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Edge and modular significance 
assessment in individual‑specific 
networks
Federico Melograna 1*, Zuqi Li 1, Gianluca Galazzo 2, Niels van Best 3,4, Monique Mommers 4, 
John Penders 2,5, Fabio Stella 6,8 & Kristel Van Steen 1,7,8

Individual‑specific networks, defined as networks of nodes and connecting edges that are specific 
to an individual, are promising tools for precision medicine. When such networks are biological, 
interpretation of functional modules at an individual level becomes possible. An under‑investigated 
problem is relevance or ”significance” assessment of each individual‑specific network. This paper 
proposes novel edge and module significance assessment procedures for weighted and unweighted 
individual‑specific networks. Specifically, we propose a modular Cook’s distance using a method 
that involves iterative modeling of one edge versus all the others within a module. Two procedures 
assessing changes between using all individuals and using all individuals but leaving one individual 
out (LOO) are proposed as well (LOO-ISN, MultiLOO-ISN), relying on empirically derived edges. We 
compare our proposals to competitors, including adaptions of OPTICS, kNN, and Spoutlier methods, 
by an extensive simulation study, templated on real‑life scenarios for gene co‑expression and 
microbial interaction networks. Results show the advantages of performing modular versus edge‑
wise significance assessments for individual‑specific networks. Furthermore, modular Cook’s distance 
is among the top performers across all considered simulation settings. Finally, the identification of 
outlying individuals regarding their individual‑specific networks, is meaningful for precision medicine 
purposes, as confirmed by network analysis of microbiome abundance profiles.

When analyzing the relationship between biological features and complex traits, it is often impossible to charac-
terize the outcome or phenotype with a single gene or a single  pathway1, and more advanced characterizations 
are required. Complex diseases have no unique cause, but result from an accumulation of different and interact-
ing  variations2. Advances in biotechnology, such as developments in high-resolution imaging modalities and 
high throughput sequencing methods, have made available high-dimensional inter-dependent data on growing 
collections of individuals. Such data need to be analyzed robustly and stably. Network medicine allows going 
beyond univariate analyses and embracing the complexity of biological  networks2,3.

Networks lend themselves well to visualizing and analyzing multiple biological processes in medicine. A 
network is a collection of connected objects. The objects are referred to as nodes or vertices. They are usually 
visualized as points. Connections between the nodes are referred to as edges or links. These are graphically 
drawn as lines between points. Such networks may be appended with extra information, such as node labels or 
edge weights. A module is a subnetwork composed of a subset of selected nodes and edges. Network modularity 
measures the strength of division of a network into modules. More details are in Table S1. Graph-theoretical 
constructs such as modules may be more robust and effective than traditional clinical variables in predictive 
or descriptive  models4. They are often compared between graphs, where each graph may represent a different 
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condition or state (f.i. diseased versus healthy). As we will see later, networks may also be constructed for each 
individual separately.

Population-based biological models, which infer edges in biological networks by pooling samples together 
or fixing a unique network wiring applicable to all individuals in a target group, have been used to extract 
features for downstream informed  analyses5 or to guide epistasis detection and interpretation using genome-
wide association study  designs6. From the lens of personalized medicine, they have also been shown to help 
draw patient-specific conclusions (e.g.,7). However, a “one size fits all” medicine is no longer  acceptable8,9, and 
extrapolating conclusions from population-derived networks may not be specific enough for a particular indi-
vidual. Furthermore, whereas statistical interactions occur at a population level, biological interactions occur at 
an individual  level10. Thus, considering that biologically relevant interactomes may vary from one individual to 
another, constructing individual-specific networks with individual-specific edges has received growing interest.

Here, we define an individual-specific network (ISN) as a network describing a single individual, with edges 
(edge weights) that may differ between individuals. As a consequence, comparing ISNs implies comparing 
potentially different network wirings. Examples of ISNs that fit this definition are the differential networks  of11,12 
and the completed networks  of13–15. In differential networks, individual-specific edge weights are obtained by 
contrasting population-based edge weights between the entire population and the population with the indi-
vidual added or removed. Hence, edges harbour information about an individual’s influence on a population. 
In completed networks, each ISN is standalone and assumes an individual comes from a distribution with the 
population-based reference network as the expected network. Investigating new methods of measuring variation, 
such as via individual-specific edges and modules, can provide a different perspective on analyzing existing data, 
to improve endotype identification, risk prediction, and treatment planning.

Individual-specific networks are not a new concept. In principle, once we have enough information about 
an individual, taken over time or under multiple conditions, we can exploit the multiplicity and build a network 
that is unique to that individual. Several examples link to  neurosciences16–19. Others link to functional networks 
between cells (for instance, reflecting the positions of beta-cells in tissue  slices20). However, quite often, the 
collected data are static or pertain to a single condition. Hence, one of the challenges of ISNs includes their 
construction in the absence of repeated measures over time or conditions. The first edge-inference approaches 
in this sense were discussed and developed  in21  and13 and depend on selecting a reference population, adding or 
removing an individual, and re-estimating the network with the augmented or reduced population, respectively. 
Another challenge is how to extract relevant information from a derived ISN. Common practice is to aggregate 
information, such as averaging edge weights in each ISN, and then look for associations with phenotypes of 
interest (for instance, drug reaction and time-to-clinical-event22,23). The most common objective of studies 
that include ISNs as input is prediction (for a review,  see24). This usually involves extracting graph-theoretical 
features and linking them to a phenotype of interest. Unfortunately, doing so may dilute the full potential ISNs 
bring  about25. The primary challenge is often poorly addressed: for which individuals is it essential to construct 
and interpret an ISN?

In this work, we take the challenge of assessing whether a constructed individual-specific network significantly 
differs from a population-based network while embracing network complexity beyond edges. We do so by for-
mulating the challenge as an outlier detection problem (i.e., the problem of finding patterns in data that do not 
agree with expected behavior). We focus on the ISNs of  Kuijjer13, defined in the II. subsection of the “Methods” 
section when developing and evaluating edge and modular significance assessment strategies. These networks are 
hereafter referred to as ISNs-L (short for LIONESS, the name of Kuijjer’s ISNs approach). A necessary intermedi-
ate step for ISNs-L calculation is the network derived from a reference population by removing one individual, 
which we call LOO network. There are many advantages of ISNs-L networks. Cardinally, it allows the translation 
of network interpretation strategies from population to individual; it also empowers focusing on each individual 
and his/her specific dynamics and associations; lastly, it departs from the notion of a network derived from a 
collection of individuals that can be seen as a model for an average individual. Moreover, for completion we 
compare the results obtained on ISNs-L with results on another ISN approach: SSN (sample-specific network)21.

Our work overcomes the limitations of current practices with ISNs. The major limitation is that the signifi-
cance assessment of an ISN usually relies on large-sample statistics that involve highly correlated samples (only 
differing from each other by a single sample). As a result, evaluating the statistical significance of ISNs-L and, in 
this way, identifying extreme or exceptional individuals remains an under-investigated problem. Furthermore, 
significance assessment is, at best, verified on a per-edge basis. Popular examples involve differential networks 
developed  in14,21,26. Single-edge significance assessments have reported  limitations27. Edges may not occur in 
total isolation but in a strongly connected and interdependent ecosystem imposed by the whole network. Both 
from an analytical or translational point of view, modules may therefore be more suitable instruments when 
assessing the statistical significance of an individual through its ISN. To the best of our knowledge, no formal 
report exists about module significance assessment in the context of ISN outlier detection.

The main contributions of this work are as follows: (i) development of novel methods for outlier detection, 
particularly a modified modular Cook’s distance measure and leave-one-out methods (LOO-ISN and MultiLOO-
ISN); (ii) customization of existing outlier detection methods kNN, OPTICS, and Spoutlier to accommodate 
ISNs; (iii) introduction and assessment of the relevance of a novel modular significance assessment paradigm 
with ISNs; (iv) evaluation via synthetic data and validation via real-world data while assessing strengths and 
weaknesses of edge-oriented and module-oriented considered strategies. This article addresses the literature gap 
by developing a measure of significance for ISNs that enables deciding which individuals would benefit from 
individual-specific network analysis.

The paper is organized as follows. We divide the “Results” section into three subsections: two extensive simula-
tion studies with different distributional assumptions and a microbiome data application. Hyperparameters are 
allowed to vary according to a grid of choices. The “Discussion” section presents main insights and suggests new 
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research questions. In the “Methods” section, we describe data and methodologies. Further details are presented 
as Supplementary Material. A glossary of terminology is provided in Supplementary Table S1.

Results
The performance of the proposed outlier detection methods is evaluated and compared on both synthetic and 
real-world data. Our real-life use case is a human microbiome study. The synthetic data reflect two scenarios: 
one with gene expression and one with microbial profiles available for a population of individuals. These two 
scenarios imply different underlying distributions to generate the data, with gene expressions assumed to be 
normally distributed and for microbial data respecting the compositional nature of the data. In synthetic data, 
outlier and non-outlier individuals are sampled from two different distribution, each one using different param-
eter values, i.e., a different variance/covariance matrix, quantifying the associations between variables; thus 
the ground truth, i.e., whether an individual is an outlier (1) or not (0), is known. On the simulated dataset of 
analysis (dimension: N × k , with N individuals and k variables), we calculated Pearson correlation to create the 
population-based network (dimension k × k ). On the population-based network, we calculated the ISN for each 
individual. Said ISNs constitute the input for the proposed outlier detection methods, with the individual-specific 
edge weights being the feature set. The various steps are illustrated in Fig. S1. Hence, for each individual, its’ 
ground truth is confronted with the ranked outlier score computed by each method. The outlier score (OS) for 
a certain individual is the degree to which a certain method classifies the individual as an outlier. The compari-
son of the effectiveness of different methods is performed under different experimental conditions and using a 
given grid of hyperparameters values. As a real-world case study, we considered a portion of the LucKi  cohort28 
with infant microbiomes collected over time. Exploring methods to identify meaningful modules in a network 
is a broad field that exceeds the scope of this paper. The proposed methods are agnostic to the chosen module 
detection algorithm. For the real-world case study, we used the  SPINGLASS29 algorithm to identify modules.

Methods evaluated and compared in this paper belong to one of the following groups: (i) novel proposals, (ii) 
adaptations of existing methods, and (iii) scientific literature’s methods. Out of the scientific literature’s methods, 
only SSN21 has been previously reported in the ISNs field. Given that  Liu21 introduces a significance assessment 
method and a network construction technique, both usually referred to as SSN, we will refer to them respec-
tively as SSN-m and SSN-n. Furthermore, depending on their rationale, methods are grouped into the following 
families; (i) leave-one-out, (ii) Cook’s distance, (iii) Spoutlier, and (iv) kNN and OPTICS. The leave-one-out 
(LOO) family exploits the impact of removing one individual at a time from the dataset of analysis; it includes; 
(i) LOO-ISN, (ii) MultiLOO-ISN, and (iii) SSN-m. The Cook’s distance family is a collection of modular Cook’s 
distance aggregations, including our proposals referred to as; Cook’s med, Cook’s max, and Cook’s mean, which 
differ by the adopted aggregating function, i.e., respectively median, maximum and mean. An iterative procedure 
calculates Cook’s distances. The algorithm considers an edge as the target and predicts its’ value (edge weight) 
via all the other edges belonging to the given module. The Spoutlier family originates from Sugiyama’s30 work 
and employs a fixed reference set in nearest neighbours. We refer to the original implementation as Spoutlier-l. 
The adaptations of Spoutlier methods are referred to as OTS and revolve around alternative distance measures, 
reference set computations, and ensembling. OTS euclidean and OTS cosine employ euclidean distance and cosine 
dissimilarity, respectively, and both use a modified reference set than Spoutlier-l. MOTS euc and mOTS cosine 
are an ensemble on OTS euclidean and OTS cosine, respectively. Finally, mOTS glob employs both OTS euclidean 
and OTS cosine as base predictors.

To the best of our knowledge, methods belonging to the  kNN31 and  OPTICS32 family have never been applied 
in the ISNs field. For each method, we explored multiple hyperparameter values. In the kNN family, kNN 5,

√
N  

with the parameters kmin and kmax set to 5 and 
√
N  achieves the best simulation performances, and it is there-

fore referred to as kNN. A thorough description of every method and parameters’ settings can be found in the 
methods section, along with a comprehensive Table S2 containing every acronym’s characteristic in the Sup-
plementary section. The aforementioned methods are applied to ISNs-L, but the same numerical experiments 
have been performed on SSN-n for comparison purposes. Results from the application of the SSN-n methods 
are identified with the suffix -n.

Lastly, numerical experiments based on synthetic data have been evaluated by comparing the calculated 
outlier score OS to the ground truth GT, and thus by constructing a ROC curve. The area under the curve AUC  
is used as a performance measure.

Synthetic data: normally distributed. This simulation scheme aims to mimic gene co-expression 
networks. More details on the characteristics of gene co-expression networks are provided in Supplementary 
Table  S1. We formed an experimental grid by generating synthetic data for different values of the following 
parameters; sample size N, module’s size k, number of outliers M, and probability distribution that generates 
outliers (more details in Section “Synthetic data” of the “Methods”). Each entry (row) of the experimental grid 
is referred to as a setting consisting of 200 runs. Each run outputs a dataset whose rows are associated with indi-
viduals and whose columns are associated with variables (nodes). Furthermore, each row is associated with a 
binary variable, the ground truth, which tells whether an individual is an outlier or not.

The dataset is used to calculate the population-based network (dimension k × k ), with its base element being 
the association between nodes vi and vj . Said population-based network characterizes the associations (in our 
work, Pearson correlation) between the variables and defines the adjacency matrix. From the population-based 
network, an individual network (ISNs-L or SSN-n21) is computed to be the downstream analysis input. The set 
of individual-specific edge weights in a module constitutes the feature set of the outlier detection methods.

A realization is defined as the result of applying a method to a setting; for each realization, the OS is computed 
for each individual-specific network, quantifying the support for the individual to be an outlier. Hence, these 
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score values can be ranked to find those individuals most likely to be outliers. Then, for each method and for 
each setting, we summarize the results of the corresponding 200 runs with the Median AUC  due to its robustness 
to extreme values. As a coarse summarization, we average across all settings, calculating Mean and Median AUC  
values for each method. These scores are reported in Table 1.

Cook’s med achieves the best Median AUC  value (0.920), while mOTS cosine achieves the best value of Mean 
AUC  (0.866). The OPTICS methods are not effective, achieving performance values that are barely better than 
a random guess. Finally, neither kNN nor mOTS euc achieve an aggregate AUC  value greater than 0.7, while all 
leave-one-out methods (MultiLOO-ISN, LOO-ISN, SSN-m) achieve aggregate AUC  values smaller than 0.64. As 
explained in detail in the method section, not all methods apply to every setting, so the comparison is incomplete. 
For clarity, only the top methods for each family, in terms of AUC , are reported in Table 1. A comprehensive 
Table S3 is available in the Supplementary.

Results by sample size N. This section compares different methods in terms of the achieved performance when 
grouping the sampled synthetic data by sample size N = {100, 500, 1000, 2000} . By comparing different Spout-
lier’s implementations in single-shot (i.e., the method applied once, no ensemble), OTS cosine performs overly 
better than OTS euclidean. As highlighted in Fig. 1a,b, OTS and mOTS cosine achieve an AUC  value ranging from 
0.75 to 0.90. Euclidean counterparts achieve an AUC  value lower than 0.65. At the same time, no difference is 
detected between the literature’s Spoutlier-l and the custom OTS euclidean approach: introduced reference set 
computation performs no better nor worse than the literature’s one. The proposed ensemble implementations 
achieve better results than their single-shot counterparts. Considering the median of the OTS predictions over 
all the repetitions is highly effective. mOTS cosine is the best Spoutlier method, achieving an AUC  value greater 
than 0.8 for every value of N.

Methods yielding p-values, i.e., LOO-ISN, MultiLOO-ISN and SSN-m, represent a relevant facet of the cur-
rent study, providing a clear threshold to detect outliers. A comparison between these methods is depicted in 
Fig. 1c, and shows that MultiLOO-ISN outperforms LOO-ISN for all values of the sample size N. Notably, for the 
literature’s method SSN-m only single-edge ( k = 2 ) comparison is possible, thus only those cases are depicted. 
kNN and OPTICS never achieve AUC > 0.7 (Fig. 1d). Furthermore, the best methods for each family are shown 
together to get a glimpse of their performance under different sample size values, Fig. 1e. Cook’s distance and 
mOTS cosine stand out, achieving AUC  values greater than 0.8 for all size values N. These methods dominate their 
corresponding counterparts by more than 0.2 for each setting. No method achieves an acceptable performance 
value, i.e., AUC > 0.7 , for single-edge settings (Fig. 1f), thus highlighting the need for modular assessments. 
Finally, we notice a slightly positive association between AUC  and sample size N.

Results by module’s size k. In modular settings ( k > 2 ), the adapted Cook’s distances methods, i.e., Cook’s med 
and Cook’s max, achieve the best values of performance. They are closely followed by the mOTS cosine method. By 
grouping the synthetic data per module’s size k = {2, 3, 5, 7, 9, 11, 17} , a positive relationship between the mod-
ule’s size k and performance AUC  emerges in (m)OTS cosine (Fig. 2a,b) and Cook’s distances methods (Fig. 2d,e). 
Other methods (Fig. 2c) do not show an association with the module’s size k. Crucially, no method achieves a 
satisfactory performance value in the single-edge analysis setting: when k = 2, every method achieves an AUC  
value smaller than 0.6. The limited informativeness of an edge alone emerges from those results. Other note-
worthy insights originate from comparing Spoutlier’s methods (Fig. 2a,b). mOTS euclidean is upper-bounded 
by 0.7, while mOTS cosine achieves an AUC  value greater than 0.9 for large module sizes k. mOTS glob’s AUC  is 

Table 1.  Synthetic data: normally distributed: averaged AUC  values achieved by different methods. Bold 
values indicate the top performer of each column. The Cook’s med method achieves the best Median AUC  
value, while the mOTS cosine method achieves the best Mean AUC  value.

Method Median AUC Mean AUC 

MultiLOO-ISN 0.628 0.632

LOO-ISN 0.582 0.591

SSN-m 0.584 0.601

KNN log(N),P 0.646 0.657

KNN 5,
√
N 0.649 0.659

Optics 5 0.608 0.595

Optics 
√
N 0.532 0.529

OTS euclidean 0.628 0.637

OTS cosine 0.812 0.773

mOTS cosine 0.880 0.866

mOTS euc 0.629 0.640

mOTS glob 0.820 0.824

Spoutlier-l 0.628 0.639

Cook’s max 0.903 0.853

Cook’s med 0.920 0.859
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positively associated with the module’s size k and, coarsely, around 0.05 worse than mOTS cosine. mOTS glob’s 
performance, although suboptimal, hints toward the value of combining both an arithmetical and a geometrical 
point of view. The scenario is a carbon copy of the single-shot setting: OTS cosine is positively associated with 
the module’s size k, and results are more than 0.2 better than the OTS euclidean counterpart for high values of k.

Results by number of outliers M. Figure S2 shows that the number of outliers does not affect the behaviour of 
AUC  with respect to the module’s size k. When changing the number of outliers M = {1, 5, 10} , the relative rank-
ing of methods appears to be stable. Furthermore, the slope between performance AUC  and the module’s size k 
does not change. The performance, i.e., Median AUC  over all runs, achieved by the best methods, is negatively 
associated with the number of outliers M: when more individuals are outlying, the performance decreases. Fur-
thermore, no interaction emerges between the number of outliers M and the module’s size k. Cook’s distances 
methods, i.e., Cook’s max and Cook’s med, dominate other methods regardless of the number of outliers M. These 
methods also exhibit robustness for the number of outliers M, by achieving a stable performance value in all set-
tings, with specific reference to those cases where the module’s size k is large.

Synthetic data: compositional. This simulation scheme aims to mimic microbial co-occurrence net-
works, thoroughly described in Supplementary Table  S1. In this section, we present and discuss the perfor-
mance achieved by methods on a microbial simulation scheme. A subset of the grid used to simulate normally 
distributed data is combined with a grid explicitly designed for compositional simulations, thus increasing the 
computational burden. In detail, additional parameters are (i) Data heterogeneity, (ii) Multiplying factor (Mult) 
multiplier to differentiate each individual’s variable (node) set between outliers (also referred to as cases) and 
non-outliers (controls), and (iii) the ratio of inflated taxa to the total. Therefore, we develop a parallel imple-
mentation where multiple instances of the same simulation setting, with different random starts, have been 
performed. The overall experimental plan accounts for 150 runs for each setting included in the augmented 
parameter’s grid (in total, 972 settings).

Then, following the same procedure as in the previous section, we create the ISNs-L and SSN-n networks for 
downstream analysis. For each realization, the corresponding AUC  value is computed and averaged over all 150 
runs to obtain the Median AUC  value achieved by each method.

Figure 1.  Synthetic Data: normally distributed. AUC  values of various methods. (a) single-shot Spoutlier 
methods are compared. OTS cosine evenly dominates over the canonical OTS euclidean. (b) the ensemble 
methods are compared, and mOTS cosine is the best for all values of the sample size N. (c) p-value yielding 
methods are compared, and MultiLOO-ISN outperforms the counterparts. (d) the remaining methods are 
compared, with Cook’s med consistently dominating for all values of the sample size N. In the bottom panel, 
selected methods are compared. e) the comparison comprehends all settings: mOTS cosine and Cook’s methods 
(both Cook’s med  and Cook’s max) consistently dominate their counterparts. f) the comparison is restricted to 
single-edge ( k = 2 ) settings: no method achieves an AUC  value greater than 0.7.
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We identify the level of Data heterogeneity and the Multiplying factor as primary performance drivers. Hence, 
we average over all settings grouped by primary performance’s driver, i.e., Data heterogeneity and Multiplying 
factor, calculating Mean and  Median AUC  values for each method. Table 2 reports on Mean and Median AUC  
values of selected methods under different Data heterogeneity and Multiplying factor settings. We refer the inter-
ested reader to the Supplementary for an in-depth analysis.

Performances achieved by various methods positively correlate with both Data heterogeneity and Multiplying 
factor. We achieve the best values of AUC s when Mult = 2 and Data heterogeneity = high (Table 3). The kNN and 
the LOO-ISN methods are consistently among the best-performing methods for all settings. The euclidean-based 
methods OTS, i.e., both OTS  and mOTS euclidean, together with Cook’s distance methods, are competitive. Fur-
thermore, no method achieves an AUC  > 0.51 in settings where Mult = 1.1. Under this scenario, the discrepancy 
between cases and controls is feeble.

We highlight the main differences between considered methods by focusing on settings with high heteroge-
neity and high multiplier, i.e., high differentiation between taxa in cases’ and controls’ individuals. kNN achieves 
the best Mean (0.801) and Median (0.803) AUC values. Among the best, achieving both Mean and Median AUC 
values greater than 0.77, we find LOO-ISN, Spoutlier-L, Cook’s max, OTS euclidean, and mOTS euc. Cosine-simi-
larity-based methods OTS achieve low AUC  values and do not seem suited to accomplish the task. Furthermore, 
we observe that different choices for methods’ parameters, except the distance measure in the case of OTS, have 
feeble or no influence on the final performance.

Results by module size k. Here, we analyze performances when grouping simulation runs by module’s size k 
= {2, 5, 11, 17} . Given the considerable heterogeneity in the data analyzed, the focus is set on the aggregation of 
iterations in settings where Mult = 2 and the Heterogeneity level is high. Notably, LOO-ISN performs better than 
MultiLOO-ISN for k < 5 , while OTS euclidean performs better than its’ cosine-based counterparts, in contrast to 
results for simulations under the normality assumption. A mild positive association between the module’s size 
k and performance (median AUC ) is observed in Fig. 3, thus highlighting the inner modularity nature of those 
estimates.

Unlike what we observed for simulations under the normality assumption, the assessment is informative for 
single-edge settings: the median AUC  is around 0.75 for most of the considered methods. Other noteworthy 
results originate from comparing Spoutlier methods. Indeed, euclidean-based methods significantly outperform 
their cosine-based counterparts (Fig. 3a). There is only a slight benefit, less than 0.05 on average, in AUC  from 

Figure 2.  Synthetic data: normally distributed. Median AUC  on the y axis and module’s size k on the x axis. (a) 
single-shot Spoutlier’s methods are compared. OTS cosine evenly dominates its’ euclidean counterpart (OTS 
euclidean) for k > 2 . (b) the ensemble methods of the Spoutlier family are compared, and mOTS cosine is the 
best for k > 2 . (c) p-value yielding methods are compared, and MultiLOO-ISN achieves the best performance 
for k ≥ 5 . (d) remaining methods are compared, with Cook’s med consistently dominating all others when k > 2 . 
at the bottom panel, selected methods are compared together. (e) the comparison includes all settings: cosine-
based OTS and Cook’s distance methods consistently dominate their counterparts when k > 2 . No method 
achieves satisfactory performance under the k = 2 settings.



7

Vol.:(0123456789)

Scientific Reports |         (2023) 13:7868  | https://doi.org/10.1038/s41598-023-34759-8

www.nature.com/scientificreports/

Table 2.  Synthetic data: compositional. Bold values indicate the top performer of each column. 
Summarization of methods’ Median and Mean performances per Mult parameter—if the average abundances 
for the cases individual are 10% , 50% or 100% more - and Data Heterogeneity—from no to mild and high. 
High multipliers and more heterogeneity yield better AUC . With a Mult of 1.1, outlier detection is not better 
than random guessing. Notably, there is an appreciable performance gain passing from mild to elevate 
heterogeneity, but the difference from no to mild heterogeneity is limited. KNN’s methods and LOO-ISN are 
consistently among the best in every scenario, with Cook’s distance and euclidean-based Spoutlier methods 
closely following. Furthermore, cosine OTS, both OTS cosine and mOTS cosine, have worse performance 
than their euclidean counterparts. LOO-ISN achieves the top performance, 0.726, in terms of Median AUC , 
in the Mult = 2.0 scenario. This method has a 0.221 performance increment from Mult = 1.1 to Mult = 2.0 , 
highlighting the multiplier as the primary driver of performance.

Method

MULTIPLIER 1.1 MULTIPLIER 1.5 MULTIPLIER 2.0 UNIFORM—NO HET PARETO—4 MILD HET
PARETO—0.7 HIGH 
HET

Median 
AUC Mean AUC 

Median 
AUC Mean AUC 

Median 
AUC Mean AUC 

Median 
AUC Mean AUC 

Median 
AUC Mean AUC 

Median 
AUC Mean AUC 

MultiLOO-
ISN 0.502 0.502 0.565 0.586 0.684 0.705 0.543 0.562 0.556 0.578 0.629 0.653

LOO-ISN 0.503 0.505 0.586 0.598 0.726 0.733 0.559 0.585 0.571 0.601 0.637 0.650

SSN - m 0.498 0.497 0.559 0.577 0.676 0.695 0.541 0.562 0.553 0.575 0.619 0.632

KNN 
log(N),P 0.503 0.503 0.582 0.596 0.714 0.730 0.556 0.579 0.567 0.595 0.642 0.656

KNN 5,
√
N 0.504 0.502 0.582 0.597 0.717 0.732 0.556 0.579 0.568 0.595 0.644 0.657

Optics 5 0.494 0.477 0.541 0.533 0.633 0.624 0.510 0.525 0.521 0.536 0.546 0.573

Optics 
√
N 0.491 0.489 0.556 0.565 0.673 0.686 0.532 0.555 0.545 0.569 0.595 0.616

OTS euclid-
ean 0.503 0.503 0.577 0.591 0.704 0.718 0.553 0.574 0.566 0.590 0.635 0.648

OTS cosine 0.499 0.500 0.504 0.504 0.499 0.503 0.498 0.497 0.496 0.495 0.509 0.514

mOTS 
cosine 0.499 0.499 0.503 0.506 0.497 0.505 0.494 0.493 0.491 0.491 0.519 0.525

mOTS euc 0.504 0.503 0.581 0.595 0.714 0.729 0.554 0.578 0.569 0.595 0.637 0.655

mOTS glob 0.502 0.503 0.551 0.571 0.642 0.672 0.532 0.550 0.547 0.564 0.614 0.631

Spoutlier -l 0.503 0.501 0.576 0.590 0.703 0.720 0.551 0.575 0.561 0.589 0.634 0.646

Cook’s max 0.501 0.502 0.575 0.594 0.703 0.720 0.554 0.574 0.564 0.589 0.637 0.652

Cook’s med 0.502 0.503 0.580 0.593 0.712 0.718 0.555 0.578 0.566 0.592 0.630 0.644

Table 3.  Synthetic data: compositional. Bold values indicate the top performer of each column. Averaged 
AUC  in the context of high heterogeneity and elevate multiplier in synthetic data. KNN methods achieve the 
best performance, with KNN 5, 

√
N  yielding Mean AUC  = 0.803 and Median AUC  = 0.801, and kNN log(N),P 

closely following. Euclidean Spoutlier, i.e., Spoutlier-l, OTS euclidean  and mOTS euc, Cook’s distance methods, 
i.e., Cook’s max and Cook’s med, and LOO-ISN are also strong performer, all with Median AUC  ≥ 0.77 . Cosine 
OTSs methods are not suited for the task and barely better than a random guess.

Mult 2 & Pareto—0.7

Method Median AUC Mean AUC 

MultiLOO-ISN 0.780 0.794

LOO-ISN 0.788 0.788

SSN m 0.758 0.760

KNN log(N),P 0.800 0.800

KNN 5,
√
N 0.801 0.803

Optics 5 0.686 0.669

Optics 
√
N 0.739 0.74

OTS euclidean 0.786 0.786

OTS cosine 0.515 0.519

mOTS cosine 0.542 0.544

mOTS euc 0.800 0.799

mOTS glob 0.739 0.754

Spoutlier -l 0.789 0.787

Cook’s max 0.786 0.793

Cook’s med 0.775 0.776
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employing an ensemble-based method compared to a single-shot (Fig. 3b). MultiLOO-ISN, LOO-ISN and SSN-
m have similar performance for single-edge settings (Fig. 3c). Cook’s distance approaches are among the best 
performers when module size k is high; they are suboptimal for small module sizes (Fig. 3d,e).

Result by number of outliers M. As shown in Fig. S3, the behaviour of AUC  with respect to module’s size k is not 
affected by the number of outliers M. The relative ranking of methods appears to be consistent with respect to the 
number of outliers M, with range M = {1, 5, 10} . Increasing the number of outliers M worsens the performance 
of all methods: no method shows high robustness to outliers. Finally, the performance heterogeneity, i.e., the 
spread between best and worst methods, increases slightly when the number of outliers M increases.

Results on real‑life data: the LucKi Gut subcohort. Microbiome co-occurrence networks are known 
to be rich in terms of information on the health conditions of  individuals4,33. Hence, we use data from the LucKi 
Gut cohort, an ongoing study that monitors gut microbiota development throughout infancy and early child-
hood, to validate the findings.

The LucKi Gut is embedded within the larger Lucki Birth Cohort  Study28; it mainly focuses on newborns, 
collecting microbial taxa at various stages after delivery and thus computing microbial associations. Microbi-
ome at month 6 has been identified as a milestone in microbial community maturation; hence it constitutes 
the subject of the analysis. We focus on the 81 newborns having microbial profiles available at month 6 and, 
through significance assessment methods, we try to discover which are the outlying individual-specific modules 
if any. We apply filtering based on the prevalence of microbial taxa ( < 10% ). All the samples have substantial 
sequencing depth (reads: median = 57,248, IQR = 29,504; minimum = 11,123); hence we do not apply any filter 
on the number of reads. The resulting data are composed of 81 newborns per 126 microbes. We centered-log 
ratio (CLR) transformed the data and computed the Pearson correlation network on the whole dataset, i.e., the 
population-based network.

The considered modules are the clusters obtained by applying the community detection algorithm SPIN-
GLASS29 on the population-based network. We do not apply any binarization or distribution-based transforma-
tions. We set the parameter stop temperature to 0.001 to increase the algorithm’s granularity, while the other 
parameters are set to their default values.

Figure 3.  Synthetic data: compositional. Median AUC  on the y axis and module’s size k on the x axis. (a) single-
shot Spoutlier methods are compared. Euclidean methods, both OTS euclidean and Spoutlier-l, dominate OTS 
cosine. (b) Spoutlier’s ensemble methods are compared, and mOTS euc uniformly emerges as the best Spoutlier 
implementation when k > 2 . (c) p-value yielding methods are compared, and MultiLOO-ISN achieves the 
best performance starting for modular settings, i.e., k > 5 . On (d), the remaining methods are compared, with 
kNN and Cook’s max consistently dominating their’ counterparts. In the bottom panel, selected methods are 
compared together. On (e), the comparison includes all settings: KNN, mOTS euc, LOO-ISN, Cook’s max and 
Cook’s med consistently achieve good performance.
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We apply SPINGLASS29 to the Lucki Gut cohort, and we find 4 microbiotic modules of dimension {45, 41, 
35, 5} taxa. Modules 1–3 have a size (number of taxa) out of the coverage of the simulations ( > 17 ). Moreover, 
modules 1–3 consist of more edges, as computed according  to27, than individuals 81, and thus all methods based 
on Cook’s distance can not be used. Module 4, consisting of 5 nodes, is adequate to validate our approach, being 
the closest to the module’s dimensions in the simulations.

Hence, we apply outstanding techniques from synthetic data on the ISNs-L of module 4. In particular, kNN 
5 
√
N  , mOTS euc, MultiLOO-ISN, LOO-ISN, Cook’s max mOTS cosine, and mOTS cosine -n. MultiLOO-ISN and 

LOO-ISN find 7 and 4 significant outliers respectively, visualized in Fig. 4a,b. We create an ensemble ranking of 
the individuals through rank comparison. A comparative study from Li et al.34 guides us toward the geometric 
mean of the rankings, among the best metrics in terms of performance and generalizability. There is strong agree-
ment between the outlier scores of different methods, with correlation in absolute value higher than 0.4 (Fig. 4d). 
We focus on the top-6 as for the geometric mean (Fig. 4c). We choose 6 as it is between 7 and 4 outliers found 
with MultiLOO-ISN and LOO-ISN.

Further validation comes from graph filtration curves35, i.e., graph representations that can be applied to 
labelled and unlabelled datasets using the graph’s relevant attributes and structural information. An increasing 
threshold is considered, and those edges whose weight is smaller than the current threshold value are zeroed 
out. A metric summarizing the subgraph is then calculated for different threshold values. In more detail, we use 
the algebraic connectivity of graphs, the so-called Fiedler value36; it measures how well a graph is  connected37. 
Further information can be found in the Supplementary.

In Fig. 4a–c we depict the outlier groups against the average of all other ISNs-L in the population, thus show-
ing strong separation in the given module. Hence, corroborating LOO-ISN, MultiLOO-ISN, and top-6 outliers 
findings.

We compare the top-6 outliers with external phenotypes such as the mode of delivery (Vaginal or C-Section) 
or the diet type (Breastfeeding, Mixed diet, Solid food). We find enrichment for Solid food diet and mildly for 
C-section delivery (hypergeometric tests, respectively, p-value of 0.032 and 0.079, with FDR correction).

Then, we consider, as an extreme, the entire network as a module (Fig. 4e). We iterate the pipeline on the 
entire network (i.e., on the ISNs of 81 individuals and 126 taxa) and rank the top-6 outliers (as before). We note 
that the Cook’s max was not calculated since there are more edges than samples. We find significant enrichment 
for Solid food in the top-6 (6 out of 6, hypergeometric FDR corrected p-value of 0.032). No delivery type level is 
enriched. Moreover, 5 out of the top-6 samples are in Cluster 2 of the DMM cluster analysis of Gallazzo et al.38 

Figure 4.  Real-life data: the LucKi Gut Cohort. Filtration curve of ISNs using Fiedler values as the metric. The 
standard deviation is also depicted. In module 4, (a) the filtration curves of 4 outliers (green) identified with 
LOO-ISN are depicted against the rest (red, identified as ”average”). In (b), the green line is the filtration curve of 
7 outliers identified with MultiLOO-ISN. In (c), the top-6 outliers, as for the geometric mean of the ranking, are 
depicted (green) against the rest (red). In (d), the agreement, in terms of correlation of OS, is calculated between 
the specified methods. In (e), the top-6 outliers on the entire network are depicted (green) against the rest (red). 
(f) Only 2 samples out of the top-6 in the entire network are also outlying in module 4.
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on the same data. However, we find no enrichment (FDR-corrected hypergeometric p-value = 0.35 ). We do not 
find any separation in the filtration curves by taking Module 4’s top-6 outliers on the entire network. Out of 
Module 4’s top-6 outliers, only 2 are also outlying on the entire network (Fig. 4f).

Discussion
Individual-specific networks have become increasingly popular. In general, an ISN refers to a network that can 
be allocated to a single individual. As such, a systems approach can be adopted to compare individuals with 
each other and to assess heterogeneity in patient or population groups, which may inform precision medicine 
practices. Here, we focus on ISNs with edges that have individual-specific weights. Often such ISNs also have 
individual-specific node values, as these are directly used in the computation of the edges. However, one can 
think of examples for which node values would not be directly available. For instance, individual-specific gene-
level statistical epistasis networks could capture the individual’s epistatic contribution to a population epistasis 
model, in the sense of Kuijjer et al.13. However, individual-specific gene-node values would only be available 
when the derivation of the population epistasis model involves the computation of gene summaries. Once ISNs 
are derived, they can be interrogated for highly connected subnetworks. When ISNs are molecular, they can 
be followed up by enrichment analyses to identify individual-specific significant pathways. However, before 
embarking on such analyses, we first investigate whether the individual should be treated as a unique sample or 
whether the individual can be assumed to follow population trends. Thus conclusions from population models 
can be extrapolated to the individual without further ado. Currently, ISNs are often subjected to interpretation 
workflows, irrespective of whether or not edges or modules are significantly different from what can be expected 
from a population. Hence, this work explores several outlier detection methods, formulates new ones, and trans-
lates them into the context of ISNs, going beyond single-edge significance assessments.

ISNs, with individual-specific edges, can be computed in various ways. We have restricted attention to Kuijjer’s 
linear interpolation method as the construction method can be applied to any definition of an edge. This does 
not imply that any edge weight definition will give optimal performance. Kuijjer  reported13 (and  Jahagirdan39 as 
well) that noisier results are obtained with mutual information edge weights. In addition, each application set-
ting will require a thorough evaluation of the appropriateness of the adopted ISN definition on simulation data 
that capture the true nature of the target application data. When applied to Pearson’s correlation as a measure 
of association between two nodes, Kuijjer’s individual-specific edges are quite similar to those defined by Liu 
et al.21 (SSN-n). The latter did develop a Z score (SSN-m) from ISN edges to assess significance. However, type I 
error for SSN-n was slightly elevated. For the reasoning behind this observation, we refer to Jahagirdan et al.27.

This paper presents several methods from different research fields to assess which individual is significantly 
different from the population, where the population is described via a network of interacting biological entities 
(for instance, genes and their expressions or microbes and their abundances). As entities often do not work in 
isolation, we have extended current state-of-the-art sample outlier detection methods to work conditional on 
interconnected sets of measurements for each individual. Hence, in the simulations, we do not look for modules 
but condition on a given subnetwork, then check if the individuals are outliers conditional on the subnetwork. 
Outlying individuals, not on the whole networks but on a subset, identified with our techniques may point 
towards interesting subnetworks of ISNs to zoom into for follow-up analyses. Realizing that nodes, being they 
genes, taxa, or any other biological features, do not act in isolation (but in communities), we expanded the cur-
rent state-of-the-art analysis toward a modular significance paradigm.

In our work, we have clearly specified the null and alternative hypotheses we are testing with each consid-
ered outlier detection method. Our simulated data mimics two real-life scenarios: (1) transcriptome (gene 
co-expression) networks for normal distribution and (2) microbial co-occurrence networks for compositional 
distribution. The motivation to select these two application contexts is as follows. Gene co-expression is the field 
in which ISNs have mainly been applied. Moreover, as highlighted by Conesa et al.,40, the read counts are best 
modelled with discrete distribution (as the Poisson or negative  binomial41,42). However, as soon as the data have 
been normalized—including TMM and batch removal—they might lose their discrete nature and be more akin 
to a continuous distribution. Moreover, there are numerous advantages that the Gaussian distribution provides, 
such as being a natural representation of an average for large sample sizes, to completely independent mean 
and deviance. The normality assumption could be an issue, thus its use is limited only to scenarios where the 
assumption holds. For those particular fields, a custom data generation technique is needed. The microbiome has 
a considerable impact on  health43. Furthermore, the human gut is a complex ecosystem where microbes interact 
amongst themselves, and with the  host33. Microbial interactions have been shown to exhibit rich information 
about various health conditions  potentially33.

In the era of data science and precision medicine, robust outlier detection is of great  interest44,45. Determin-
ing whether an observation is unlikely, given the available data or a reference, clearly is context-dependent. In 
our context of ISNs, which are networks, it makes more sense to look for outliers in a multivariate way, where a 
multivariate outlier is classically defined as an observation that is inconsistent with a given correlation structure. 
The complexity of multivariate outlier detection is exacerbated in the context of ISNs, which may consist of thou-
sands of edges. To reduce the complexity and, since modules are often the basic units towards interpretation and 
translation, we restrict the dimensionality of multivariate outlier detection to those dictated by modules. Hence, 
we focus on low-dimensional simulations, to replicate the dimensionality of a real-life module. Our selected 
outlier detection methods are representatives from kNN, OPTICS, Spoutlier, Cook’s distance and SSN-m families, 
and are unsupervised: kNN and Spoutlier have different assumptions but are both distance-based techniques, 
while OPTICS is density-based. SSN-m (as LOO-ISN and MultiLOO-ISN) is based on leave-one-out, while 
Cook’s distance is both statistical and distance-based. Methods initially developed for univariate (multivariate) 
outlier detection are respectively SSN-m (kNN, OPTICS, Spoutlier, Cook’s distance). Although there is no best 
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overall performer across scenarios, a few observations can be made: the increased dimension of the module is 
associated with stronger performances. Moreover, we observed a slight performance improvement by increas-
ing the sample size. Distributional distance—on the compositional data—between outliers and non-outliers is 
a critical performance driver. Particularly the parameters Mult and Data heterogeneity. Settings where Mult=1.1 
are extremely challenging for all methods, with the value of the Median AUC  ranging from 0.5 to 0.51. Under 
this scenario, the discrepancy between cases and controls is feeble, and it is not detected by any method. Hence, 
it is crucial to further analyze the characteristics of the target dataset before applying outlier detection methods 
in a myopic manner.

We can formulate interpretations and insights based on the methods’ performance. We show that the pro-
posed methods, i.e., the Cook’s distance methods applied on the edges, Cook’s max and Cook’s med, are the first 
choice. Cook’s methods are among the best with mOTS cosine under the synthetic data normality assumption 
setting, with kNN and LOO-ISN under the synthetic data compositional setting. On the contrary, OPTICS is 
consistently a poor performer. A possible explanation for such a result is that Cook’s construction can give the 
proper importance to the ecosystem view characterizing network medicine. Indeed, when computing the influ-
ence/extremeness of an edge, it considers the entire modular structure. Moreover, we can deduce that we can 
tackle edges in transcriptomics data from a geometrical point of view. This is clear from the better performance 
of mOTS cosine than the euclidean counterpart. The algebraic approach—mOTS euclidean—has better results 
on microbiome simulations.

Alternatives to proposed outlier detection methods exist. (Non-linear) dimensionality reduction methods 
such as (non-linear) PCA, (kernel-) MDS, or SNE, on cell entries of the upper diagonal association matrix linked 
to each ISN, can be used to identify outliers as well, albeit primarily by visual inspection only. Some clustering 
approaches are robust to outliers in the sense that they will identify outliers as a separate cluster: One recent 
development that is promising in the context of ISNs is netANOVA, a novel hierarchical network clustering 
approach with tree-based significance  assessment46.

Real-life data confirms our findings. The study on the LucKi Gut cohort microbiota data validated the pro-
posed outlier detection methods in finding local outliers, i.e., observations that are not global outliers but become 
outliers only when they belong to specific feature communities. This is crucial in microbiomes, given their 
substantial heterogeneous structure and the importance of their  variation47. Moreover, by doing an ensemble of 
the most performant techniques on the smallest module (i.e., module 4), we can segregate the diet type and the 
mode of delivery. In particular, the C-sections mode of delivery is known to be a prime driver for microbiota 
in the early stages of  life48–51. This highlights the capacity of capturing a signal of the aforementioned methods. 
Moreover, the top-6 most outlier individuals in module 4 are not outlying in the whole network Fig. 4e. Hence, 
local outlier detection brings complementary information.

Most of the presented methods are rankers, i.e., yield a ranking of the outlierness, while leave-one-out meth-
ods ( LOO − ISN and MultiLOO − ISN ) are proper classifiers, i.e., provide a p-value. Even though p-values make 
it easier to pinpoint an exceptional sample, some of our best performers, i.e., kNN, Cook’s distance, and Spoutlier, 
did not provide such p-values. For rankers, more work is needed to translate a ranked list into decisions about 
which individuals are actually outliers. The computation burden varies across methods. MultiLOO-ISN and 
LOO-ISN are the most computationally intense single-shot techniques. OTS euclidean approaches are much 
slower than the OPTICS counterpart, highlighting the need for further optimization. Cook’s distance methods 
are fast, but their burden increases quickly with increasing module size. The full comparison on a module of size 
k = 5 and with N = 1000 samples is shown in the Supplementary.

The selection of the reference data has been a point of discussion in the original papers introducing ISNs. 
For instance, in  Kuijjer13, they investigated taking subsets of an initial reference set as background and showed 
that this had little impact on an individual’s specific network constructed from this background, especially when 
sample sizes increased (Kuijjer et al.,13). Similarly, Liu et al.21 also evaluated the impact of changing reference sets, 
concluding that the method is robust to smaller reference sets. In Jaha et al.27, they evaluated different reference 
set choices. Particularly the impact of doing a case-only, control-only, or pooled reference set. They concluded 
that using control-only reference sets in prediction is advantageous, but reduces the ability to generalize. How-
ever, in this work, the choice of reference data was straightforward. It is impossible to use case- or control-only 
reference sets in unsupervised settings. There might be problems arising from the variability of the reference 
set. If the samples of the reference set are a mixture of different populations, the results would be impacted. The 
impact of the choice of reference data on outlier status or downstream analysis of significant ISNs is the subject 
of future work. A follow-up project aims to find homogeneous reference sets as groups of samples sharing the 
same association pattern.

Finally, once interesting individuals have been singled out, these can be analyzed in a precision medicine 
context to identify biomarkers or provide mechanistic insights. Consistently with  Jahagirdan39, we observe that 
class accuracy is already very high when using the edge values (unpublished). We conjecture that it is beneficial 
to go the furthest from an average edge representation (i.e., Pearson correlation). In this work, we go beyond the 
straightforward use of edge values as predictors, applying more sophisticated methods. More advanced methods 
can also be employed, such as graph representation learning.

In conclusion, ISNs are promising constructs. Their uptake in precision medicine contexts will rely on 
advancements to interpret ISNs, but also assessments to identify outlying or exceptional individuals. Such indi-
viduals could benefit from diagnostics or interventions based on their ISNs rather than on generic population 
models. This work shows the added value of module-based outlier detection methods over commonly used 
single-edge approaches.
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Methods
Real data. Microbiome data: LucKi Gut subcohort. To validate the proposed methods, we used data from 
the LucKi Gut cohort, an ongoing study that monitors gut microbiota development throughout infancy and 
early childhood. LucKi Gut is embedded within the larger Lucki Birth Cohort  Study28. Metagenomic DNA was 
extracted with a custom protocol involving mechanical and enzymatic  lysis52. The primary analysis step on the 
samples was microbial profiling by next-generation sequencing of the 16S rRNA V3–V4 hypervariable gene re-
gion. Then, a DADA2-based pipeline was used to identify Amplicon Sequence Variants. The result of those steps 
is a collection of 1144 taxa abundances. Mainly, we focused on microbial associations on newborns collected at 
month 6 after delivery, identified as a milestone in microbial community maturation, further restricting atten-
tion to the 81 newborns with microbial profiling available.

Selecting informative individuals and taxa and filtering out random noise was achieved with an abundance 
and prevalence filter. Only amplicon sequence variants with a prevalence exceeding 10% survived the filtering. 
Filtering has been recognized as a crucial step in  microbiome53, and we selected 10% in accordance  with53. Only 
126 (out of 1144) taxa remained. On the prefiltered data, we applied centered-log-ratio (CLR) transformation.

Construction of individual‑specific networks. In general, a network can be represented by a graph 
G = (V ,E) where V denotes a finite, non-empty set of p nodes and E is a subset of V × V  containing pairs of 
connected nodes eij := (vi , vj) referred to as edges. In weighted networks, each edge eij is associated with a weight 
wij ∈ R . See also Supplementary Table S1. For individual-specific networks, we assume that for each individual 
q (q = 1, . . . ,N) a unique network Gq = (Vq,Eq) exists, where N is the number of individuals within the study 
cohort. Additionally, a subnetwork/module G′ =

(

V ′,E′
)

 is a network such that V ′ ⊆ V  and E′ ⊆ E.
The individual-specific networks considered in the study were derived via Kuijjer’s  LIONESS13 (see also 

Fig. S4), giving rise to undirected, weighted, individual-specific networks for each individual in the study, with 
strong properties, performances and adaptability in different  contexts13,27,54,55. Hence, in our work, an individual-
specific edge weight wq

ij for the individual q is computed with the following formula:

where wα
ij is the edge weight in the population-based network and wα−q

ij  is the edge weight in the network calcu-
lated with the same measure of association (Pearson correlation in this work) but without the q-th observation 
i.e., the LOO network.

This formula exploits the difference between two networks, in which the only variation is the absence-presence 
of individual q, to draw conclusions about the impact on network topology of removing or adding an individual. 
Furthermore, the inspiration for the formula lies in the desire to construct ISNs such that their average would be 
close to the network constructed by pooling all study individuals together. The original paper effectively demon-
strates that, with N → ∞ and under the assumption that the ratio of weights is constant between population-
based and LOO networks, linearity holds, and the population-based network can be seen as a weighted average 
of the ISNs  (see13, Suppl. 5.2).

The SSN-n network is defined by the core difference wα
ij − w

α−q
ij  . The original  paper21 based the reference 

set on the control samples, but it has been further extended  in27 on the entire population. Since we are in an 
unsupervised setting, we used the latter definition.

Hypothesis and outlier detection methods. SSN-m, LOO-ISN, and MultiLOO-ISN yield a p-value, 
while OPTICS, kNN, Spoutlier are rankers, i.e., yield an outlier score. The characteristics of the methods are 
highlighted in Table 4.

It is essential to clarify the underlying null hypothesis to find the outliers—individuals that deviate from the 
population-based association structure. Specifically, for a given edge eij:

This formulation shows the direct link between wq
ij and wα

ij . If H0 is not rejected, then the population-based 
conclusions are directly applicable to the q-th individual. If the test falls into the two-tails rejection zone, the 
individual is considered to be an outlier for the target edge/module. The above formulation Eq. (2) is directly 
generalizable to a module by extending the equality for every edge inside a module. We take Md as a module 
and define Me = {wij : i, j ∈ Md} as the set of edge weights belonging to a module. Hence, the null hypothesis is:

Any strong deviation from Eq. (2) (Eq. 3 in modular assessments) is part of HA . Depending on the method, 
the formulation of H0 varies: (1) for SSN-m, H0 refers to the equality of edges calculated on the reference network 
and a network with the addition of the sample q. In the subsection on SSN-m, we show the equivalence of this test 
with Eq. (2). (2) For LOO-ISN and MultiLOO-ISN, the null hypothesis is Eq. (2) (Eq. (3) if we test module signifi-
cance). Further details are in the LOO-ISN and MultiLOO-ISN subsections. The other methods (3), kNN, OPTICS, 
Spoutlier, Cook’s distance, do not follow a classical hypothesis testing setting, i.e., they do not yield p-values or 
statistical significance. They assign a score, the outlier score, for each individual’s edge/module. The ranking of 
the outlier score provides a quantification of the degree to which an individual’s edge/module is outlying.

If H0 is not rejected, no claim can be made on the edge/module tested as outliers. Hence, the target edge/
module does not need to be characterized individually, and the population-based aggregation is the best estima-
tion. Notably, from Eq. (1), we find that Eq. (2), is a necessary and sufficient condition for:

(1)w
q
ij = N wα

ij − (N − 1) w
α−q
ij

(2)H0 : E(wq
ij) = E(wα

ij )

(3)H0 : ∀(i, j) ∈ Me,E(w
q
ij) = E(wα

ij )
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Hence, testing between population-based and individual-specific edge weights is equivalent to testing between 
population-based and LOO networks under the ISNs-L formula. A graphical overview of the significance assess-
ment strategies can be found in Fig. 5.

SSN-m. SSN-m21 calculates a p-value as a transformation of the difference between wα and wα+q . wα+q is an 
edge weight calculated by adding an individual before computing the correlation. SSN-m has been developed 
in a differential network paradigm and bounded to it. The network was calculated by adding a q observation, 
not removing it as in LIONESS. This discrepancy is not a problem, as the two situations (adding or removing an 
observation) can be reconciled by changing the point of view. Defining PCCn as the Pearson correlation of two 
nodes calculated on n observations, we define �PCCn = PCCn+1 − PCCn as the difference in correlation when 
adding observation n+1. It is straightforward to reconcile with the LIONESS situation, setting (n+1) = N, and 
then removing one observation yielding n = N-1. The p-value computation is based on a z-score, calculated as:

The underlying assumption is the normality of the distribution.

LOO-ISN. LOO-ISN belongs to the leave-one-out family. In the single-edge ( k = 2 ) setting, with nodes vi and 
vj , and under the null hypothesis H0 given by Eq. (2), the LOO-ISN method performs the following steps; (1) Use 
the dataset of analysis ( N × k matrix containing node values) to compute the population-based network, with 
single element wα

ij , i.e., with Pearson correlation in our work; (2) Generate simulated data, i.e., N observations 
from a bivariate normal distribution with zero mean ( µ = 0 ), unit variance, and correlation equal to wα

ij ; (3) Use 
simulated data to compute ŵα

ij ; (4) Remove one sample (ind) from the simulation data and compute the correla-
tion êα−ind

ij  on the remaining data; (5) Compute the difference between ŵα
ij and ŵα−ind

ij  ; 6) Remove the individual 
q from the dataset of analysis and compute wα−q

ij  , for each q = 1, · · · ,N ; 7) Compare wα
ij − w

α−q
ij  , computed on 

the dataset of analysis, to ŵα
ij − ŵα−ind

ij  , computed on simulation data, for obtaining an associated p-value. As 
previously mentioned in Eq. (4), it is equivalent to testing between population-based and individual edges or 
between population-based and LOO edges.

The above steps, describing the pipeline for the significance assessment of a single edge ( k = 2 ), straight-
forwardly generalize in the case where a module ( k > 2 ) is considered. However, in such a case, we use a mul-
tivariate normal distribution for generating the simulation data in step 2), where the dimension of the normal 
distribution equals the module’s size k. Multivariate normal simulations need to mimic the network’s structure 
under the null hypothesis H0 . Hence, we generate N samples, equal to the empirical sample size, with a normal 

(4)H0 : E(wq
ij) = E(wα

ij ) ⇔ E(wα
ij ) = E(w

α−q
ij )

(5)Z = �PCCn

(1− PCC2
n)/(n− 1)

Table 4.  Main characteristics of employed methods to assess an ISN’s significance.

Method Edge-assessment Module-assessment Parameters to tune Assumptions p-value Fast description

LOO-ISN TRUE TRUE Rep: number of repetition Multivariate edge normality TRUE

A null distribution is computed based on 
bootstrap
resampling assuming Normality—LOO 
procedure—
Aggregation method: sum of the absolute 
difference

MultiLOO-ISN TRUE TRUE Rep: number of repetition Multivariate edge normality TRUE

As above—only difference the aggrega-
tion is
non-linear: maximum deviation from 
the null in
all edges

kNN TRUE TRUE kmin , kmax neighbour / FALSE
The distances found in kNN with k = 
kmin to
k = kmax are averaged to create outlier 
scores

Optics TRUE TRUE MinPts: number of neighbour / FALSE
Outlier score is computed via a radius 
distance
of core and board points

Spoutlier TRUE TRUE s: number of references / FALSE

The outlier score is calculated as the 
minimum
within a small set of references observa-
tions
kNN based

SSN-m TRUE FALSE / Edge normality TRUE
The p-value is calculated as a transforma-
tion of
the difference between wα and wα−q

Cook distance FALSE TRUE / LM assumptions FALSE

The outlier value is calculated aggregating 
cook’s
distance in every individual trying to 
predict one
of the edge weights in the modulus.
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where we set the variance/covariance matrix to the adjacency matrix A, with entries the weighted edge weights 
wα
ij and the mean vector ( k × 1 ) to 0. Hence, the correlation coefficients are estimated on the dataset of analysis, 

i.e., the edge weights wα
ij for every edge between two nodes vi and vj inside the module. We refer the reader to 

Fig. S5 for a visual representation.
While the p-value calculation in step (7) is straightforward in a single-edge setting, multiple options are pos-

sible in the modular setting. LOO-ISN sums the differences across dimensions to create a univariate distribution 
and rejection zone. Hence, it tests the entire module.

We take Md as a module and define Me = {wq
ij : i, j ∈ Md} as the set of edge weights belonging to a module. 

For each individual q we defined the test statistic Tq as:

Tq is then compared to the empirical distribution of the difference’s sum under the null hypothesis H0 , i.e., 
T̂ =

∑

(i,j)∈Me (ŵ
α
ij − ŵ

α−q
ij ) , and a p-value is obtained. For both LOO-ISN and MultiLOO-ISN the pseudocode 

explaining the various steps in detail is available in the Supplementary.

MultiLOO-ISN. MultiLOO-ISN follows the leave-one-out pipeline previously described, differing only on fea-
tures’ aggregation. MultiLOO-ISN considers the module a point in a high-dimensional space and constructs a 
multi-dimensional rejection zone with as many dimensions as edges in the module. But, to calculate the test 
statistic, we need to reduce the rejection zone to a scalar. Hence, we apply maximum discrepancy (non-linear) to 
create a univariate distribution under H0.

With Me the set of edge weights belonging to a module, for each individual q, we define the test statistic Tq as:

We then compare Tq to the empirical distribution of the difference’s max under H0 , i.e., 
T̂ = max(i,j)∈Md (ŵ

α
ij − ŵα−ind

ij ) and retrieve a p-value.

(6)Tq =
∑

(i,j)∈Me

(wα
ij − w

α−q
ij )

(7)Tq = max
(i,j)∈Md

(wα
ij − w

α−q
ij )

Figure 5.  Three different testing scenarios to assess whether an individual is extreme compared to a population 
that is represented by a fully connected weighted network (i.e., all nodes are connected). (a) The example shows 
a network of 3 nodes (3 edges). This could be a module as a subnetwork of the larger population-based global 
network. In (b), the distance between the LOO network and the population-based network is computed. Note 
that when the population-based network is inferred from N individuals, the LOO network is based on N − 1 
individuals. SSN-m uses this testing scenario, but is limited to the bivariate case (2 nodes and 1 connecting 
edge). In (c) we can see the three types of networks considered: population-based, LOO, and ISN, highlighted 
for individual q. Similarly to (b), in (d) the distance between the LOO network and the population-based 
network is confronted with, this time, the distance between the population-based network and the expected 
LOO under the null hypothesis of Eq. (4) E(wα

ij ) = E(w
α−q
ij  ). Null networks are generated by sampling features 

set for N individuals from the estimated variance/covariance matrix, hence with no difference between the 
individuals, that provokes no difference in the network’s edge weights. This testing scenario applies to the 
MultiLOO-ISN and LOO-ISN implementations, where we provide further information about the null network 
sampling. Figure S5 shows the pipeline in detail. Lastly, for (e), the target individual’s specific network is 
compared to the ISNs of other individuals in the population, leading to an outlier score for the target individual. 
The network edge weights are used in kNN, Cook’s distance, OPTICS, and OTS outlier detection algorithms.
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SSN-m, MultiLOO-ISN, and LOO-ISN are strongly related: all assume normality, and take into account, as 
parameters, the sample size and the empirical population-based correlation wα

ij . They also show similar results 
on single-edge settings.

Spoutlier. Spoutlier30 is a fast implementation based on kNN logic. It defines a reference set and then calculates 
the distances between this set and the q target observation. Then it extracts the minimum of those distances, as 
the authors stated that an outlier is an observation far away from every observation in the dataset. The minimum 
of those distances is the OS. The only parameter is the number of individuals in the reference set s. We fix s = 20 
accordingly to the suggestions in the original paper. In this work, we take the individual-specific edge weights 
in a module as our features.

Quantifying the OS for an observation part of the reference set of size s is a corner case. If no measures are 
taken, those individuals would have a distance of 0, not indicative of their outlier degree. In the original paper, 
the authors overcame this limitation by computing the lowest non-zero distance from the s reference set. This 
approach overlooks similarities in setting with high sample sizes and discrete features; In those settings, it is 
plausible to have multiple observations with the same profile, namely a replicate. If a replicate of the target obser-
vation is in the reference set, we should not discard a 0 distance. Hence, we introduced a minor modification of 
the original code. We sampled s + 1 observations, and when the target is in the reference set, we use the other s 
observations. Otherwise, we randomly sample s out of s + 1 observations.

The distance measure is crucial for the final performance. We propose cosine similarity (OTS cosine) to con-
sider the geometrical nature of the data. Dissimilarity is computed through its complement. Cosine geometrical 
computation needs a multi-dimensional feature space and is unfeasible in single-edge settings. Considering the 
well-known paradigm of crowds’  wisdom56, we propose an ensemble technique. We iterate the algorithm (mOTS 
cosine, mOTS euc) multiple (10) times to have stabler performance. Moreover, we also propose a combination 
of euclidean and cosine similarity (mOTS glob). Hence, arithmetical and geometrical facets are combined. We 
implemented every method on both SSN-n and ISNs-L networks.

Cook’s distance. Cook’s distance is based on the module rationale. A module is a collection of strongly associated 
variables (possibly genes/taxa). Hence, Cook’s distance exploits shared information between the module’s com-
ponents, being edges or nodes. The proposed adaptation of Cook’s distance predicts an edge weight via a linear 
model using all the other edge weights in the module as predictors for each iteration. Given a module of size k, 
with k = number of nodes, the number of pairwise combinations (order not considered) between the edges is 
C = k(k−1)

2
 . In particular, for q = {1, . . . ,N} and c = {1, . . . ,C} , we use a linear model (LM) to predict an edge 

weight wq
ij with every other edge weight wq

lm in the module, (l,m) ∈ {1, 2, . . . , k}2 with (l,m)  = (i, j) and l < m:

Then, we apply Cook’s distance to identify which observation is outlying (high residual) and with substantial 
leverage, namely having a strong influence on the estimation of wq

ij . Cook’s distance for an observation q and 
edge weight wij (connecting nodes vi and vj ) as the target, is defined as follows:

where ŵp(q)
ij  is the fitted response value obtained when excluding individual q, with

The computation of Cook’s distance is iterated for (1) each observation, yielding D1
ij , . . . , D

N
ij  , and 2) for each 

edge in the module as a target, yielding Dq
12 , . . . , D

q
k−1k . Finally, for each observation q, we aggregate all the 

Dq={Dq
ij with j = 2, . . . , k , i = 1, . . . , k − 1, i < j } to find the global OS. Mean, median and maximum-based 

aggregation on the iterations are proposed.

kNN. We focus on the implementation from  Angiulli31. This extension has been developed for outlier detec-
tion. As features, we use all the edge weights inside a module Me. For further details, we refer to the original 
paper and the method section of the Supplementary.

DBSCAN: OPTICS. OPTICS-OF (simply referred to as OPTICS in the paper) is an enhancement of DBSCAN 
developed for outlier detection. The edge weights inside of a target module are the features. OPTICS yields an 
outlier score. For further details, we refer to the original paper and the Supplementary method section.

Synthetic data. We used synthetic data to evaluate and compare the above methods where the ground 
truth is available. We created several heterogeneous settings with varying assumptions, generation schemes, and 
parameters. Notably, we employed two different generation schemes: (i) normal distribution and (ii) compo-
sitional scheme. In both schemes, we simulate the dataset of analysis (individuals on the rows, features on the 
columns, dimension N × k ) via different distributions’ parameters for the N −M controls and the M cases, i.e., 
the outliers.

Shared parameters in both schemes are (1) sample size N, varying between 100 and 2000; (2) number of 
outlier individuals M, varying between 1 and 10 (in percentage from 0.05% to 10% ); (3) the module’s size k 

(8)w
q
ij = β0 +�C

(l<m)βlmw
q
lm + ǫq

(9)D
q
ij =

∑N
p=1 (ŵ

p
ij − ŵ

p(q)
ij )2

(C + 1)σ̂ 2

(10)ŵ
q
ij = β̂0 +�C

(l<m)β̂lmw
q
lm.
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quantifying the number of nodes in the module, varying from 2, a single-edge scenario, to 17. In both normally 
distributed and compositional simulation schemes, we define a multivariate random variable [multivariate nor-
mal for (i)], and we sample each individual’s variable set (i.e., the nodes) from this multivariate distribution. 
Individuals are sampled independently, and all the control individuals are sampled from a distribution with the 
same parameters. Then, Pearson correlation is applied to the sampled dataset of analysis, to build the population-
based network (single entry wα

ij ). This population-based network is the input for the ISN computation. Moreover, 
we employed two different outlier generation distributions for the normal distribution scheme, specifying if the 
outliers belong to the same distribution or if each one comes from its’ own distribution. Microbial scheme’s spe-
cific parameters control: (1) the degree of data heterogeneity (varying from uniform to high); (2) the multiplying 
factor between differing microbes (from 1.1 to 2); and (3) the percentage of inflated parameters differentiating 
cases and controls (from 10% to 40%).

We explored multiple parameter settings, in particular, on the data distributional assumption. A combina-
tion of parameters is stored in a grid. For each entry (row) of the parameter’s grid created in the data simulation 
steps, we performed multiple runs (200 in normal distribution and 150 in compositional). Hence, the dataset of 
analysis (individuals on the rows, features/nodes on the columns) and the ground truth are generated. For each 
of those runs, we applied all the presented methods and each of them yields the vector OS, with dimension N. 
This vector contains the M cases and N −M controls and represents the outlier scores for the individuals. The 
label GT of each individual refers to group membership: belonging to the case (outliers) or control group. For 
each individual i = 1, · · · ,N :

Synthetic data: normally distributed. The data composing the dataset of analysis are sampled through a multi-
variate normal. The mean vector is fixed at zero, while the variance-covariance structure differs between M cases 
and N −M controls. The parameter k, the module size, controls the normal’s dimensionality. Sampled cases and 
controls observations are joined and constitute the dataset of analysis, i.e., mimicking the expression of genes in 
our population. Individuals’ ground truth GT, is used to evaluate the performance of the proposed methods. A 
visual pipeline is shown in Fig. S6.

Base parameters are N, M, k, Outlier generation, and we refer to Table 5 for details. We generated data by 
varying multiple parameters and then expanding them in a grid where each row is a unique combination of 
the base parameters and referred to as a setting. In total, we generated 168 different settings via the parameter 
combinations. Generation and evaluation steps, i.e., applying proposed methods to the data, were repeated Rep 
= 200 times to lower noise and ensure robust and reproducible results.

Synthetic data: compositional. We extended the work of  Harrison57, proposing a Dirichlet-based model to 
simulate microbial data. Firstly, we sampled from: (1) A Pareto distribution with threshold = 1 and α = 0.7; or 
(2) A Pareto distribution with threshold = 1 and α = 4; or (3) A Uniform distribution with value = 1. The Pareto 
distribution describes data with few abundant features and many rare features. Every node has equal probability 
mass in the Uniform distribution. Hence, we generated the vector D, with single entry scalar di with i = 1, · · · , p . 
D is an intermediate result used as the concentration parameter ( α ) in the Dirichlet sampling. Having a vector 
of di tells us how much probability mass to assign to each node, each taxon.

Then, cases and controls observations are differentiated through a multiplier (Mult), to produce E1 from D, with 
single entry scalar e1i  . The multiplier inflates nodes’ probability mass in cases and ranges in Mult = {1.1, 1.5, 2} . 
The percentage of nodes we inflate is given by the parameter: PercIncrease = { 10%, 25%, 40%} . As in the nor-
mality simulation scheme, we combined parameters in a grid. After the case-control differentiation, the param-
eters, i.e., E1 and D, are standardized to the same sum to avoid scale effects due to different densities:

(11)GTi =
{

1 if Outlier

0 Otherwise

Table 5.  Details of the hyperparameters used in the normal and compositional simulations.

Normal distribution Compositional

Parameters Values Details Parameters Values Details

N 100, 500, 1000, 2000 Controls + cases observations N 100, 500, 1000 Controls + cases observations

M 1, 5, 10 Cases observations M 1, 5, 10 Cases observations

k 2, 3, 5, 7, 9, 11, 17 Module’s size k 2, 5, 11, 17 Module’s size

Outlier generation Common, Specific
Common: all outliers share a common 
distribution
Specific: each outlier has a different variance-
covariance structure.

Data heterogeneity Uniform,
α = 4, α = 0.7

Degree of heterogeneity of the parameter to 
generate the data, going from no heterogeneity 
(Uniform) to high heterogeneity (Pareto with
α = 0.7 ) passing through mild heterogeneity 
(Pareto with α = 4 )

Mult 1.1, 1.5, 2
Multiplying factor applied to a percentage of 
observation to differentiate between cases and 
controls observations

Percentage increase 10%, 25%, 40% Percentage of inflated parameters on the total 
differentiating cases and controls
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with i = 1, . . . , p , hence forming vector E∗.
We then multiplied E∗ and D for Int = 3 , the intensity parameter, to accentuate the differentiation. Then, 

for each of the N −M control individuals, D is used as the concentration parameter in a Dirichlet sampling. 
For an individual q, Dirichlet sampling results in prq , dimension p× 1 . Combining all the prq for the N −M 
individuals, we obtain the pr matrix, of dimension (N −M)× p , with single entry prqi  the probability of taxa 
i in individual q. We used prq as downstream input-parameter of a multinomial sampling procedure, for indi-
vidual q, with an additional parameter number of reads= 5000 . Number of reads specifies the total number of 
objects to divide into p boxes (the nodes) in the multinomial sampling with prob = prq vector of probabilities. 
This step mimics a microbiome read on an individual with number of reads = 5000 and a vector of zero-inflated, 
compositional, and heterogeneous probabilities. The produced result, for individual q, is a vector of abundances 
under the control setting. An analogous procedure is applied to generate the M cases individual with parameter 
E∗ instead of D. We join the abundances for the N −M controls and the M cases into the simulated dataset of 
analysis. The exhaustive pipeline can be found in Fig. S7.

To avoid biased perfect negative correlations, we sampled a network ten times bigger (in terms of the number 
of nodes) than the target’s module, p = 10× k . Then, we applied a centered-log-ratio (CLR)  transformation58. 
Only at the very last step do we focus on the target module. We ensured that said procedure conserves at least 
one differentiation yielded by Mult in the k-dimensional module. Otherwise, there is no theoretical justification 
for differences between cases and controls.

Table 5 highlights the final grid of parameter values. In total, we generated 972 different settings via parameter 
combinations. Generation and evaluation steps are repeated Rep = 150 times for each setting to lower noise and 
ensure robust and reproducible results. Compared with normality’s simulations, parameters N and k varies over 
a limited set. This limitation compensates for adding microbiome-specific parameters and keeps the computa-
tion burden under control.

Evaluation and parameter tuning. The result of a method on a run is an outlier score vector OS. This 
vector is ordered descendingly and compared with the ground truth vector GT (1 if outlier, 0 otherwise). While 
fixing a threshold and binarizing OS would help the evaluation task, there is no known threshold or p-value 
calculation for most of the considered methods. The natural way to evaluate our results is by varying the thresh-
old and creating the corresponding ROC curve. We aggregated the performances, averaging all the runs (200 
normally distributed, 150 for microbial) for each setting. We used the median as the aggregation metric, given 
the variability and skewness of the performances.

Since most of those families have parameters to tune or different aggregations can be used, the number of 
implementations is huge. For consistency, we applied every method, when possible, on both SSN-n and ISNs-L 
for every parameter’s choice. In kNN, we defined 2 different sets of parameters kmin and kmax . 1) Firstly, kmin 
and kmax are respectively the minimum and maximum between log(N) and k, with N sample size and k module’s 
size. This parameters’ setting summarizes both the variables and the samples space; Then (2), kmin and kmax 
are the minimum and maximum between 5 (seen as a baseline parameter for kNN) and sqrt(N), also taken 
as a baseline  in30. In OPTICS-OF, we set the parameter n, i.e., number of neighbors, as for kNN, as 5, 

√
N  or 

mean(log(n), k + 1) , to summarize both module and sample size. Spoutlier’s only parameter, the dimension of 
the reference set, is set as s = 20 as empirically found in the  original30 paper. We implemented (1) Euclidean 
distance and (2) cosine similarity as distance measures. We applied ensemble techniques to the mOTS methods, 
repeatedly choosing the 20 baseline samples and aggregating the different results with the median. Considered 
aggregations in Cook’s distances were (1) max, (2) average, or (3) median across all edges in a module. All the 
combinations and approaches are described in the Supplementary.

Data availability
The dataset underlying this article is available upon request from the Euregional Microbiome Center (www. micro 
biome center. eu). Simulation data, code and graphs are publicly available in the GitHub repository at https:// 
github. com/ Feder icoMe logra na/ Sign_ ISN.

Code availability
The code and the simulations are freely available on GitHub at https:// github. com/ Feder icoMe logra na/ Sign_ 
ISN. For further information on the analysis, software, and visualization, we refer to the software analysis and 
visualization section in the Supplementary methods.
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