
1

Vol.:(0123456789)

Scientific Reports |         (2023) 13:7483  | https://doi.org/10.1038/s41598-023-34753-0

www.nature.com/scientificreports

The legacy of one hundred years 
of climate change for organic 
carbon stocks in global agricultural 
topsoils
Christopher Poeplau * & Rene Dechow 

Soil organic carbon (SOC) of agricultural soils is observed to decline in many parts of the world. 
Understanding the reasons behind such losses is important for SOC accounting and formulating 
climate mitigation strategies. Disentangling the impact of last century’s climate change from effects 
of preceding land use, management changes and erosion is difficult and most likely impossible to 
address in observations outside of warming experiments. However, the record of last century’s climate 
change is available for every part of the globe, so the potential effect of climate change on SOC stocks 
can be modelled. In this study, an established and validated FAO framework was used to model 
global agricultural topsoil (0–30 cm) SOC stock dynamics from 1919 to 2018 as attributable to climate 
change. On average, global agricultural topsoils could have lost 2.5 ± 2.3 Mg C ha−1 (3.9 ± 5.4%) with 
constant net primary production (NPP) or 1.6 ± 3.4 Mg C ha−1 (2.5 ± 5.5%) when NPP was considered 
to be modified by temperature and precipitation. Regional variability could be explained by the 
complex patterns of changes in temperature and moisture, as well as initial SOC stocks. However, 
small average SOC losses have been an intrinsic and persistent feature of climate change in all climatic 
zones. This needs to be taken into consideration in reporting or accounting frameworks and halted in 
order to mitigate climate change and secure soil health.

Several lines of evidence suggest that climate warming is inducing a decrease in global soil organic carbon (SOC) 
stocks, mainly by accelerating soil microbial activity1,2. Despite huge uncertainties associated with the magni-
tude of SOC loss3–5, it is acknowledged as a powerful climate-carbon cycle feedback6. For this reason, modelling 
efforts on various spatial scales have been undertaken to estimate potential losses under different future warm-
ing scenarios6–8. It has been shown that SOC sequestration efforts for climate change mitigation, focusing on 
agricultural soils in particular, can be severely hampered by climate change per se6,7,9.

Several agricultural soil monitoring networks on a national to continental scale have reported SOC losses that 
are partly interpreted as being caused by climate change10,11. In one prominent case, the observed loss of SOC in 
agricultural soils in England and Wales has been attributed to climate change10. This interpretation was challenged 
in a subsequent study12, which found changes in management to be a more obvious cause of SOC depletion. 
This is likely to be the case in many parts of the world. Between 2009 and 2015, average losses in cropland SOC 
were also detected by the LUCAS soil inventory across the European Union and similarly in different member 
states of the European Union11,13–15. Despite a strong increase in yields and thus in biomass production when 
compared with pre-industrial agriculture, intensification may have caused declines in SOC due to agricultural 
management. For instance, high appropriation of net primary production, breeding to maximise C allocation 
to the harvested product, the application of pesticides, drainage, erosion, soil compaction and very frequent soil 
disturbances have most likely contributed to SOC depletion to varying extents12,14,16–18. Furthermore, land-use 
change can have long-lasting legacy effects on SOC trends19. It is thus likely that SOC stocks in many agricultural 
soils are not in equilibrium under current management practices14. Simultaneously, the global average tempera-
ture has risen since the beginning of the last century by approximately 1.07 °C20. Globally, the spatial variability 
of measured climate change is huge, with a tendency towards greater warming in higher latitudes. This reflects 
the difficulty of decoupling the effects of agricultural management from climate change-driven background 
losses. While efforts have been undertaken to quantify the total global soil carbon debt of land use21, no such 
assessment exists for past climate change.
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In 2019, the Food and Agriculture Organization of the United Nations (FAO) published a map of global SOC 
stocks that was prepared with the participation of numerous countries22. Based on this map, the FAO subse-
quently created a framework to estimate the global carbon sequestration potential of agricultural soils23, which is 
high on the political agenda as a nature-based solution to combat global changes. This participatory framework 
(GSOCseq) used the well-known and widely applied SOC model RothC24 in combination with the simple and 
frequently used net primary production (NPP) model MIAMI25 to estimate how much carbon can addition-
ally be stored in agricultural soils under certain simple scenarios of carbon input alterations. This pragmatic 
framework was established by leading experts in SOC modelling and can be readily applied in various contexts.

Here, the GSOCseq framework was used to derive the first spatially explicit estimate of past climate change 
effects on SOC stocks in global agricultural soils. Starting from today’s SOC baseline as derived from the FAO 
GSOC map, one century of climate data was used to backwards predict SOC trends for a total of 932 k points, 
equally distributed over the agricultural area in all climatic zones. Modelling was restricted to the area of appli-
cability of the model framework, thus excluding organic, forest and urban soils. Two scenarios were modelled: 
in the first scenario, the steady state C input of 2018 was kept constant throughout the time series, so that only 
the climate change effect on SOC decomposition would be simulated (NPPconst). In the second scenario (NPPvar), 
the C input was scaled by the modelled NPP response to climate change (temperature and moisture only) to 
estimate how much of the SOC changes in NPPconst could have been compensated by increased biomass produc-
tion. Those may serve as two different, context-specific baseline SOC trends of the past 100 years with a high 
spatial resolution.

Results
On average, global air temperature at the assessed data points increased by 1.03 °C between 1919 and 2018. 
Depending on the scenario, this has led to an average decline in total SOC stocks by 2.5 ± 2.3 Mg ha−1 (NPPconst) 
and 1.6 ± 3.4 Mg ha−1 (NPPvar) (Fig. 1a,b). The comparison of both scenarios shows that climate-driven changes 
in NPP (excluding CO2 fertilisation) were able to compensate for 36% of predicted SOC losses on average. For 
both scenarios, the majority of sites had losses in the range of 0–3 Mg ha−1 (Fig. 1c, 57% in NPPconst and 52% in 
NPPvar). In line with the temperature trend, SOC losses were more pronounced in the latter half of the simulated 
timespan. A marked decline in average SOC stocks has been particularly evident since the late 1960s (Fig. 1d). 
Two different change rates were therefore calculated, i.e. for the first half and latter half of the timespan. This led 
to estimates of average climate change-driven SOC losses of 0.019 ± 0.045 (NPPconst) and 0.010 ± 0.037 (NPPvar) 
Mg ha−1 year−1 for 1919–1968 and 0.032 ± 0.059 and 0.019 ± 0.045 Mg ha−1 year−1 for 1969–2018 respectively.

SOC changes in response to warming also varied greatly between climatic zones (Table 1). Cold regions with 
high initial SOC stocks and the most pronounced increases in air temperature were predicted to have the high-
est SOC losses per area (Fig. 2a,b). However, also relative losses tended to be highest in colder regions (Table 2). 
Temperate ecoregions showed intermediate losses, and both tropical and arid regions tended to be the least 
affected (Tables 1, 2, Fig. S1). When NPP and thus biomass input was kept constant, on average SOC was lost 
from all climatic zones, ranging from − 10.8 ± 7.2 Mg C ha−1 in the temperate Cfc climate to − 0.6 ± 1.2 Mg C ha−1 
in the hot arid BSh climate (Table 1). However, SOC losses were not only driven by the initial SOC stocks and 
mean annual temperature of the respective climate zone; relative SOC changes were also correlated to changes 
in water balance and temperature, i.e. higher losses were observed when the climate became wetter and warmer 
(Fig. 2c,d). Accordingly, the largest SOC losses in the NPPconst scenario could be expected where high initial 
SOC stocks, high increases in mean annual temperature (MAT) and mean annual precipitation (MAP) coincide 
(ΔSOC = 4.501–0.057 × SOCinitial − 4.318 × ΔMAT − 0.019 × ΔMAP, R2 = 0.74). When climate change-driven NPP 
alterations were considered, on average SOC was also lost from all climatic zones. In the NPPvar scenario, SOC 
changes in the past century ranged from − 6.4 ± 7.0 Mg C ha−1 in a cold humid Dfa climate to − 01 ± 2.3 Mg C 
ha−1 in a hot arid Bsh climate. However, variability across climatic zones was less well explained by the considered 
variables, most likely due to similar effects of temperature and moisture change on C input and C mineralisation. 
Initial SOC was the sole explanatory variable of the best model (R2 = 0.43).

When mapped globally, spatial patterns of SOC stock change revealed increases in areas with negative tem-
perature trends (cooling). The most pronounced SOC increases could be seen in south-west Canada, south-east 
USA and parts of South America, Africa, China and Australia (Fig. 3). However, in some extreme cases, such as 
in parts of Australia, even the negative trend in precipitation caused the model to predict an increase in SOC, 
with the decay of unchanged organic matter input becoming water-limited (Fig. S2). This is in line with climatic 
zones in which the water balance became more negative tending to lose less SOC (Fig. 2). This was not the case 
for the NPPvar scenario, since the soil moisture responses of plants and soil microorganisms have opposing effects 
on SOC stocks. Therefore, the difference between SOC losses in the NPPconst and NPPvar scenarios was negatively 
correlated to changes in water balance (Fig. 4). This indicates that in regions that became drier over the past 
century, NPP was negatively affected and thus more SOC was lost in NPPvar compared with NPPconst. However, in 
the majority of climate zones (20 out of 27), increased plant growth partly compensated for SOC losses (Table 1).

A geothermal warming experiment was used to validate the scenarios used in this study. Figure 5 clearly 
depicts, that RothC, as well as the combination of RothC and MIAMI were able to predict the general trend in 
SOC stocks with relatively high accuracy. Relative root mean square errors (RMSE) were 26% for NPPconst and 
19% for NPPvar. The NPPvar scenario was slightly closer to the observed results, which can be explained by the fact 
that the positive impact of warming on NPP partly compensated for enhanced mineralisation. This plausibility 
check increases the confidence in the global modelling results.
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Discussion
This is the first time that a comprehensive and spatially explicit estimate is provided on the contribution of climate 
change to global agricultural SOC stock dynamics over the past century. As expected, the average impact was 
negative and more pronounced in the latter half of the century, in accordance with the global average tempera-
ture trend (IPCC). Over the course of 100 years in which the global air temperature was warmed by on average 
1.03 °C, agricultural soils lost on average 1.6–2.5 Mg C ha−1 (depending on the scenario) or were relatively 
depleted by 2.5–3.9%. This is in line with the order of magnitude observed in the very few long-term warm-
ing experiments that have been undertaken. In a century-long geothermal soil warming gradient in subarctic 
Canada, whole-soil SOC stocks have been found to decline by 3% per 1 °C27 in a deciduous forest. This was also 
observed for a grassland topsoil in a geothermal gradient in Iceland (2.8 Mg C ha−1 °C)28. Finally, the Harvard 
Forest soil, the longest-running soil warming experiment, lost about 3 Mg C ha−1 °C−1 in 26 years of warming, 
which is also similar to the estimated absolute values in the present study29. Long-term warming experiments 
in agricultural systems are scarce, so we used the mentioned Icelandic, geothermal warming experiment on a 
semi-natural grassland soil to validate the applied modelling approaches. Despite the facts that i) the studied 
soil was an Andosol which can have distinct properties regarding SOC stabilisation, (ii) warming occurred 
abruptly, from below and up to extreme temperatures, both modelling approaches were predicting the observa-
tions surprisingly well. The NPPconst scenario tended to slightly overestimate SOC losses, indicating that NPP 
and C inputs were also affected by soil warming. The validation exercise increased our confidence in the model 
results and proves that also relatively simple first-order kinetics models can be applied to estimate climate-change 
driven SOC stock changes.

With an average absolute change rate of − 0.019 (NPPvar) and − 0.032 Mg C ha−1 year−1 (NPPconst) since 
1968, the results of this study suggest that the contribution of climate change to observed trends in SOC stocks 
is relatively small, yet not negligible. In relative terms, SOC was lost at rates of 0.03–0.05% per year, which is 
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Figure 1.   (a) Average climate change-driven SOC stock change since 1919 with standard deviations assuming 
constant C input (NPPconst). (b) Average climate change-driven SOC stock change since 1919 with standard 
deviations assuming variable C input (NPPvar). (c) Density distribution of SOC stock changes at all 932 k 
modelled points for both NPP scenarios. (d) Average global SOC stock of the past century at ten-year intervals 
as modelled from 2018 to 1919 with two C-input scenarios.
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one order of magnitude below the SOC losses (0.6% year−1) observed in England and Wales in 1978–2003, for 
example10. However, the values are well in line with a model estimate of the climate change-driven annual SOC 
loss for the same region (− 0.08, − 0.04 and − 0.05% for cropland, grassland and forest mineral soils respectively 
without taking NPP changes into account)12. Both comparisons, i.e. with the long-term warming experiments 
(including the validation site) and the regional model exercise, indicate that the results of the present study are 
realistic. Thus, climate change is having an evidently persistent and extensive negative effect on global SOC 
stocks, but is about one order of magnitude lower than SOC losses observed in inventories of past decades10,13,30.

SOC dynamics are strongly driven by soil temperature and moisture. Both are highly variable on a global 
scale, on average and in their temporal trends over the last century. As expected, this has resulted in a diverse 
pattern of estimated changes in SOC stocks. Gains in SOC in the NPPconst scenario can be explained by either 
decreasing temperature or, in some cases, a more negative water balance (declining water availability), both of 
which can limit SOC turnover31. In some areas, the stimulation of NPP slightly overcompensated for increased 
SOC mineralisation, causing an accumulation of SOC with past climate change. This fits well with the fact that 
biomass production is expected to increase most in colder climates32. The combination of the two scenarios high-
lights the complexity of spatially explicit prediction of this particular climate-carbon cycle feedback33. However, 
in the modelling framework used here, no average SOC gains per climate zone were predicted for either of the 
two scenarios, pointing to the fact that increased NPP and thus C input is unlikely to compensate for SOC losses 
due to stimulated heterotrophic respiration34.

This study focused on agricultural mineral soils since they are the main target area for SOC sequestration 
measures and the area of applicability for the modelling framework23. Forest soils, organic soils and soils in other 
ecosystems such as wetlands and urban areas were not modelled. Although the directions of change might be 
similar in these systems, it was not possible to derive estimates for the whole land surface. Therefore, no attempt 
was made to estimate total climate change-driven losses of SOC, which would be a rather incomplete and impre-
cise estimate, also because the agricultural area has been far from constant in the past century35. Furthermore, the 
RothC model works in a monthly timestep, which flattens out climate extremes that might have more severely 
affected NPP and microbial activity36. However, it is believed that such short-term effects would not have changed 

Table 1.   Average absolute soil organic carbon (SOC) stock changes for 1919–2018 (100 years) and 1968–2018 
(50 years) for the scenarios NPPconst (constant net primary production) and NPPvar (variable net primary 
production) for all climatic zones based on the Köppen–Geiger classification with standard deviation (sd) and 
number of grid cells (n).

Climatic zone n

NPPconst 
100 years

NPPconst 
50 years

NPPvar 
100 years

NPPvar 
50 years

mean sd mean sd mean sd mean sd

Af Tropical, rainforest 41,451 − 1.5 3.6 − 1.5 2.7 − 1 3.1 − 0.8 2.2

Am Tropical, monsoon 43,067 − 0.9 2.1 − 0.9 1.9 − 0.7 2.2 − 0.6 1.8

Aw Tropical, savannah 126,186 − 1.3 2.8 − 0.8 1.6 − 1.3 2.4 − 0.9 1.5

BWh Arid, desert, hot 108,260 − 0.6 1.2 − 0.2 0.6 − 0.1 2.3 − 0.1 1.3

BWk Arid, desert, cold 49,457 − 1 0.8 − 0.5 0.4 − 0.5 1.5 − 0.5 0.9

BSh Arid, steppe, hot 84,275 − 0.6 2.2 − 0.2 1.5 − 0.3 2 − 0.2 1.4

BSk Arid, steppe, cold 87,719 − 1.5 1.8 − 0.7 1.2 − 1.2 2.1 − 0.9 1.5

Csa Temperate, dry summer, hot summer 21,739 − 1.8 2 − 1.2 1.4 − 2.8 2.5 − 1.5 2.1

Csb Temperate, dry summer, warm summer 9029 − 2 3.9 − 0.5 2.5 − 3.7 4.8 − 1.9 3.1

Csc Temperate, dry summer, cold summer 58 − 2.1 2.9 − 1.1 1.7 − 6.3 5.8 − 3.6 4

Cwa Temperate, dry winter, hot summer 32,502 − 1.6 2.2 − 0.8 1.4 − 1.4 1.8 − 0.8 1.2

Cwb Temperate, dry winter, warm summer 9750 − 1.2 4.2 − 0.3 2.6 − 1.6 3.4 − 0.6 2.1

Cwc Temperate, dry winter, cold summer 60 − 0.9 7.4 0 4.5 − 1.7 5.5 − 0.1 3

Cfa Temperate, no dry season, hot summer 57,046 − 4.1 4.5 − 2.3 3.4 − 2 3.3 − 1.4 2.5

Cfb Temperate, no dry season, warm summer 53,051 − 5.6 6 − 4.1 4.8 − 3 4.1 − 2.6 3.6

Cfc Temperate, no dry season, cold summer 9105 − 10.8 7.2 − 7.3 5.1 − 6.2 5.1 − 4.1 3.7

Dsa Cold, dry summer, hot summer 3082 − 1.9 1 − 1 0.7 − 2.2 1.6 − 1.4 1.3

Dsb Cold, dry summer, warm summer 4923 − 2.2 1.6 − 1.2 1 − 1.5 1.5 − 0.8 1.2

Dsc Cold, dry summer, cold summer 3176 − 4.7 6.5 − 2.5 4.3 − 3 5 − 1.6 3.2

Dwa Cold, dry winter, hot summer 9600 − 1.2 2.4 − 0.3 1.5 − 0.1 1.8 −0.1 1.2

Dwb Cold, dry winter, warm summer 3673 − 1.9 3.1 − 1.2 1.9 − 0.6 2.3 − 0.5 1.5

Dwc Cold, dry winter, cold summer 1828 − 1.2 3.7 − 1.3 1.6 0 3.4 − 0.4 1.4

Dfa Cold, no dry season, hot summer 25,025 − 9.2 8.6 − 4.6 4.3 − 6.4 7 − 3.5 3.5

Dfb Cold, no dry season, warm summer 70,581 − 4.7 4.9 − 2.9 3.2 − 2.5 3.7 − 1.7 2.4

Dfc Cold, no dry season, cold summer 24,164 − 7.4 7.3 − 5 5.4 − 3 4.7 − 2 3.4

Et Polar, tundra 53,310 − 3.7 6.2 − 3 4 − 2.2 5 − 1.7 3.2

Ef Polar, frost 26 − 4.2 3.2 − 1.7 0.7 − 5.9 5.1 − 2.7 2.2
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the magnitude of change over the course of one century. Increased atmospheric CO2 is also a feature of climate 
change and has a fertilising effect on NPP37. Thus, the NPP response was probably slightly underestimated. 
However, several studies showed that the effect might be rather insignificant38,39. Moreover, backwards modelling 
was undertaken based on a steady-state assumption of SOC stocks to obtain the annual C inputs for the year 
2018. This assumption was a rough approximation for the majority of soils, which may have led to an incorrect 
initial pool distribution. However, it is believed that this is not problematic as century-scale model projections 
have been shown to be very robust to variations in initial pool distributions40. Moreover, the steady-state was a 
necessary precondition in this study to exclude any legacy effect and clearly focus on climate change as the only 
driver of SOC dynamics. It should also be highlighted again, that the modelling approach deliberately ignored 
all changes in agricultural land use and management in order to isolate the climate change effect on SOC stocks 
from all other effects. Consequently, the modelled values are of a theoretical nature, particularly for the NPPvar 
scenario. The technological achievements in the last century had huge impacts on agricultural NPP41. This was 
not all accounted for in the present study, while the SOC stocks used to initialise the model runs (2018) were 
most likely more depleted than they would have been if only climate change affected them in the past century. 
In consequence, since SOC stock changes are a function of initial SOC stocks42, the absolute estimates in this 
study for the past century are slightly lower than they might have been in reality. However, (i) this is not true 
for reported relative changes and (ii) the advantage of using current SOC stocks is that the absolute estimates of 
climate change-driven alterations in the past 50 years can be expected to be close to the rates of today and the 
near future, since global warming has been a linear process since that time. Finally, Bradford et al. mentioned 
that many biogeochemical models, which are most often based on first-order kinetics, partly represent outdated 
knowledge of C turnover5. They argue that only the realisation of new ideas about C cycling in soils can increase 
confidence in modelling results regarding the effects of global warming. One specific example is the physiological 
response of microbes to warming, which may or may not decrease their growth efficiency2,43–46 and thus may or 
may not affect the size of the microbial biomass pool and also SOC stabilisation and mineralisation47. Indeed, 
experimental results on such specific mechanisms tend to scatter in all possible directions, as do ensembles of 
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more complex biogeochemical models when applied to data of experimental warming48. Bradford et al. estimated, 
that a timespan of about 25 years would be needed to reduce current uncertainties and build more confidence 
on the overall effect of global warming on SOC stocks5. Currently, we see the use of a globally applied first-order 
kinetics model as a conservative and relatively robust way for such a global modelling effort with results being 
comparable to the multiple contexts in which RothC or similar models are still state of the art (such as national 
greenhouse gas inventories). We consider it unlikely, that the steady increase in temperature of on average 1 °C 
strongly altered microbial physiology and SOC stabilisation mechanisms2,44 and also tested the approach on an 
experimental dataset that was predicted surprisingly well.

Despite several shortcomings and uncertainties, this study provides a robust and spatially highly resolved 
estimate of climate change-driven SOC dynamics over the past century. This is an important product that may 
help interpreting observed local SOC changes and provide a certain reference scenario in various contexts. One 
example could be carbon farming, where currently the discussion is much about the quantification and verifica-
tion of SOC sequestration on a certain land area49. In fact, not all measures implemented will lead to an absolute 
increase in SOC stocks, but rather avoid SOC losses. Without a seriously estimated reference scenario, it can-
not be quantified how much CO2 loss due to climate change was effectively avoided. This is taken up by carbon 
farming start-ups, seeing a chance to sell certificates even after detecting no changes in SOC over time (https://​
co2-​land.​org/?​page_​id=​60). The danger of a too negative reference scenario is high. A similar problem exists 
in forests, in which the baseline scenario (how much of the area would potentially be deforested) determines 
how much CO2 certificates can be sold when the forest is protected. The presented comprehensive estimation of 
global SOC stock changes attributable to climate change as an omnipresent global phenomenon can serve as a 
calibration baseline, while it is recommended to use more exact local data and modelling approaches to estimate 
climate change and possibly other impacts on SOC trends in carbon certification schemes.

Table 2.   Average relative soil organic carbon (SOC) stock changes for 1919–2018 (100 years) and 1968–2018 
(50 years) for the scenarios NPPconst (constant net primary production) and NPPvar (variable net primary 
production) for all climatic zones based on the Köppen–Geiger classification with standard deviation (sd) and 
number of grid cells (n).

Climatic zone n

NPPconst 
100 years

NPPconst 
50 years

NPPvar 
100 years

NPPvar 
50 years

mean sd mean sd mean sd mean sd

Af Tropical, rainforest 41,451 − 2.6 5.7 − 2.8 4.8 − 1.4 4.3 − 1.2 3.1

Am Tropical, monsoon 43,067 − 2.0 3.7 − 1.7 3.4 − 1.3 3.7 − 0.9 3.2

Aw Tropical, savannah 126,186 − 2.9 5.9 − 1.8 3.9 − 3.1 5.0 − 2.2 3.4

BWh Arid, desert, hot 108,260 − 3.1 4.2 − 1.5 3.2 − 0.1 8.0 0.1 5.5

BWk Arid, desert, cold 49,457 − 3.9 2.0 − 2.0 1.2 − 1.9 4.6 − 2.2 3.2

BSh Arid, steppe, hot 84,275 − 1.3 7.2 − 0.4 5.6 − 1.0 6.9 − 0.4 4.9

BSk Arid, steppe, cold 87,719 − 3.8 3.6 − 1.9 2.5 − 2.8 4.4 − 2.2 3.1

Csa Temperate, dry summer, hot summer 21,739 − 3.7 4.0 − 2.6 2.7 − 5.7 4.1 − 3.1 3.9

Csb Temperate, dry summer, warm summer 9029 − 2.4 4.5 − 0.6 3.3 − 5.1 5.0 − 2.9 3.8

Csc Temperate, dry summer, cold summer 58 − 2.0 1.6 − 1.3 1.1 − 8.4 6.2 − 4.9 3.7

Cwa Temperate, dry winter, hot summer 32,502 − 3.7 4.3 − 2.1 3.1 − 3.3 3.7 − 1.8 2.5

Cwb Temperate, dry winter, warm summer 9750 − 2.0 7.2 − 0.6 4.4 − 2.9 5.5 − 1.3 3.4

Cwc Temperate, dry winter, cold summer 60 − 0.4 6.5 0.2 4.3 − 1.7 4.4 0.2 2.7

Cfa Temperate, no dry season, hot summer 57,046 − 6.6 6.4 − 3.7 4.5 − 3.5 5.6 − 2.4 3.9

Cfb Temperate, no dry season, warm summer 53,051 − 4.8 4.3 − 3.5 3.4 − 2.7 3.2 − 2.2 2.5

Cfc Temperate, no dry season, cold summer 9105 − 6.4 3.6 − 4.4 2.6 − 3.8 2.8 − 2.5 2.0

Dsa Cold, dry summer, hot summer 3082 − 5.7 2.0 − 3.1 1.5 − 6.2 3.2 − 3.7 2.9

Dsb Cold, dry summer, warm summer 4923 − 5.9 2.3 − 3.1 1.8 − 4.0 2.9 − 2.1 2.5

Dsc Cold, dry summer, cold summer 3176 − 6.0 3.7 − 3.1 2.8 − 3.8 3.6 − 1.9 2.7

Dwa Cold, dry winter, hot summer 9600 − 2.7 4.9 − 0.5 3.3 − 0.3 4.0 − 0.1 2.7

Dwb Cold, dry winter, warm summer 3673 − 3.0 4.9 − 2.0 2.8 − 0.7 4.1 − 0.6 2.6

Dwc Cold, dry winter, cold summer 1828 − 1.8 4.8 − 2.0 2.2 − 0.1 4.3 − 0.7 1.9

Dfa Cold, no dry season, hot summer 25,025 − 11.8 7.0 − 6.5 4.2 − 8.3 6.5 − 4.8 3.7

Dfb Cold, no dry season, warm summer 70,581 − 5.3 4.3 − 3.4 3.1 − 3.0 3.8 − 2.1 2.6

Dfc Cold, no dry season, cold summer 24,164 − 7.8 4.3 − 5.4 3.7 − 3.3 3.7 − 2.2 2.9

Et Polar, tundra 53,310 − 4.2 5.3 − 3.2 3.3 − 2.4 4.3 − 1.7 2.5

Ef Polar, frost 26 − 3.7 1.0 − 1.6 0.4 − 4.8 3.3 − 2.4 1.6

https://co2-land.org/?page_id=60
https://co2-land.org/?page_id=60
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Figure 3.   Global distribution of climate change-driven soil organic carbon (SOC) stock changes in agricultural 
topsoils between 1919 and 2018 for scenarios with (a) constant net primary production (NPPconst) and (b) 
variable net primary production (NPPvar). White areas are those with non-agricultural land cover. 0 changes 
(grey) indicate changes of 0±0.3 Mg C ha−1 and all other values indicate changes ranging up to the given 
number. Maps were created in R, version 4.1.1 (https://​cran.r-​proje​ct.​org/) using the package terra26.
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in water balance (a positive change implies more available water). Linear regression with standard deviation is 
shown.
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Conclusions
The last one hundred years have seen rapid transformation. Technological developments, such as synthetic N 
fixation, as well as a rapidly growing human population have paved the way for the onset of large-scale industrial 
agriculture as well as for ever-increasing CO2 emissions responsible for the greenhouse effect50. The latter has 
led to the most severe environmental crisis humanity has ever faced: the climate crisis. Both agricultural inten-
sification and climate change have simultaneously affected agricultural SOC stocks to varying extents, leading 
to a significant feedback to atmospheric CO2. Despite the tremendous efforts being made to quantify changes 
in SOC stocks in almost all regions of the world, drivers for such changes often remain elusive and, until now, 
were a blind spot in national greenhouse gas inventories51. The contribution of climate change is often subject 
to speculation and either ignored or inflated. It is ignored when emission factors rather than dynamic models 
are used to estimate SOC stock change due to land-use or management change52, and potentially inflated when 
changes in observed SOC stocks are explained10. The global estimates presented here provide a reliable founda-
tion for a variety of applications into which the persistent, climate change-driven baseline trend of SOC stocks 
can be integrated.

Materials and methods
The RothC24 model was applied to predict climate change-driven SOC changes on global agricultural soils using 
the RothC version implementation in the R package soilassessment53. It is an established first-order kinetics 
model with five C pools that has been successfully applied across multiple climatic zones and also in climate 
change projections54–56. To estimate only the climate change impact on SOC stocks of today’s global agricultural 
soils, we had to start with a steady state situation excluding any potential legacy effects on SOC trends. Global 
SOC stocks are only available in sufficient quality and coverage for recent years, and also the agricultural area of 
today is not comparable to the agricultural area 100 years ago. Therefore, we initialised the model with todays’ 
SOC stocks and used temperature and precipitation data of the past 100 years to model SOC development, as 
affected by climate change only, backwards. In this way, all major agricultural developments in the past century, 
as well as land use changes were explicitly excluded from the modelling exercise and the model only predicted 
what a “cooling” effect (warming backwards) might have on SOC stocks. The GSOCmap (FAO-ITPS, 2019, 
1 km resolution) was used to specify the initial value of the soil carbon stocks for the 932 k modelled points. In 
addition to carbon stocks, model driving data were used that are similar to the data compilation suggested by 
the FAO initiative “Global soil organic carbon sequestration potential”23:

•	 clay contents in the 0–30 cm topsoil layer taken from soil texture maps of the OpenLandMap with a 1 × 1 km 
resolution (https://​doi.​org/​10.​5281/​zenodo.​14768​54)

•	 monthly precipitation, mean temperature and potential evapotranspiration from the CRU TS v 4.03 raster 
dataset with a resolution of 0.5°40

•	 land use of 2018 from the European Space Agency (ESA) Climate Change Initiative (CCI) – Copernicus 
Climate Change Service in a resolution of 300 m

•	 monthly land cover derived by NVDI from MODIS–MOD13A2 datasets (https://​lpdaac.​usgs.​gov/​produ​cts/​
mod13​a2v006/), after the method suggested in23

Prior to model runs, the model was initialised by spin-up runs to derive carbon input at equilibrium (Cinequi) 
and related pool distributions in 2018. These spin-up runs were done with an analytical solution of RothC42 to 
minimise computational time.

Two model scenarios were run, and both explicitly ignored any changes in agricultural practices on both SOC 
decomposition and C inputs. Instead, only potential climate change-driven alterations in SOC were modelled 
(Fig. 6). In scenario 1 (NPPconst), a constant annual carbon input similar to the input at equilibrium was assumed. 
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Figure 5.   Measured and modelled steady-state soil organic carbon (SOC) stocks along a geothermal warming 
gradient on an Icelandic grassland soil. Boxplots represent measured data (n = 5) with black dots indicating 
outliers, while blue and organge dots represent the two modelling scenarios assuming constant C input 
(NPPconst) and variable C input (NPPvar).
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In scenario 2 (NPPvar), the annual carbon input from 2018 to 1919 was derived by scaling the Cinequi using the 
ratio of the recent NPP (NPP(t)) and NPP in the reference period 1919–2018 (NPPref):

This is not exactly the same approach applied in23, however both approaches produce identical C-input 
estimates. NPP needed to scale C inputs for the RothC model was estimated by the simple and well established 
MIAMI model57 based on annual precipitation (P) and annual mean temperature (T):

Monthly soil water deficit, required to derive the rate modifying factor b24 in the RothC model, was quantified 
in forward mode starting in January 1919. There are several reasons, why those two scenarios were modelled. 
First of all, there might be different definitions of what is the baseline of climate change-driven SOC dynamics. 
One could be interested on the accelerated decomposition alone, which might then lead to considerations of how 
much more C input would be required to (over)compensate such a loss6. However, the question could also be, 
how climate change might have potentially affected the total balance of C input to the soil and SOC mineralisa-
tion. This is particularly interesting, when considering the spatial resolution of such alterations in both fluxes. 
There might be regions in which climate change has actually led to increased SOC stocks due to an overcompen-
sation of enhanced SOC mineralisation by higher photosynthetic activity, while in other regions e.g. increasing 
drought led to a decline in potential C input. Figure 6 illustrates the modelling approach.

A unique geothermal warming experiment on Iceland was used to validate the model scenarios applied in 
this study. For lack of a long-term warming experiment in an agricultural system, we used this semi-natural 
grassland site, on which five transects along strong soil warming gradients were sampled and analysed for SOC 
contents58. The site is located close to the village of Hveragerdi (64° 00′ 0ʺ N, 21° 11′ 09ʺ W) on an Andosol 
with the topsoil (0–10 cm) having a loamy texture (8% clay, 61% silt and 31% sand), a pH in water of 5.7 and an 
average bulk density of 0.6 g cm358,59. At the time of sampling, soils were warmed for only six years, by on aver-
age 0.6, 1.8, 3.9, 9.9, 16.3 and 40 °C, which was due to an abrupt shift in the location of geothermal channels59. 
However, a later resampling on several of these warming levels plus a sampling of a neighbouring older warming 
experiment showed that six years of strong and abrupt soil warming was enough to reach a new steady state28. 
Therefore, the RothC model was initialised with the SOC stock of the unwarmed reference plots and run into 
a new steady state for each of the warming intensities adding the average temperature increase to the sampled 
weather data from 1998 to 2018, while the SOC stock of the unwarmed reference soil and mentioned climate 
data was used to estimate steady-state C input. This was done for both scenarios (NPPconst and NPPvar) in the 
exact same way as described earlier.

Owing to computational limitations, scenario runs were done for a sample of 1% of all raster grids selected 
by random sampling, which resulted in about 932,389 runs given the 1 km × 1 km resolution of the underlying 

Cin(t) = Cinequi ×
NPP(t)

NPPref

NPPT =
3000

1+ exp(1.315− 0.0119T)

NPPP = 3000
(

1− exp(−0.0000664P)
)

NPP = min
(

NPPT ,NPPp
)

Figure 6.   Illustration of the modelling framework with exemplary average soil organic carbon (SOC) stock 
trends of the two scenarios NPPconst and NPPvar as well as the actual, yet unknown trend in SOC stocks of today’s 
agricultural soils.
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SOC map. Modelled SOC, carbon input, NPP, weather data and soil moisture deficit were stored for 10-year 
time intervals. These variables were aggregated according to the Köppen–Geiger climate classification map60.

Raster maps of modelled soil carbon changes were spatially aggregated to a 0.1° resolution using the terra 
package in R61.

Linear regression models were fitted to explain the variability of SOC stock changes (absolute and relative) 
across climatic zones. Initial SOC stocks, mean annual temperature (MAT), mean annual precipitation (MAP), 
water balance as well as changes in temperature, precipitation and water balance were used as explanatory vari-
ables. The best model was chosen based on the Akaike Information Criterion (AIC) and model residuals were 
visually checked for normal distribution using quantile–quantile plots.

Data availability
The datasets on which this analysis was based is freely downloadable and sources are given in the manuscript. 
Modelling results are made available at https://​doi.​org/​10.​5281/​zenodo.​77812​45.
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