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A trial deep learning‑based 
model for four‑class histologic 
classification of colonic tumor 
from narrow band imaging
Takeshi Shimizu 1, Yoshihiro Sasaki 2*, Kei Ito 1, Masashi Matsuzaka 2, Hirotake Sakuraba 3 & 
Shinsaku Fukuda 4

Narrow band imaging (NBI) has been extensively utilized as a diagnostic tool for colorectal neoplastic 
lesions. This study aimed to develop a trial deep learning (DL) based four‑class classification model for 
low‑grade dysplasia (LGD); high‑grade dysplasia or mucosal carcinoma (HGD); superficially invasive 
submucosal carcinoma (SMs) and deeply invasive submucosal carcinomas (SMd) and evaluate its 
potential as a diagnostic tool. We collected a total of 1,390 NBI images as the dataset, including 53 
LGD, 120 HGD, 20 SMs and 17 SMd. A total of 598,801 patches were trimmed from the lesion and 
background. A patch‑based classification model was built by employing a residual convolutional 
neural network (CNN) and validated by three‑fold cross‑validation. The patch‑based validation 
accuracy was 0.876, 0.957, 0.907 and 0.929 in LGD, HGD, SMs and SMd, respectively. The image‑level 
classification algorithm was derived from the patch‑based mapping across the entire image domain, 
attaining accuracies of 0.983, 0.990, 0.964, and 0.992 in LGD, HGD, SMs, and SMd, respectively. Our 
CNN‑based model demonstrated high performance for categorizing the histological grade of dysplasia 
as well as the depth of invasion in routine colonoscopy, suggesting a potential diagnostic tool with 
minimal human inputs.

Although it is relatively simple for human observers to recognize and describe the visual elements in empirical 
terms, it has been remarkably difficult to accurately define and analyze them with a computer. The electronic 
endoscope has allowed us to quantify any element making up a digitized endoscopic image through mathemati-
cal processes. Several studies have evaluated the effectiveness of feature extraction for computer-aided diagnosis 
(CAD) to classify the endoscopic severity of ulcerative  colitis1,2 and to assess the risk of developing gastric cancer 
among Helicobacter pylori-positive  patients3. However, the diagnostic accuracy of feature engineering was lim-
ited due to the challenges in extracting features for image analysis in gastrointestinal diseases.

With the proliferation of CNN, the task of classifying objects in natural images can be solved simply by 
presenting examples of images and the names of the objects to a neural network that acquired all its knowledge 
from the training  data4. This groundbreaking technology has freed engineers from feature engineering and 
endoscopists from knowledge-based image interpretation. The CNN-based supervised learning has been applied 
in the automated localization of gastric cancer in routine  gastroscopies5 and the automated detection of colon 
 polyps6. Several studies have reported the utilization of a CNN-based model for distinguishing adenomatous 
from non-adenomatous  polyps7, adenomatous from hyperplastic diminutive colorectal polyps 8, and neoplastic 
polyps from non-neoplastic polyps 9. The fine-tuning of a pre-trained CNN for gastric precancerous disease 
 classification10 or the efficient channel attention deep dense CNN for the classification of esophageal  disease11 
has also been reported.

However, to the best of our knowledge, a multi-class model for evaluating the grade of histologic dysplasia 
along with the depth of invasion has not yet been developed. The NBI international colorectal endoscopic (NICE) 
classification applicable to with or without magnification was proposed for diagnosing submucosal invasive colon 
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 cancer12. However, criteria for classification described in empirical  terms12 may inevitably suffer from a variety of 
biases in evaluation leading to different accuracy varying with endoscopists and disturb comparison of accuracy 
among different endoscopist communities. This study aimed to develop a trial CNN-based supervised learning 
model for evaluating histologic atypism or invading depth from NBI images of detected colonic neoplastic lesions 
and evaluate the potential as a diagnostic tool.

Methods
Preparation of endoscopic images. NBI images of neoplastic lesions from patients who underwent 
endoscopic or surgical resection at Sendai City Medical Center Sendai Open Hospital from April 2017 to 
December 2019 were used for this single center retrospective study. Characteristics of collected NBI images 
are summarized in Table 1. A total of 1390 NBI images were sampled from a total of 210 lesions with definite 
histologic  diagnosis13: 53 low-grade dysplasia (LGD); 120 high grade dysplasia or mucosal carcinoma (HGD); 
20 superficially invasive (the depth of the invasive front < 1000 µm) submucosal carcinoma (SMs) and 17 deeply 
invasive (the depth of the invasive front > 1000 µm) submucosal carcinomas (SMd). Pathological diagnosis was 
conducted by pathologists unaware of the study design in a blinded manner. The diagnosis of a mucosal lesion, 
LGD or HGD was assigned to the most severe grade regardless of the size of the component. Sampled picture 
number per lesion was 5.5 to 7 samples with an averaged image capturing conditions: no magnification 41.0%; 
low magnification 37.9%; high magnification 21.1%. The images of a solitary lesion at varying magnifications 
were carefully chosen to minimize potential bias in the selection process. The video endoscopes CF-HQ290ZI, 
PCF-H290ZI, PCF-H290TI and video endoscopy system EVIS LUCERA ELITE CV-290/CLV-290SL (Olympus 
Medical Systems, Co., Ltd., Tokyo, Japan) were used.

Preparation of dataset. NBI images (Fig.  1a) were manually partitioned into the lesion (Fig.  1b) and 
background (Fig. 1c) from which the patch images (128 × 128 pixels) were cropped starting from the left upper 
corner (white dotted patch), rightwards (white solid patch), then downwards (red solid patch) at every 32-pixel-
strides (white and red arrows) over the entire effective region of interest. The patches including blackouts with 
more than 10% of the effective region were automatically excluded from analysis. Blackouts were defined as 
regions with the intensity of red component lower than 50. Similarly, the patches with halations exceeding 5% 
of the effective region were also excluded. Halations were defined as regions with the intensity of green compo-
nent higher than 250. In this study, the patches were further classified into in-focus patches and out-of-focus 
ones according to the amount of spatial high frequency area extracted by high pass filter with a cut-off of 6.25% 
Nyquist frequency. The in-focus patches were classified into (0) background (BG), (1) LGD, (2) HGD, (3) SMs 

Table 1.  Collected NBI images for dataset. NBI, narrow band imaging; HGD, high grade dysplasia; LGD, 
low grade dysplasia; SMs, superficially invasive submucosal carcinoma; SMd, deeply invasive submucosal 
carcinoma.

Histology Number of lesions Number of still pictures Averaged picture number per lesion

Magnification (picture counts/ 
%)

None Low High

LGD 53 294 5.5 126/42.9 120/40.8 48/16.3

HGD 120 840 7.0 345/41.1 305/36.3 190/22.6

SMs 20 138 6.9 59/42.8 46/33.3 33/23.9

SMd 17 118 6.9 40/33.9 56/47.5 22/18.6

total 210 1390 6.6 570/41.0 527/37.9 293/21.1

Figure 1.  Preparation of dataset. Original NBI image (a) were manually partitioned into the lesion (b) and 
background (c). The patch images (128 × 128 pixels) were trimmed from the lesion and background starting 
from the left upper corner (white dotted patch), rightwards (white solid patch), then downwards (red solid 
patch) at every 32-pixel-strides (white and red arrows) over the entire region of interest.
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and (4) SMd, and the out-of-focus ones into (5) background (BG-oof) and 6) lesion (L-oof). A total of 598,801 
patches were classified into 7 categories (Table 2). The study did not have any inclusion or exclusion criteria for 
pictorial quality of the patches by endoscopists. As stated, the patches with excessive blackout or halation were 
automatically excluded before entry. The study aimed to establish an effective histologic classifier that can be 
used in any common shooting conditions of NBI.

Evaluation method. We employed cross-validation to obtain more accurate results with less bias in the 
machine learning  studies14. In this study, the dataset is randomly partitioned into three equal sized folds, one 
fold of which is for validation and the other folds are for training. The proportion of labels was equal in each 
fold. The training and validation processes were repeated three times using different folds each time. The three 
validation results could then be averaged to produce a single estimation.

Architecture of the CNN. ResNet50 (a CNN) proposed by He et al.15 and Pytorch were utilized. ResNet50 
without pretraining was imported from Pytorch library (torchvision.models). The original patches with 128 × 128 
pixels were converted into images with 224 × 224 pixels. We tuned hyper parameters, which were set by a human, 
as follows: optimizer, Adam; loss function, cross entropy loss; number of training epochs, 50; batch size, 256; 
learning rate, 0.00005 via trial and error; and number of the outer layers, 7 classes.

Image‑level classification. An exemplification of SMd and the annotation mask without blackout or hala-
tion (denoted by X) are depicted in Fig.  2a,i, respectively. The patches classified into BG, LGD, HGD, SMs, 
SMd, BG-oof and L-oof, by the trained CNN, are illustrated by white (Fig. 2b), green (Fig. 2c), yellow (Fig. 2d), 
magenta (Fig. 2e), red (Fig. 2f), dark gray (Fig. 2g) and cyan (Fig. 2h) open squares, respectively, and the cor-
responding union masks in Fig. 2j–p, respectively. Classification algorithms must be developed by utilizing in-
focus patches, without sacrificing pictorial information. Here, the union masks of the patches classified into 
labels BG, LGD, HGD, SMs and SMd are designated by M0, M1, M2, M3 and M4, respectively. Intersection over 
union between X and Mi (IoUi) are given by X ∩ Mi/ X ∪ Mi (i = 0, 1, 2, 3, 4). The lesion was classified into the 
argmax among IoUi (i = 0, 1, 2, 3, 4), with the IoUi values of 0.12, 0.05, 0.21, 0.04 and 0.57, respectively, leading 
to label 4 or histologic classification SMd.

Ethics approval and consent to participate. This study was approved by the Committee of Medical 
Ethics of Hirosaki University Graduate School of Medicine (Aomori, Japan; reference no. 2019–1099) and Sen-
dai City Medical Center (Sendai, Japan: reference no. 2019–0029). Informed consent was obtained in the form of 
opt-out on our website (https:// www. https:// www. med. hiros aki-u. ac. jp/ hospi tal/ outli ne/ resar ch. html), with the 

Table 2.  Quantity of clipped patches within each category. BG, background; HGD, high grade dysplasia; LGD, 
low grade dysplasia; SMs, superficially invasive submucosal carcinoma; SMd, deeply invasive submucosal 
carcinoma; BG-oof, out-of-focus background; L-oof, out-of-focus lesion.

Category The number of patches

BG 91,571

LGD 52,184

HGD 158,187

SMs 28,049

SMd 20,882

BG-oof 167,081

L-oof 80,847

Figure 2.  The patch-level histological mapping predicted by the trained model, alongside the annotation 
mask. An example picture of SMd and the annotation mask without blackout or halation can be seen in (a) 
and (i), respectively. White (b), green (c), yellow (d), magenta (e), red (f), dark gray (g), and cyan (h) open 
squares indicate the patches classified as BG, LGD, HGD, SMs, SMd, BG-oof, and L-oof, respectively, with their 
corresponding union masks visible in (j–p), respectively. BG, background; HGD, high grade dysplasia; LGD, low 
grade dysplasia; SMs, superficially invasive submucosal carcinoma; SMd, deeply invasive submucosal carcinoma; 
BG-oof, out-of-focus background; L-oof, out-of-focus lesion.

https://www.https://www.med.hirosaki-u.ac.jp/hospital/outline/resarch.html


4

Vol:.(1234567890)

Scientific Reports |         (2023) 13:7510  | https://doi.org/10.1038/s41598-023-34750-3

www.nature.com/scientificreports/

approval of the Committee of Medical Ethics of Hirosaki University Graduate School of Medicine. This study 
was designed and carried out in accordance with the Declaration of Helsinki.

Results
Accuracy of patch‑level and image‑level classification. An averaged validation accuracy in the 
patches with label 0, 1, 2, 3, 4, 5 and 6 was 0.938, 0.876,0.957, 0.907, 0.929, 0.966 and 0.904, respectively (Table3). 
Table 4 displays the confusion matrix diagram depicting the outcomes of the image-level classification from 
the patch-based mapping across the entire image area using the trained CNN. The ground truth histology was 
located on the vertical axis, and the predicted histology was situated on the horizontal axis. Out of 1,390 pictures, 
1,371 pictures were correctly classified into the correct histology with a total accuracy of 0.986. The precision 
and F1-scores were determined to be 0.973, 0.992, 1, 0.967 and 0.978, 0.991, 0.982, 0.980 for LGD, HGD, SMs, 
and SMd, respectively.

Examples of the patch‑based mapping and image‑level classification. Figure  3 illustrates the 
examples of input images, patch-level prediction map and bar graph of IoU. In cases 1, 2, 3 and 4, the ground 
truth histology was consistent with the predicted histology with the maximum intersection over union. In cases 
5 and 6, HGD and SMd were misclassified as SMd and HGD, respectively. In these cases, misclassification of 
the surrounding background into the true lesion resulted in a lower intersection over union of the true lesion 
compared to the misclassified ones. A type of misclassification, stemming from an underestimation of the actual 
lesion compared to misclassified lesions across four SMs, has likely caused a decrease in accuracy relative to 
other lesions.

Discussion
In this study, we developed a trial CNN-based multi-class histology classifier model for detected colorectal neo-
plastic lesion in routine colonoscopy still images with NBI mode in common shooting condition. The NBI offers a 
significant advantage for CNN-based image classification thanks to its ability to provide high contrast or detailed 
pictorial information without requiring any pre-acquisition preparation. The diagnosis process includes patch-
level histology mapping over the entire in-focus region of NBI image, trained on ResNet50 and the calculation of 
argmax among intersections over union between annotation mask and patch-level union masks for image-level 
histology. This model achieved an image-level accuracy of 0.986, suggesting its potential as a diagnostic tool.

The advancement of machine learning using CNN has enabled physicians to apply CAD of medical images 
in their specialized field. The American Society for Gastrointestinal Endoscopy AI Task  Force16 stated that 
CAD plays a crucial role in screening and surveillance colonoscopy for colorectal cancer prevention. Similarly, 
a European Society of Gastrointestinal Endoscopy mentioned to the capability of AI for accurately predicting 
the histology of polyps from endoscopic images and improving the cost-efficiency and safety of colonoscopic 

Table 3.  Patch-level three-fold validation accuracy. BG, background; HGD, high grade dysplasia; LGD, 
low grade dysplasia; SMs, superficially invasive submucosal carcinoma; SMd, deeply invasive submucosal 
carcinoma; BG-oof, out-of-focus background; L-oof, out-of-focus lesion.

Category

Fold 1 Fold 2 Fold 3 Averaged 
accuracyTotal patches Correct patches Accuracy Total patches Correct patches Accuracy Total patches Correct patches Accuracy

BG 30,524 28,634 0.938 30,524 28,625 0.938 30,523 28,637 0.938 0.938

LGD 17,395 15,011 0.863 17,395 15,044 0.865 17,394 15,644 0.899 0.876

HGD 52,729 50,383 0.956 52,729 50,327 0.954 52,729 50,703 0.962 0.957

SMs 9350 8616 0.921 9350 8657 0.926 9349 8163 0.873 0.907

SMd 6961 6115 0.878 6961 6632 0.953 6960 6659 0.957 0.929

BG-oof 55,694 54,108 0.972 55,694 53,855 0.967 55,693 53,386 0.959 0.966

L-oof 26,949 24,664 0.915 26,949 23,758 0.882 26,949 24,695 0.916 0.904

Table 4.  Confusion matrix and image-level accuracy. BG, background; HGD, high grade dysplasia; LGD, 
low grade dysplasia; SMs, superficially invasive submucosal carcinoma; SMd, deeply invasive submucosal 
carcinoma.

Ground truth

Predicted histology

total RecallLGD HGD SMs SMd

LGD 289 4 0 1 294 0.983

HGD 6 832 0 2 840 0.990

SMs 2 2 133 1 138 0.964

SMd 0 1 0 117 118 0.992
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colorectal cancer screening and  surveillance17. The supervised learning of a CNN has enabled the development 
of a model for automated detection of colon  polyps6, as well as binary classification models for distinguishing 
adenomatous from non-adenomatous polyps (with a ten-fold validation accuracy of 0.751)7, adenomatous from 
hyperplastic diminutive colorectal polyps (with an accuracy of 94%)8, and neoplastic polyps from non-neoplastic 
polyps (with a high confidence rate of 0.85)9.

However, a CNN model for multiclass differentiation among low-grade dysplasia, high-grade dysplasia, 
and carcinoma with superficial or deep submucosal invasion has not been developed. Although invading depth 
is determinant for therapeutic intervention (endoscopic resection or surgery), it has been evaluated so far by 
endoscopists with the use of knowledge-based  criteria12,18 which inevitably suffers from a variety of biases in 
evaluation. One study has reported a CNN-based binary class prediction model for deeply submucosal invasive 
carcinoma with an overall accuracy of 85.5%, which is comparable to that of expert  endoscopists19. Although 
it must be done with caution, comparison of model accuracy between studies with different designs revealed a 
prediction accuracy of 0.991 for carcinoma with deeply submucosal invasion in this study. To accurately compare 
the accuracy of ML models regardless of algorithm and class numbers, the promotion of a benchmark data set 
library with annotation  masks20 is essential.

A patch-based CNN has been utilized for automated detection of a target area within a whole slide image in 
digital  pathology21,22. This method has been recently applied for automated severity mapping along the entire 
colorectum in patients with ulcerative colitis from capsule endoscopy video  files23, as it is considered to have an 
advantage when the object for classification is composed of topographically varying elements, such as severity 
or atypism. When reconstructing histologic maps in resected specimens, one often encounters topographic 
heterogeneity in the grade of dysplasia as well as invading depth. In this study, a single histology or label was 
assigned to a single lesion image, thus resulting in similar labels across the entire lesion area, which may have 
impacted the outcomes. None the less, a multi-class classification model developed from a trained patch-level 
classifier has achieved a high image-level accuracy of over 0.96, which may provide a potential diagnostic tool 
with minimal human input in routine colonoscopy.

The limitations of the study were: its single-center, retrospective nature, limited dataset size, and lack of exter-
nal validation; moreover, other classification models including VGGNets, DenseNets and ViT were not explored; 
the applicability of the model to diagnosis in the subsequent endoscopy system is uncertain.

Data availability
The data generated or analyzed during this study are included in this published article. Some datasets generated 
and/or analyzed during the current study are not publicly available due to privacy but are available from the 
corresponding author on reasonable request.

Figure 3.  Input images with patch-level prediction map and IoU. BG, background ; HGD, high grade 
dysplasia ; LGD, low grade dysplasia ; SMs, superficially invasive submucosal carcinoma ; SMd, deeply invasive 
submucosal carcinoma; IoU, intersection over union.
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