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PeruNPDB: the Peruvian Natural 
Products Database for in silico drug 
screening
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Gonzalo Davila‑Del‑Carpio 4, José L. Medina‑Franco 5 & Miguel Angel Chávez‑Fumagalli 1*

Since the number of drugs based on natural products (NPs) represents a large source of novel 
pharmacological entities, NPs have acquired significance in drug discovery. Peru is considered a 
megadiverse country with many endemic species of plants, terrestrial, and marine animals, and 
microorganisms. NPs databases have a major impact on drug discovery development. For this reason, 
several countries such as Mexico, Brazil, India, and China have initiatives to assemble and maintain 
NPs databases that are representative of their diversity and ethnopharmacological usage. We describe 
the assembly, curation, and chemoinformatic evaluation of the content and coverage in chemical 
space, as well as the physicochemical attributes and chemical diversity of the initial version of the 
Peruvian Natural Products Database (PeruNPDB), which contains 280 natural products. Access to 
PeruNPDB is available for free (https:// perun pdb. com. pe/). The PeruNPDB’s collection is intended to 
be used in a variety of tasks, such as virtual screening campaigns against various disease targets or 
biological endpoints. This emphasizes the significance of biodiversity protection both directly and 
indirectly on human health.

Biodiversity is the variety of all life forms, including the morphological diversity of individuals and populations 
within a species, the taxonomic diversity of species within a community or ecosystem, the functional diversity 
of groups of species within an ecosystem, and the diversity of ecosystems  themselves1. While the total number 
of species in every taxonomic group has been predicted for all kingdoms of life on earth at approximately 8.7 
 million2,3, it is remarkable that the distribution of that vast number of species is highly concentrated in specific 
areas. These regions are particularly important for biodiversity conservation and are called biodiversity  hotspots4, 
although: Bolivia, Brazil, China, Colombia, Costa Rica, the Democratic Republic of Congo, Ecuador, India, 
Indonesia, Kenya, Madagascar, Malaysia, Mexico, Peru, Philippines, South Africa, and Venezuela are considered 
megadiverse  countries5. Peru occupies the seventh place in this group, as it possesses 28 of the 32 existing climates 
in the world and 84 of the 103 life zones known on earth. This is evidenced by considering that the country has 
25,000 plant species or 10% of the entire number of species worldwide, whereas 30% are endemic, and endemic 
animal species such as 115 birds, 109 mammals, and 185 amphibians species, which represent 6, 27.5 and 48.5% 
of the total number worldwide,  respectively6,7.

Biodiversity conservation is important since plants, animals, and other life forms such as bacteria, archaea, 
protozoa, and fungi, are used directly or indirectly to produce pharmaceuticals, and for their scientific value, 
among other  resources8. The number of drugs derived from natural products (NP) that were introduced to the 
market over forty years represented a significant source of new pharmacological  entities9. Whilst the Peruvian 
population uses approximately 5000 Peruvian plants for 49 purposes or applications, where about 1400 species are 
described as  medicinal10–13. The contribution from traditional Peruvian medicine can be embodied by Quinine, 
a component of the bark of the cinchona tree (Cinchona officinalis), employed in the treatment of  Malaria14. 
Additionally, two other valuable contributions to modern pharmacopeias such as the coca plant (Erythroxylum 
coca), from which cocaine was first isolated and later led to local  anesthetics15, and the balsam of Peru (Myroxylon 
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balsamum), which was used wide-reaching for the treatment of  wounds16, can be mentioned. However, the 
potential of Peruvian NPs remains underexploited since most of these useful native species can be domesticated 
or semi-domesticated17. Also, the amount and nature of experimental evidence published on active NPs are still 
 limited18, and most of the current studies reported crude medicinal activities, while potentially active NPs have 
been isolated only from a few numbers of  plants19.

Computer-aided drug design (CADD), one of the key approaches to modern pre-clinical drug discovery, 
can be defined as computational methods that are applied to discover, develop, and analyze drugs and active 
 molecules20. Among the key approaches that comprise CADD, virtual screening is one of the major contributors 
to CADD since it stands as a contemporary approach to the experimental in vitro high-throughput screening 
(HTS) for hit identification and  optimization21. Integrating CADD approaches to curated databases, which are 
described as a well-organized collection of data in any field, the drug development process may be sped up and 
cost  reduced22. Considering this, large databases containing NPs from various data sources have been released, 
such as the COlleCtion of Open Natural prodUcTs (COCONUT), which contains 406,076 unique “flat” NPs, and 
a total of 730,441 NPs where stereochemistry has been  preserved23; and the LOTUS initiative, which has 750,000 
referenced structure-organism  pairs24. Also, several NPs compound databases from particular geographical 
locations have been assembled, such as the Traditional Chinese Medicine (TCM) Database@Taiwan database 
containing approximately 58,000  molecules25; the Indian Medicinal Plants, Phytochemistry and Therapeutics 
2.0 (IMPPAT 2.0) which contains more than 10,000  phytochemicals26; and the AfroDB which is composed of 
around 1000  NPs27. Likewise, some countries in Latin America have published their own public NPs databases 
such as NuBBEDB which contains more than 2000  NPs28, and SistematX which contains more than 2500  NPs29, 
both from Brazil, and BIOFACQUIM from Mexico, which contains a total of 531  molecules30. Furthermore, 
NPs databases had been used as a repository to identify several promising candidates to be considered for fur-
ther development for the treatment of  diseases31, such as Chagas  disease32,33,  Tuberculosis34,  Leishmaniasis35,36, 
 Schistosomiasis37, and COVID-1938. The present work introduces the first version of the Peruvian Natural Prod-
ucts Database (PeruNPDB), describing its assembly, curation, and chemoinformatic characterization of molecular 
diversity and coverage in chemical space. The database is freely available at the web-interface PeruNPDB Explorer 
(https:// perun pdb. com. pe/). We anticipate that the PeruNPDB will make it possible to conduct additional virtual 
screening tests to create innovative pharmacological entities and other biotechnological approaches and serve 
as a resource for information on conservation guidelines.

Methods
Search strategy, study selection, and data extraction. A systematic review search strategy to exam-
ine the literature for studies describing NP from Peruvian sources was adapted  from39. Whereas PubMed, the 
main database for the health sciences, maintained by the National Center for Biotechnology Information (NCBI) 
at the National Library of Medicine (NLM), is a database that contains about 32 million citations, belonging to 
more than 5300 journals currently indexed in  MEDLINE40; it provides uniform indexing of biomedical litera-
ture, the Medical Subject Headings (MeSH terms), which form a controlled vocabulary or specific set of terms 
that describe the topic of a paper consistently and  uniformly41. Firstly, to find terms associated in the literature 
with Peruvian NPs, the MeSH terms “Peru” AND the “Natural Products” were employed in a search carried 
out at the PubMed database (https:// pubmed. ncbi. nlm. nih. gov/), (last searched on 10 June 2022), though the 
results were plotted into a network map of the co-occurrence of MeSH terms in the VOSviewer software (version 
1.6.17)42, which employs a modularity-based method algorithm to measure the strength of  clusters43. The result-
ant cluster content was analyzed to select relevant studies associated with Peruvian NPs. Three phases went into 
selecting the studies. First, papers written in languages other than English, copies of articles, reviews, and meta-
analyses were disregarded. The highly relevant full studies were then retrieved and separated from the papers 
with a title or abstract that did not provide enough information to be included. Next, the titles and abstracts 
of the publications chosen through the search approach were visually evaluated. The data supplied from each 
investigation contained the NP’s characterization as well as details on the genus and species of the sources from 
which the NP were isolated. Additionally, the information from the bibliographic reference was extracted, even 
if all research that discussed chemicals derived from Peruvian natural sources was already considered.

PeruNPDB assemble and molecular properties calculation. The simplified molecular-input line-
entry system (SMILES)44 of compounds previously described in the NPs selected in the previous step were 
searched and retrieved from  PubChem45,  DrugBank46, or  ChEMBL47 servers, while for unavailable NPs the 
ChemDraw  tool48 was employed to generate the SMILE notation. Moreover, the Osiris DataWarrior v05.02.01 
 software49 was employed to generate the dataset’s structure data files (SDFs). This followed the uploading to the 
Konstanz information miner (KNIME) Analytics  Platform50, where the “Molecular Type Cast”, and the “RDKit 
Structure Normalizer” KNIME nodes were employed to curate the chemical structures on the dataset. Moreo-
ver, for every compound in the dataset, the classification system for describing small molecule structures is 
described based on NP  Classifier51, which employs a biosynthetic ontology that is specific to natural products; or 
 ClassyFire52 which is a general classification system for small molecules that are based on the ChemOnt ontol-
ogy, was employed. The KNIME’s “RKDit Descriptor Calculator” node was employed to calculate six physico-
chemical properties of therapeutic interest, namely: molecular weight (MW), octanol/water partition coefficient 
(clogP), topological surface area (TPSA), aqueous solubility (clogS), number of H-bond donor atoms (HBD) 
and number of H-bond acceptor atoms (HBA) of the PeruNPDB, while the statistical analysis was done within 
the GraphPad Prism software version 9.4.0 for Windows, GraphPad Software, San Diego, California USA, http:// 
www. graph pad. com, by calculating the mean, median, standard deviation, and the coefficient of variation of 
the calculated properties. Box-and-whisker plots showing, the maximum and minimum values were generated 
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for visualization, and the One-way ANOVA followed by Dunnett correction for multiple comparisons test was 
employed to evaluate the differences between the datasets. The results were considered statistically significant 
when p<0.05.

Visual representation of chemical space. To generate a visual representation of the chemical space of 
the PeruNPDB, two visualization methods, for the auto-scaled six properties of pharmaceutical interest, namely: 
MW, ClogP, TPSA, clogS, HBD, and HBA, were employed: principal component analysis (PCA), which reduces 
data dimensions by geometrically projecting them onto lower dimensions called principal components (PCs)53 
calculated by the “PCA” KNIME node. The second technique was the t-distributed stochastic neighbor embed-
ding (t-SNE), which is a nonlinear dimension reduction in which Gaussian probability distributions over high-
dimensional space are constructed and used to optimize a student t-distribution in low-dimensional  space54, 
calculated by the t-SNE (L. Jonsson) KNIME node. Three and two-dimensional scatter-plot representations 
were generated for PCA and t-SNE, respectively with the Plotly KNIME node. Additionally, the Tanimoto simi-
larity score was calculated for clustering the compounds, while the atom-pair-based fingerprints of the NPs 
were obtained using the “ChemmineR”  package55 in the R programming environment (version 4.0.3)56, a heat-
map was generated for visualization. The same procedure was employed in the reference datasets:  AfroDB27, 
 BIOFAQUIM30, and  NUBBEDB28 retrieved from the ZINC20  database57.

Global diversity: consensus diversity analysis. Since chemical diversity strongly depends on the 
structure representation, it is reasonable to consider multiple representations for a complete global assessment. 
The consensus diversity (CD) plots have been proposed as simple two-dimensional graphs that enable the com-
parison of the diversity of compound data sets using four sets of structural representations: the molecular fin-
gerprints, scaffolds, molecular properties, and the number of  NPs58. The multiple-variable plot was generated by 
GraphPad Prism software version 9.4.0, whereas the y-axis represents the area under the cyclic system recovery 
 curve59, the x-axis, represents the median of the fingerprint-based diversity computed with Molecular Access 
System (MACCS) keys (166-bits) and the Tanimoto  coefficient60, the bubble color represents the molecular 
properties of pharmaceutical interest, and the bubble size represents the number of NPs for each database.

Drug‑likeness. The Osiris DataWarrior v05.02.01  software61 was employed to calculate the drug-likeness 
score of the compounds from the PeruNPDB; the calculation is based on a library of  5300 substructure frag-
ments and their associated drug-likeness scores. This library was prepared by fragmenting 3300 commercial 
drugs as well as 15,000 commercial non-drug-like Fluka  NPs61. Frequency distribution of the obtained scores 
was performed at GraphPad Prism software version 9.4.0 for Windows, GraphPad Software, San Diego, Califor-
nia USA (http:// www. graph pad. com), and plotted into stacked bar plots. Furthermore, the Lipinski Rule-of-5 
(Ro5) is a set of four rules (logP, MW, and H-bond donor and acceptor cut-offs) for drug-likeness and oral bio-
availability derived from a subset of 2245  drugs62. For this Lipinski’s Ro5 KNIME node was employed to assess 
the number of violations to the rule for each compound on the PeruNPDB and plotted into pie charts. The US 
Food and Drug Administration (FDA)-approved drugs  dataset57, was employed as a reference, whereas the same 
procedures were applied to their compounds. Also, the chemical space representation was analyzed, and the 
procedures were the same as described earlier.

Results
PeruNPDB assemble. In the present study, the assembly of the PeruNPDB, followed by its chemoinfor-
matic characterization on molecular diversity and coverage of the chemical space was performed; to select the 
studies from which the NPs will further retrieve, a search with the MeSH Terms “Peru” AND “Natural Products” 
was performed in the Pubmed database, followed by the construction of a network map of the co-occurrence 
of MeSH terms. The workflow proposed in Fig. 1 was considered. The search resulted in 399 published papers 
between 1950-2021, whereas establishing the value of five as the minimum number of occurrences of keywords, 
a map with 194 keywords that reaches the threshold was constructed (Fig. 2A). In the analysis of the map, it is 
shown that six main clusters were formed, while terms such as “Plant Extracts”, “Plants, medicinal”, “Phytother-
apy”, “Ethnopharmacology”, “Ethnobotany”, “Plants stems”, “Plants bark”, and “Seeds”, which are associated with 
NPs were observed in the first cluster (red color). Also, terms such as “Peru”, “Humans”, “Animals”, and “Male”, 
were recurrent terms. Although using the eligibility criterion established, 47 articles were selected which showed 
a 2000-2021-year range, and terms such as “Flavonoids”, “Sesquiterpenes”, and “Anthocyanins”, were recurrent 
terms (Fig. 2B). Also, bibliographic data extracted from the selected articles analyzed: the “Journal of Agricul-
tural and Food Chemistry”, the “Journal of Ethnopharmacology”, “Phytochemistry”, and “Planta Medica” where 
the main peer-reviewed journals were the studies describing compounds extracted from Peruvian NPs were 
published (Fig. 2C). Furthermore, while retrieving the SMILES of the compounds from PubChem, DrugBank, 
and ChEMBL, it was observed that 242 structures were found in the repositories and that 38 needed to be gener-
ated in the ChemDraw tool. Ninety-five and five percent of the compounds were retrieved from plant or animal 
sources, respectively (Fig. 3A). The genus from which most of the compounds were extracted were Uncaria and 
Lepidium, with 11 and 10 percent, respectively (Fig. 3B). When analyzing the structure of the compounds with 
a classification system for small molecule structures, it is shown that 76 classes of NPs were found among the 
280 NPs of the PeruNPDB, whereas anthocyanidins (N=25), aporphine alkaloids (N=11), cinnamic acids and 
derivatives (N=17), germacrane sesquiterpenoids (N=13), stigmastane steroids (N=10), and unsaturated fatty 
acids (N=22) were the most predicted classes of NPs (Fig. 4).

http://www.graphpad.com
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Molecular properties. Six physicochemical properties were calculated for all compounds in PeruNPDB 
and plotted into box plots, which include the distribution of the same properties of the three reference datasets, 
retrieved from the ZINC20 database (Fig. 5). To compare the results of the datasets, the coefficient of varia-
tion (CV) was calculated, which represents the ratio of the standard deviation to the mean and is considered a 
useful tool to statistically compare the degree of variation from one dataset to  another54. Besides the results of 
the HBA, in which NuBBEDB obtain the highest CV (123.2%), the PeruNPDB showed the highest CV in MW, 
clogP, TPSA, clogS, and HBD with 46.58%, 84.49%, 112.8%, 50.08%, and 83.84%, respectively. Still, the results 
from TPSA, clogP, clogS, and HBD showed high statistical differences compared to AfroDB, BIOFAQUIM, and 
NuBBEDB, while showed no statistical difference in HBA results compared to the AfroNP database (Fig. 5).

Visualization of the chemical space. The chemical space visualization of PeruNPDB was conducted 
using PCA and t-SNE. Though the visual analysis of 3D-PCA shows that molecules in PeruNPDB share the 
chemical space roughly with NuBBEDB. Whereas in some regions the molecules of PeruNPDB are predominant 
(Fig. 6A). While the explained variance percentage of PC1, PC2, and PC3 was 50.24, 39.94, and 6.72, respec-
tively. PeruNPDB, BIOFAQUIM, and NuBBEDB chemicals overlap in most of the chemical space represented, 
according to the 2D-t-SNE visual analysis (Fig. 6B).

Diversity analysis. The heatmap generated using the Tanimoto score matrix and the atom-pair-based fin-
gerprints show that there is a similarity between the structures of the compounds of the PeruNPDB, AfroDB, 
BIOFAQUIM, and NuBBEDB (Fig. 6C). Also, a consensus diversity plot was used to evaluate the diversity of the 
PeruNPDB dataset, based on molecular fingerprints, scaffolds, and physicochemical properties. The Euclidean 
distance of the scaled properties was used to compute the property-based diversity of the PeruNPDB, AfroDB, 
BIOFAQUIM, and NuBBEDB databases. Data points on a continuous color scale are used to represent the val-
ues on the color CD plot. Darker colors signify less diversity, but brighter colors signify more diversity. Finally, 
different point sizes are used to illustrate how large or tiny the databases are, with smaller data points indicating 
databases with fewer molecules. The results showed that the diversity of compounds found in the PeruNPDB 
was the largest since it was found in the area where the highest diversity in scaffold and fingerprints should are 
found (Fig. 7), which is consistent with the results shown in the box plots (Fig. 6).

Figure 1.  General workflow to generate and curate the first version of the Peruvian natural product database. 
The graph was edited in SmartDraw 2023 Software, LLC (Accessed April 14, 2023).
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Drug‑likeness. Druglikeness assesses qualitatively the chance for a molecule to become an oral drug 
concerning bioavailability and is established from structural or physicochemical inspections of development 
compounds advanced enough to be considered oral drug  candidates63. To assess the “drug-like” profile of the 
compounds from the PeruNPDB two approaches were performed; firstly, the frequency distribution of the drug-
likeness score was analyzed, and the results showed that besides the differences in the number of compounds 
compared in both datasets a similar distribution among the compounds is observed (Fig. 8A). In the second 
approach, the number of violations to Lipinski’s Ro5 was analyzed and the results showed that compounds with 
at least one violation represent the 85.82 and 76.35% of the FDA and PeruNPDB datasets, respectively (Fig. 8B). 
Also, the visual representation of the chemical space as PCAs (Fig. 8C) and t-SNE (Fig. 8D) indicates that some 
of the NPs are distributed in the same space as the already approved drugs. Whereas the explained variance 
percentage of PC1, PC2, and PC3 was 52.38, 37.64, and 5.54, respectively. The findings imply that because the 
compounds in PeruNPDB have chemical structures like those of approved medications, they can be used in 
virtual screening to find possible lead compounds or points for further optimization.

Discussion
Peru has exceptionally high biodiversity, with numerous endemic species of mammals, reptiles, amphibians, 
flowering plants, and ferns, which is why has been described as a “megadiverse”  country64,65, but worldwide 
hotspot analysis for potential conflict between food security and biodiversity conservation points out Peru as a 
region that is especially at risk of biodiversity loss due to agricultural  expansion66. Thus, the conservancy of bio-
diversity can be considered important since historically NPs have played a key role in drug discovery, especially 
for illnesses such as cancer, cardiovascular and infectious  diseases67, while the growing interest in NPs and their 
application is evidenced by a growth of the number of published databases of NPs, and collections of structures 
from various organisms, geographical locations, targeted diseases, and traditional  applications68. Currently, 

Figure 2.  Bibliographic search for studies describing the characterization of Peruvian natural products. (A) 
Network map of the co-occurrence of MeSH terms. (B) Network map of articles selected from 2000 to 2021-
year. (C) Bibliographic data extracted from selected articles that describe compounds extracted from Peruvian 
NPs.
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several NPs or NPs-derived molecules are employed in the treatment of distinct diseases, such as the antibiotic 
penicillin originally obtained from the fungi Penicillium spp.69; the analgesic aspirin, which is the most used 
drug in the world, derived from salicin extracted from the bark of the willow trees Salix alba70; and the immu-
nosuppressant tacrolimus employed in the prevention of the rejection organ after transplants, obtained from 
bacteria Streptomyces tsukubaensis71, are some examples. Besides, NPs and their derivatives have been considered 
promising options to improve treatment efficiency in cancer patients and decrease adverse  reactions72, whereas 
vinca  alkaloids73, taxane  diterpenoids74, camptothecin  derivatives75, and  epipodophyllotoxin76, are NPs-derived 
anticancer compounds clinically used as chemotherapeutics; while an example of the importance of biodiver-
sity conservation is exemplified by the tree Taxus brevifolia, from which the chemotherapeutic drug paclitaxel 
was originally extracted, that was put on the list of endangered  species77,78. According to the data, there are 
fewer compounds identified in the PeruNPDB than in AfroDB, BIOFAQUIM, and NuBBEDB, but the chemical 
diversity is also higher. Of the 280 compounds characterized, 95% came from plant sources, and 5% came from 
animal sources. But in the BIOFACQUIM and NuBBE databases as well as plant sources, compounds derived 
from fungi, propolis, bacteria, and marine organisms are also described. This partially explains the difference in 
the TPSA results of the PeruNPDB, since it has been reported that natural products from the animal kingdom 
have the highest TPSA due to the number of hydrogen bond donors and  acceptors79. Furthermore, the Peruvian 
marine biodiversity hotspot located on the northern coast has been predicted to hold 501 species, 270 genera, 
and 193  families80, as marine natural products have shown an interesting array of diverse and novel chemical 
structures with potent biological  activities81, which includes: Cephalosporin C an antibiotic derived from marine 
fungi Cephalosporium82, Eribulin an anticancer drug derived from halichondrin B from the natural Japanese 
marine sponge Halichondria okada83 and the antiviral, isolated from sponge Tethya crypta, nucleoside Ara-A84. 
Also, Peru is considered a diverse country that has a very broad microbial diversity richness, however, remains 
slightly studied and  exploited85,86. Fungi, the eukaryotic microorganisms, produce a tremendous number of NPs 
with diverse chemical structures and biological  activities87, such as lovastatin, the first statin approved as a hyper-
cholesterolemic medication by the FDA, most frequently produced by Aspergillus terreus88, and cyclosporine A, 
a potent immunosuppressant that was initially used to prevent organ rejection, isolated from the fungal species 
Tolypocladium inflatum  gams89. Besides that no current drug has been developed from propolis, it is considered 
a very rich and complex chemical composition, while about 300 different chemicals components isolated from it, 
and which composition fluctuates according to parameters such as plant source, seasons harvesting, geography, 
type of bee flora, climate changes, and honeybee  species90,91; highlighting Artepillin C, extracted from Brazilian 
green propolis, that showed in vitro92 and in vivo93 anti-inflammatory potential. These emphasize the urgency 
to promote and enhance the study of Peruvian NPs quantitatively and qualitatively. Compounds from Peruvian 
medicinal plants have been evaluated for their  antidiabetic94,  anticancer95,  antiviral96,  antibiotic97, and antipara-
sitic  activities98; however, most of the studies in the literature were in vitro performed over plants extracts, and 
little information about the potential of single compounds on these activities is described, while these promising 

Figure 3.  Dot plots showing the kingdom and genus of the species studied. (A) Compounds of Peruvian 
NPs found in PubChem, DrugBank, and ChEMBL databases. (B) Dot plot of the genus of the Peruvian NPs 
compounds obtained from the databases.
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results can be explained by synergistic interaction or multi-factorial effects between compounds present in the 
plant extracts  studied99. While pharmacodynamic synergy involves multiple substances acting on various recep-
tor targets to enhance the overall therapeutic effect, and pharmacokinetic synergy involves substances with little 
to no activity helping the main active principle to reach the target by improving bioavailability or by reducing 
metabolism and excretion, this type of assay can hide the true potential of single molecules activity between 
different constituents of plant  extracts100. Thus, the concerted effort of experimental NPs research with CADD is 

Figure 4.  Dot plots showing the natural products classification.
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continuously increasing; and recently, NPs from the Peruvian native plants Smallanthus sonchilofolius, Lepidium 
meyenii (40 compounds)39, and Uncaria tomentosa (26 compounds)101 were in silico analyzed for their antiviral 
activity against SARS-CoV-2. Also, the in silico polypharmaceutical potential of 84 NPs from S. sonchifolius, 
L. meyenii, Croton lechleri, U. tomentosa, Minthostachys mollis, and Physalis peruvianus was analyzed against 
Alzheimer’s  disease102.

Conclusion
Here we present the first version of PeruNPDB, a compound database of NPs from Peru that includes 280 com-
pounds from plant and animal sources. PeruNPDB was constructed curated, and maintained by the Compu-
tational Biology and Chemistry Research Group from the Universidad Catolica de Santa Maria, and it is freely 
accessible through the website https:// perun pdb. com. pe/. The PeruNPDB was envisioned as a tool for virtual 
screening, identifying promising compounds, serving as a springboard for further biotechnological products, 
and providing suggestions for conservation policies. The chemoinformatic characterization and analysis of the 
coverage and diversity of PeruNPDB in chemical space suggest broad coverage, overlapping with regions in the 
drug-like chemical space. The database contains an identification code (ID), the chemical name, bibliographic 
reference (name of the journal, year of publication, and DOI number), kingdom, genus, and species of the 

Figure 5.  Box plots for the physicochemical properties of PeruNPDB and reference datasets.

https://perunpdb.com.pe/
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natural product, SMILES notation, and classification of the natural product. In the future, we want to launch 
the PeruNPDB version 2 with new computed molecular descriptors, NP stereochemical data, and the possibility 
to download several structures at once. The web-based user interface will also be improved and kept, and new 
NPs from various taxonomic ranks that aren’t included in the current edition will be added. Additionally, as we 
increase the quantity of NPs, we anticipate comparing the PeruNPDB with larger, more varied free datasets that 
are available in the literature. The complete PeruNPDB dataset for research purposes is available upon request 
and may be directed to and will be fulfilled by the lead contact Miguel Angel Chavez Fumagalli (mchavezf@
ucsm.edu.pe).

Figure 6.  Visual representation of the chemical space of the PeruNPDB and reference datasets. (A) PeruNPDB 
3D-PCA chemical space. (B) 2D-t-SNE visual analysis of the compounds PeruNPDB, AfroNP, BIOFAQUIM, 
and NuBBEDB. (C) Heatmap generated with Tanimoto scoring matrix of similar structures among compounds 
between PeruNPDB and control data sets.
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Data availibility
The datasets generated and/or analyzed during the current study are available in the PeruNPDB repository, 
https:// perun pdb. com. pe/.
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