAP 
performance decreases over different elevations. Both RGB and RGB-LWIR models achieved the highest mAP 
at the lowest altitudes and gradually decreased mAP performance over vertical distance, losing approximately 
1–5% in mAP performance every 15 m.

In contrast, in Fig. 3B when analyzing model performance at night, the RGB-LWIR model significantly out-
performed both RGB and LWIR approaches. Unlike the RGB model which had a consistent reduction in mAP 
over distance, the RGB-LWIR model performed consistently between 16 and 47 m with performance slightly 
increasing over increasing altitudes (14.1% mAP increase between 16 and 47 m). At 47 m, the RGB-LWIR 
approach had a higher mAP (94.6%) than the RGB model, with the best predictive performance at the same 
altitude during periods of daytime illumination (91.5%).

Discussion
Given the lack of baseline performance metrics evaluating RGB, LWIR, and RGB-LWIR object detection machine 
learning models, especially from air-based platforms, this study undertook such an assessment. Whereas most 
object detection models have commonly focus on utilizing the visible spectrum using RGB imagery, the method 
undertaken here fused RGB with thermal LWIR (7.5–13.5 µm) images.

Thus, over 6300 training images were collected for RGB and LWIR sensors, mounted on a multirotor drone, 
creating an openly available fused RGB-LWIR dataset. Three object detection models were then trained, each 
based on one of the three image types identified (RGB, LWIR and RGB-LWIR). After training, an additional 
1200 testing images were collected from eight separate altitudes at five separate periods of the day. These images 
were then used to assess mAP performance for key uncertainty factors (altitude and time-of-day).

Figure 3.  Model performance during night-day periods. Confidence intervals reported at 1 standard deviation.
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This discussion will return to the research question identified earlier in this paper, to discuss key findings, 
now that results have been obtained and reported.

How do fused RGB-LWIR object detection models perform against separate RGB and LWIR approaches, when 
measured at various fixed altitudes and different times of the day?

When analyzing the mean average across all mAP results, the RGB-LWIR method outperformed the RGB 
approach by 5.6%. Although the mean mAP is similar between these two models, both performed inversely 
under different illumination conditions and altitudes. For example, the RGB-LWIR approach was superior for 
conducting object detection in periods of limited visibility. This finding is counterintuitive to the belief that 
LWIR by itself would be the best suited sensor to conduct object detection in nighttime settings. The RGB-LWIR 
fusion helped to dampen long-distance blurring and thus the resolution loss that LWIR sensors suffer from as 
object classes become farther away. The RGB fusion allows for an additional edge to be overlayed on the thermal 
signature of the object class, providing edge redundancy and edge emphasis, both which are vital in supporting 
edge detection machine learning algorithms. The LWIR fusion with RGB was only beneficial if the object classes 
were radiating thermal energy between 7.5 and 13.5 µm. Cold object classes would not be detected by the LWIR 
model and would thus be reliant on the RGB model for detection. The novelty of the RGB-LWIR model is that it 
combines critical edge information from objects with both visible-RGB edges and non-visible radiant-specific 
edges to increase performance as well as model resiliency. Examples of radiant-specific edges can be vehicle 
wheels, engine compartments, exhaust systems, and people.

Counter to expectation, the LWIR model performed best during the Post-Sunset period. Surfaces during 
Post-Sunset periods generally retain ample amounts of heat from the day. Increased ground surface temperature 
provides less contrast to the object class (thermal crossover) which would reduce edge detection. The Post-
Sunrise period is associated with cooler ground temperatures, thus providing greater contrast to warm object 
classes, and resulting in higher predictive power. Post-Sunset ground temperature is one of the warmest daily 
periods, decreasing the background contrast of object classes. The LWIR model had the best performance in 
Post-Sunset conditions, but performed very poorly in Pre-Sunrise conditions. One limitation is that these findings 
may be season-dependent, and therefore further research should be conducted during a greater annual range 
of months (particularly summer months) to further quantify these differences in sensor performance during 
larger temperature ranges.

When visualizing mAP metrics across different periods of the day, there was a slight upward trend in the 
Pre-Sunset results between 109 m and 121 m. This upward trend may be due to variety in image quality due to 
atmospheric disturbances. For example, the images tested at 121 m may be of higher quality than the images at 
109 m due to drone stablility, image angle and lighting angle. Sun position (sunrise and sunset) may have also 
played a role in RGB sensor and model performance. For a truly consistent experiment, a static object class can 
be used in future research to measure model performance and sensor type over elevation and illumination levels. 
However, this approach is not necessarily feasible for realistic applications where complex scenes with changing 
or moving object-classes are present.

When analyzing model performance over elevation, during daytime hours, model performance decreased 
gradually over elevation. Excluding LWIR, performance generally decreased consistently between 1–5% over 
every 15 m, as reported in Fig. 3A. During nighttime hours the decrease in mAP was much sharper, with per-
formance dropping significantly at 62 m (15.3% reduction in mAP).

The model performance metrics from this research indicate both future research opportunities and research 
limitations in deploying air-based multispectral object detection models. For example, the results demonstrate 
that not one specific object detection model type is best suited for all conditions, and that each ML model type 
has its own strengths and weaknesses for certain situations. More specifically, the RGB model performed best 
during daytime hours due to superior resolution across all altitudes. In contrast, the RGB-LWIR model performed 
best at night because of superior edge refining characteristics. However, the LWIR model exhibited the lower 
performance in all daily time periods because of rapid resolution deterioration as elevation increased.

To conclude, this research successfully quantified the performance of three unique models and found that 
the RGB-LWIR model generally performed the best. This is because RGB-LWIR provided consistent detec-
tion performance across many daily time periods with heterogenous illumination levels. Indeed, the blended 
RGB-LWIR approach only performed 1–5% behind the RGB approach at various altitudes during periods of 
clear visibility, while also having the advantage of operating in poor visibility settings. One final benefit is the 
open dataset generated from this research. Thus, this labeled imagery could be integrated as training data into 
future air-based LWIR multispectral object detection research. Lastly, two key contributions are made from this 
research of high relevance to the scientific community. Firstly, the factors affecting model performance from 
drone platforms are quantified (including distance, time-of-day and sensor type), which are highly relevant to 
the development of new multispectral image recognition algorithms and future use cases/applications. Secondly, 
this research generated the first air-based multispectral training dataset of labeled data consisting of 6300 images. 
Other researchers can therefore utilize this resource for training new multispectral models (with the production 
of this dataset constituting two full months of labeling work alone).

Methods
This method describes key steps including sensor selection, data collection, image processing and labeling, model 
training and the testing of air-based models. When these method steps are combined, they produce a final set of 
model performance metrics capable of answering the research question identified for investigation.

Sensor selection. The LWIR camera selected for this research is the FLIR (Forward-Looking Infrared) Vue 
Pro R. The FLIR Vue Pro R is a radiometric capable camera designed specifically for drones and costs $2914 
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USD. The field of view (FOV) for the camera is 45° with a lens diameter of 6.8  mm48. The 30 Hz variant of the 
FLIR Vue Pro R will be used. Although the 30 Hz FLIR Vue Pro results in a higher frames per second rate (30 
FPS) compared to the 9 Hz variant (9 FPS), the 30 Hz is export controlled and cannot be purchased outside of 
the United States. Both 30 Hz and 9 Hz variants produce the same LWIR resolution. The camera resolution is 
336 × 256 pixels and has a spectral band of 7.5–13.5 µm. The operating temperature range for the FLIR Vue Pro 
R is – 20 °C (− 4 °F) to 50 °C (122 °F)48.

The RGB camera selected for this research is the RunCam 5 Orange, which is designed for drone applications 
and costs $110 USD. The RunCam 5 uses a Sony IMX377 12 megapixel image sensor which has a FOV of 145° 
with adjustable resolution, ranging from 1080P at 60 FPS to 4 K at 30  FPS49. 1080P (1920 × 1080 pixel resolution) 
at 60 FPS (60 Hz) will be used for this research. Shutter speed, ISO, color style, saturation, exposure, contrast, 
sharpness and white balance are all set to the default settings.

Data collection. Overhead imagery collection for the air-based ML models is collected from the DJI Inspire 
2 (Fig. 4). The RGB and LWIR cameras on the multirotor are co-aligned to maintain the same field of view to 
ensure that similar images are being collected between the two  sensors50. Data are collected during various times 
of the day at different temperatures to ensure data diversity. Footage is recorded and extracted on the camera’s 
micro-SD cards. Frames of interest from the footage are then extracted and converted into images to train the 
ML model. Images are also collected from various altitudes to ensure image diversity and to help reduce model 
performance loss at higher altitudes.

A 3D printed component for the RGB camera was designed and printed to be able to directly mount the RGB 
camera to the LWIR camera. The 3D printed mounting bracket reduces parallax as well as ensures the same FOV 
of both cameras. This fixed FOV makes fusing the LWIR and RGB footage easier in Adobe Premier Pro. The file 
to print the mounting bracket can be found in the data availability section.

The original training images are collected from various camera angles at five different times of the  day51. 
These original images consist of 100 RGB and 100 LWIR extracted from the full-motion video footage with 
each object class. The RGB and LWIR footage is then fused in Adobe Premier Pro with a 50–50 fusion ratio to 
create an additional 100 images for the fused RGB-LWIR dataset (Fig. 5). Geometric distortions (skew) were not 
addressed. Photometric distortions (image degradation from Moiré pattern noise) were addressed by adjusting 
the RGB layer during the fusion process to prevent double edges produced by parallax from the two sensors. 
As distance and parallax from the target object increased, the RGB layer was adjusted and scaled, ensuring a 
consistent clean overlap between RGB and LWIR footage.

Figure 4.  The primary air-based platform used for this research (the DJI Inspire 2) carrying the RGB-LWIR 
payload.

Figure 5.  An example of an RGB image (left), an LWIR image (middle) and a RGB-LWIR fused image (right).
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Image processing and labeling. Image Processing (IP) techniques are then applied to the original images 
to increase the quantity available in the training dataset, while simultaneously generating edge-enhanced images 
to increase model  performance52,53. Six image augmentation and edge detection techniques are carried out to 
help increase model performance which include flipping, blurring, blurring & flipping, Gaussian Thresholding 
(GT), Difference of Gaussians (DoG) and Sobel-XY54. See Fig. 6 for a visual example of each of these techniques 
for RGB, LWIR and fused RGB-LWIR. The blurred and blurred + flipped image augmentation techniques are 
especially useful because of video vibrations caused by the oscillatory motions from the airframe’s  propellers55. 
Model training on blurred images helps to ensure that the model will continue to work when frames are blurred 
due to camera movement, target object movement, or both. Although counterintuitive, training ML models with 
blurred images tends to increase detection rates and confidence  levels56. All code for generating and exporting 
augmented images can be found in the image processing link in the data availability  section57.

After image processing, a total of 5400 new training images are generated, resulting in a total of 6300 total 
images. 90% of the dataset (5670 images) is used for training, 5% (315 images) is used for validation, and the 
remaining 5% (315 images) is used for testing. None of the newly generated images are used for testing. This 
is to ensure that testing results are similar across all ML models. Lastly, all images are labeled using LabelImg, 
which is an open-source python based image  labeler58.

Model training. This research utilizes YOLOv7 as the Convolutional Neural Network (CNN) to perform 
object  detection59. YOLOv7 was selected because to date it surpasses all existing object detectors in terms of 
speed and  accuracy60. YOLOv7 is considered one the fastest open-source object-detection models currently 
 available60–62. A primary shortfall of this family of object detection models is that YOLO approaches can strug-
gle to detect smaller objects within an image, which is primarily due to spatial constraints in the  algorithm63,64. 
There are six YOLOv7 models currently available. The standard YOLOv7 variant is used for this research  study65.

The standard YOLOv7 model is the smallest in size, easy to deploy in the field on edge devices, and also the 
fastest model (2.8 ms average inference time)66. YOLOv7-E6E is the largest model, attaining on average 4.7% 
higher mAP than the standard YOLOv7 model used in this research. However, it is also 16.9 ms slower on infer-
ence than the standard model. A comparative analysis of three other YOLO models was conducted to assess how 
different pre-trained neural networks performed when presented with the same RGB, LWIR and RGB-LWIR 
labeled training dataset. The three object detection models assessed were YOLOv5, YOLOv7E6E, and YOLOv8. 
All of these YOLO models use PyTorch as their deep learning framework. YOLOv8 is the newest variant of the 
YOLO family and was released as this research was culminating near completion.

Figure 7 depicts the mean average performance of the three sensor types as they relate to their respective 
object detection model type along the y-axis. The mean object class mAP is visualized along the x-axis to dem-
onstrate which model types performed best at identifying certain object classes. YOLOv8 outperformed other 
models in identifying larger object classes (car, truck), but had difficulty in identifying smaller object classes 
(person). The YOLOv7 and YOLOv7E6E models performed exceptionally well in identifying people. YOLOv5 
performed the poorest and had the most difficulty in identifying people. Conversely, sensor performance was 
dependent on the type of object-detection model selected. The RGB model performed the best in YOLOv8 (95.5% 
mAP) but in contrast performed the worst in YOLOv7E6E (83.3% mAP). LWIR had a significant increase in 
mAP performance between YOLOv7 and YOLOv7E6E (10.5% increase). The RGB-LWIR models performed 
generally consistently between YOLOv7, YOLOv7E6E and YOLOv8. YOLOv5 overall performed the worst, 
falling 24.2% mAP behind YOLOv8.

Figure 6.  Visual examples of the six image processing techniques applied.
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Using YOLOv7 three models were trained: the RGB, LWIR and RGB-LWIR models. The RGB and LWIR 
models were selected because of the common use of these sensors in research today, as well as to establish bench-
mark metrics that could be used to better quantify RGB-LWIR model performance. The RGB-LWIR model is 
trained on images with an equal part fusion of 50% RGB and 50% LWIR images. Although the fusion ratio can 
be adjusted to optimize model performance based on ambient temperature and illumination levels, the RGB-
LWIR model was trained on equally fused images to standardize results. Each model was trained on 300 original 
unprocessed images and 1800 images generated from image processing, resulting in a total of 2100 images used 
to train each model. The labeled image dataset used to train each model was equally divided by the three object 
classes of car, truck, and person, resulting in 700 images total for each object class. The model is trained through 
55 epochs. This number was selected to prevent overtraining. There is an imbalance in the number of car and 
truck labels in the dataset, making overfitting a possibility if the models are trained through too many  epochs67. 
Cars have the most labels in the dataset while trucks have the least. Training the dataset beyond the 55 epochs 
selected may result in an increase in false positives, thus decreasing the mAP of the model. After the completion 
of training the three models (RGB, LWIR and RGB-LWIR) are ready for evaluation from drone-based imagery 
at different periods of day at various altitudes.

Testing air‑based models. A multirotor drone is utilized to fly at fixed elevations to determine inference 
performance via mAP for both sensors and all three model types. As indicated in Fig. 8, to assess the models 
and sensors new test images will be extracted from video footage, separate from those used for training, col-
lected at 15 m (50 ft), 30 m (100 ft), 45 m (150 ft), 61 m (200 ft), 76 m (250 ft), 91 m (300 ft), 106 m (350 ft), 
and 121 m (400 ft). Footage cannot be collected above 121 m due to Federal Aviation Administration (FAA) 
drone regulation that prohibit drones from flying above 121 m (400 ft). Additionally, data will be collected at 
five different periods of the day. These include Pre-Sunrise (low-thermal cross-over, low illumination), Post-
Sunrise (low-thermal cross-over, medium illumination), Noon (high-thermal cross-over, high illumination), 
Pre-Sunset (high-thermal cross-over, medium illumination) and Post-Sunset (high-thermal cross-over, low illu-
mination). Atmospheric and location related metadata will also be recorded prior to each flight, to support both 
this study but also the reusability of images in future research. This metadata includes temperature (C°), wind 
speed (meters per second), illumination (lux), time, date, and location.

Five test images will be extracted at every elevation for each image type. This will result in 120 images (5 
RGB, LWIR and RGB-LWIR images across the 8 elevations) per flight, with 600 labeled images (5 flights) per 
daily period. Following ten full flights, a total of 1200 test images is collected to evaluate model and sensor 
performance. When calculating mAP for test images, variables will be constrained to a confidence level of 10% 
with an intersection of union (IoU) of 65%. After executing the test code, the notebook exports critical metrics 
such as precision, recall, precision-recall curve, mAP@.5 and mAP@.5:95. For this research, only mAP@.5 will 
be used to measure sensor and model performance at fixed elevations. The labeled test image dataset and test 
script can be found in the Test Data link and YOLOv7 Training Code notebook link in the data availability sec-
tion (Supplementary Information).

Figure 7.  Model, object class and sensor performance when presented to different pre-trained object detection 
models.
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Data availability
The datasets generated during and analyzed during the current study are available in the Zenodo repository. Links 
to the code and datasets to the Zenodo repositories are provided in the below hyperlinked text. Air-based labeled 
data for all object classes: https:// zenodo. org/ record/ 74655 21#. Y6Jk0 XbMJD8, air-based ML model weights: 
https:// zenodo. org/ record/ 74660 77#. Y6KiE XbMJD8, image processing code: https:// github. com/ jmans ub4/ RGB- 
LWIR_ YOLOv7_ train ing_ testi ng, YOLOv7 training & testing code: https:// github. com/ jmans ub4/ RGB- LWIR_ 
YOLOv7_ train ing_ testi ng, inference videos: https:// zenodo. org/ record/ 74690 11#. Y6M04 HbMJD8, test images 
with labels (images at elevation with labels): https:// zenodo. org/ record/ 75911 34#. Y9lhx 3bMJD8, 3D printed 
RGB mount: https:// zenodo. org/ record/ 74601 06.
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