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Stratification of responses to tDCS 
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Transcranial Direct Current Stimulation (tDCS) is a non‑invasive neuromodulation technique with a 
wide variety of clinical and research applications. As increasingly acknowledged, its effectiveness is 
subject dependent, which may lead to time consuming and cost ineffective treatment development 
phases. We propose the combination of electroencephalography (EEG) and unsupervised learning 
for the stratification and prediction of individual responses to tDCS. A randomized, sham‑controlled, 
double‑blind crossover study design was conducted within a clinical trial for the development of 
pediatric treatments based on tDCS. The tDCS stimulation (sham and active) was applied either in 
the left dorsolateral prefrontal cortex or in the right inferior frontal gyrus. Following the stimulation 
session, participants performed 3 cognitive tasks to assess the response to the intervention: the 
Flanker Task, N‑Back Task and Continuous Performance Test (CPT). We used data from 56 healthy 
children and adolescents to implement an unsupervised clustering approach that stratify participants 
based on their resting‑state EEG spectral features before the tDCS intervention. We then applied a 
correlational analysis to characterize the clusters of EEG profiles in terms of participant’s difference 
in the behavioral outcome (accuracy and response time) of the cognitive tasks when performed after 
a tDCS‑sham or a tDCS‑active session. Better behavioral performance following the active tDCS 
session compared to the sham tDCS session is considered a positive intervention response, whilst the 
reverse is considered a negative one. Optimal results in terms of validity measures was obtained for 4 
clusters. These results show that specific EEG‑based digital phenotypes can be associated to particular 
responses. While one cluster presents neurotypical EEG activity, the remaining clusters present 
non‑typical EEG characteristics, which seem to be associated with a positive response. Findings 
suggest that unsupervised machine learning can be successfully used to stratify and eventually predict 
responses of individuals to a tDCS treatment.

In recent years, Non Invasive Brain Stimulation (NIBS) techniques and, in particular, transcranial Direct Current 
Stimulation (tDCS)1,2, have been successfully used to study brain function, treat mental disorders and enhance 
cognitive functions in adults. TDCS therapy can be applied as an effective treatment  option3,4, which is particu-
larly interesting in the absence of alternative interventions. Its application in paediatric populations however has 
been limited due to initial  concerns5. In children and adolescents the stimulation parameters cannot be directly 
translated from studies made in adult populations since the electric fields generated in the brain during stimula-
tion are affected by anatomical differences such as brain volume, skull thickness, white matter - gray matter ratio 
and cerebrospinal fluid (CSF)  volume6.
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Attention-Deficit Hyperactivity Disorder (ADHD) is one of the most prevalent neurodevelopmental condi-
tions, which affects 5.9% of youth and 2.5% of adults (in America, Europe, Australia, and Asia)7. Electroen-
cephalography (EEG) has been used to characterize the clinical population with an ADHD diagnosis. The use 
of EEG-based markers overcomes some limitations of classical subjective assessments based on interviews and 
physical examinations. Existing  EEG biomarkers include an increased theta band power and decreased beta 
band power in the frontocentral brain  region8,9, which is generally known as slowing, phase-amplitude coupling 
(beta-gamma) deficits in the frontal-left  hemisphere10, and modified peak alpha  frequency11 among others.

Given the concerns that drug-based treatments of ADHD have raised in the past, there is an ongoing search 
for treatments with reduced or no side  effects12. Current drug-based treatments and behavioral therapy in ADHD 
are also challenged by the existence of different phenotypes and related symptoms of the pathology, as well as 
the complexity associated with the developing  brain13. TDCS interventions for ADHD constitute an interest-
ing alternative to drug  treatments14. However, an important factor to take into account in the development of 
efficient tDCS interventions is the inter-subject variability of the effects of  tDCS15,16. Here, machine learning 
techniques have been proposed to identify subgroups with differential tDCS responses based on the clustering 
of behavioral responses during tDCS  interventions15. Moreover, other works have implemented unsupervised 
methods to characterize responses to different treatments based on the clustering of  genetic17,  clinical18 and 
functional Magnetic Resonance Imaging (fMRI)19 data. These works report the presence of patient subgroups 
within an a priori uniform group of patients. We propose to perform patient stratification based on EEG data. 
Previous work using EEG data attains the prediction of response to treatment through supervised Machine 
Learning (ML)  approaches20,21. Variability in response to TMS and tDCS interventions in patients suffering 
from depression or anxiety can be also explained by individual differences in baseline EEG  activity22,23. EEG is 
an attractive modality for clinical application due to its lower cost and faster application time than other neuro-
imaging modalities. In the present study, we have developed an unsupervised clustering method applied to EEG 
data to extract so-called digital  phenotypes24, making use of EEG for the first time to stratify tDCS response in 
a healthy pediatric population.

As an exploratory study in preparation for the main clinical trial, a tDCS intervention in a healthy pediatric 
population has been designed to target 2 areas of interest: the left Dorsolateral Prefrontal Cortex (lDLPFC) and 
the right Inferior Frontal Gyrus (rIFG). TDCS is applied to each area of interest both while the participants are 
performing a task during the stimulation (concurrent task condition) and while the participants are at rest during 
the stimulation (non-concurrent task condition). Previous studies on tDCS were not conclusive enough about the 
need to have a concurrent task to increase the response effect of  tDCS25,26. Therefore, one of the objectives of the 
exploratory study was to find out whether the response was better with or without a concurrent task. Addition-
ally, three tasks were always performed independently of the stimulation condition (active vs sham, concurrent 
vs non-concurrent task) and always once the stimulation session has concluded. They were conducted after the 
stimulation for the sake of evaluating the effect of the stimulation condition in terms of behavioral parameters. 
Resting state EEG was acquired before and after the tDCS intervention.

We present a methodology for healthy participants’ stratification based on their profile of resting state EEG 
activity before the tDCS stimulation. The effect of the tDCS intervention on their performance in behavioral tasks 
performed after the tDCS stimulation is taken into account to label the resulting groups. The considered behav-
ioral metrics correspond to Accuracy and Reaction Times of the Flanker, N-Back, and Continuous Performance 
Task (CPT) tasks. The performance effect is assessed as the difference in these metrics between the active and 
the sham conditions. In order to determine the baseline EEG profiles, we extracted spectral features that were 
found relevant in previous studies in pediatric EEG  studies27 and in particular  ADHD8,28. We then computed the 
relative band power—this measure is preferred over the absolute band power to normalize absolute differences 
among participants who may present abnormalities in their  anatomy29. Participant stratification was performed 
using the algorithms denoted as Spectral Clustering, which has good results for non-convex  data30, and Fuzzy 
Clustering, which is robust when boundaries are ambiguous and data contain  outliers31. A correlational analysis 
was then applied between the membership of participants to each of the electrophysiologically homogeneous 
groups and the behavioral assessment metrics after stimulation. Significant correlations of a particular cluster 
group are tested against the rest of the groups in order to confirm responders. The methodology and results we 
describe in this article contribute to the understanding of the variability of response to tDCS treatment, with 
a particular focus on the specific conditions in which the treatment is effective. We support the relationship 
between the tDCS response and the EEG profiles on the fact that both depend on bioelectrical features of the 
brain. Hence the EEG features act as a proxy of the biophysical characteristics in each individual’s brain.

Interestingly, the positive responder groups correspond to participants with a non-typical profile of EEG 
activity, presenting either a slowing of the EEG or a spread of increased alpha rhythm over frontal areas. Our 
methodology could be applied in the future to stratify patients for tDCS treatment, enabling to focus on those 
specific digital phenotypes in which tDCS is more likely to become effective. Personalization of treatment, i.e. 
applying tDCS only to groups of patients predicted to have positive results, would save costs, and time, and 
improve the efficacy of the treatment at lower sample sizes.

Materials and methods
Participants. Data were obtained from a healthy population taking part in a clinical trial for the develop-
ment of treatments for Attention Deficit Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD) 
based on tDCS. The study was approved by the local ethics committee of the Medical Faculty at Kiel University, 
Germany, and was carried out in accordance with the latest revision of the Declaration of Helsinki and registered 
in the German Trial Register with number DRKS00008207.
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A total of N=56 children and adolescents aged 10–17 years (32 females, mean age: 14.09 years, SD: 2.1) were 
recruited in the Medical Faculty at Kiel University. Informed consent from the participants and their parents 
was obtained before the experiment. The exclusion criteria consisted of substance or medication consumption, 
implants and devices in the body, pregnancy, birth before pregnancy week 37, birth weight lower than 2500 
grams, IQ score lower than 80 assessed with CFT 20-R Test (Culture Fair Intelligence Test)32, neurological and 
psychiatric disorders (past or present), brain surgery, presence of epilepsy in the participant or family history, 
social and health impairments as assessed with the Child Behavior Checklist (CBCL)33, the German ADHD 
Rating scale FBB  ADHS34 and the Social Responsiveness Scale (SRS)35. Participants’ age, sex, IQ and Edinburgh 
Handedness Inventory (EHI) are given in Tables 2 and 3 of the Supplementary Information.

Experimental protocol. Experimental design. A randomized, sham-controlled, double-blind, crossover 
study design was implemented. Participants came for 6 experimental sessions (see Fig. 1). The first 2 sessions 
(T1-T2) correspond to participants screening and an optional fMRI scan. Participants then came back 4 times 
to receive the tDCS interventions (T3-T6) which were of 4 different types, administered in a randomized order: 
active tDCS with a concurrent task, active tDCS with a non-concurrent task, sham tDCS with a concurrent task 
and sham tDCS with a non-concurrent task. Additionally to this experimental condition, which includes the 
concurrent task in the concurrent-task conditions and no task in the non-concurrent task conditions, 3 tasks 
were included in the experimental design for behavioral effect evaluation. These 3 tasks were conducted after 
the stimulation finished for the sake of evaluating the effect of active or sham stimulation in terms of behavioral 
parameters. These 3 tasks were always performed independently of the stimulation condition (active vs. sham, 
concurrent vs. non-concurrent task) and always once the stimulation session had concluded. There was a mini-
mum washout period of 7 days in-between sessions. At the start of each stimulation session, participants were 
asked to complete an assessment of their current mood, motivation, and any adverse event since the last session. 
Following the stimulation session, participants completed a questionnaire on the safety, tolerability, and blinding 
of the stimulation.

Participants were randomly divided into 2 groups: participants in Group A were stimulated in the left Dor-
solateral Prefrontal Cortex (lDLPFC) and performed the N-Back Task in the concurrent task condition, whereas 
participants in Group B were stimulated in the right Inferior Frontal Gyrus (rIFG) and performed the Flanker 
task in the concurrent task condition. In each stimulation session, both groups randomly received either a 
sham or an active tDCS stimulation. Each tDCS stimulation session unfolded as follows: once participants were 
equipped with the stimulation headset, resting state EEG was recorded during 2 min eyes open (EO) and 2 min 
eyes closed (EC), followed by 20 min of tDCS stimulation. In the concurrent task condition, the task started 
after 2.5 min of tDCS stimulation and ended 2.5 min before the end of the stimulation. In the non-concurrent 
task condition, participants were instructed to sit and relax with eyes opened while receiving tDCS. For all 
participants, after stimulation, EEG data were recorded during a second resting state period (2 min EO, 2 min 
EC) and then during the execution of the following cognitive tasks: Flanker Task, N-Back Task and Continuous 
Performance Task (Fig. 2).

Transcranial direct current stimulation. Transcranial direct current stimulation (tDCS) was applied using a 
Starstim 32 multi-channel stimulation device (Neuroelectrics - Barcelona, Spain). The montage consisted of 5 
circular electrodes (3.14 cm²) filled with gel. The total stimulation current consisted of anodal 2mA during 20 
min, with a 30 s of ramp up and down at the beginning and end of the stimulation (see Fig. 3). The interested 
reader can find details on the  DLPFC36 and the  IFG37 montages in the referred works.

EEG recording. EEG data were recorded using the same device used for the stimulation at a sampling rate of 
500 Hz with 32 channels, following the 10-20 system: P8, T8, AF7, AF8, F8, F4, C4, P4, FC5, AF4, Fp2, Fp1, AF3, 
Fz, C6, Cz, C5, PO3, O1, Oz, O2, PO4, Pz, Fpz, FC6, P3, C3, F3, F7, FCz, T7, P7.

Behavioral tasks. Behavioral tasks included the Flanker Task, N-Back Task and Continuous Performance Test 
(Fig. 4). These were programmed using Presentation® Software (Version 20.0, Neurobehavioral Systems, Inc., 
Berkeley, USA). Behavioral performance metrics were computed in R (version 3.6.1, R Core Team). The primary 
endpoints are the N-Back Accuracy for participants in Group A and the Flanker Accuracy for participants in 
Group B. For more details please see the associated experimental  work36.

EEG signal processing and feature extraction. The EEG data analysed here correspond to the 2-min 
resting state EEG in eyes closed condition recorded before the start of tDCS stimulation in each T3 to T6 trial for 

Figure 1.  Experimental design. Each participant is assessed at 6 time points, T1 corresponds to an EEG 
screening, a screening questionnaire and informed consent, T2 to the optional fMRI, and T3-T6 to the 
randomized interventions (offline/online, tDCS/sham).
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each participant. Data were first band pass filtered using a 1000 coefficients FIR filter with cut-off frequencies at 
2Hz and 45 Hz, demeaned and detrended. Frontal channels AF4, Fp2, Fp1 and AF3 were removed from further 
processing and analysis due to the presence of numerous eye-movement related artifacts. High amplitude arti-
facts were removed using an amplitude threshold of 100 μV. Finally, the data were re-referenced to electrode Cz, 
which was then excluded from further processing. The relative band power was computed in 4-s time-windows 
epochs with 50% overlap in bands delta (2–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz) and gamma 
(30–45 Hz). The final relative band power values for each subject and session were taken as the median of the 
epochs. The EEG data pre-processing was done in Python 3.9 using custom scripts and Python packages (i.e. 
MNE).

Overview of the analytical approach. Figure 5 gives a schematic of the methods used in the core ana-
lytical approach of our work. Details of each step are given in the following Sections. All analysis stages were 
implemented in Python 3.9 using Scikit-learn and SciPy packages.

Unsupervised clustering analysis. We applied 2 different unsupervised clustering algorithms to the 
spectral features extracted from the EEG data: Spectral  Clustering30 (implementation from Python scikit-learn 
 package41) and Fuzzy C-Means42 (implementation from Holt Skinner  201843). The definition of parameters for 
the clustering pipeline consisted of selecting the optimal number of clusters k ranging from 2 to 6, and the spe-
cific parameters for each algorithm (number of components n for Spectral Clustering and fuzzification param-

Figure 2.  T3 to T6 trial design. During each trial, 2 min eyes open and 2 min eyes closed resting state EEG are 
being recorded before and after the tDCS stimulation. Participants then came back 4 times to receive 4 different 
tDCS interventions (T3–T6) in a randomized order: active tDCS with a concurrent task, active tDCS with a 
non-concurrent task, sham tDCS with a concurrent task and sham tDCS with a non-concurrent task. After 
each tDCS intervention, 3 tasks were included in the experimental design for behavioral effect evaluation. These 
3 tasks were always performed after the stimulation session had ended, and independently of the stimulation 
condition (active vs. sham, concurrent vs. non-concurrent task). Each stimulation session lasted 20 min. For the 
concurrent type of intervention, the task started and ended 2.5 min after and before the stimulation respectively 
(in order to avoid current ramping distractions). The tasks performed after the stimulation had a duration of 
approximately 16 min for Flanker Task and N-Back N-Back Task, and approximately 18 min for CPT.

Figure 3.  Stimulation areas. Brain renderings showing the component of the E-field normal to the cortical 
surface (En), positive/negative values indicate the into/out-of the cortical surface direction of the En, leading to 
an increase/decrease of excitability in cortical pyramidal cells. Group A of participants received stimulation in 
(A) left Dorsolateral Prefrontal cortex (see target area in the bottom row A). Group B of participants received 
stimulation in (B) right Inferior frontal gyrus, the montage was optimized defining a target of Broadmann-areas 
44, 45 and 47 on the right hemisphere (see target area in the bottom row B).
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eter value m for Fuzzy C-Means). The parameters were chosen based on several internal validity measures and 
the visual inspection of the feature space in a 2-dimensional projection based on the t-distributed stochastic 
neighbour embedding (t-SNE). The used internal validity metrics are: Silhouette, Davies Bouldin Score (DB), 
Calinski-Harabasz (CH), Bayesian Information Criteria (BIC) and Inertia (or Within-Cluster Sums of Squares). 
Homogeneous clustering is represented by low values of DB, Inertia and BIC, and high values of Silhouette and 
CH. We experienced a relative lack robustness of these metrics in our large dimensional space (5 different band 
power values for each of the 27 EEG channels). Therefore we added a second criteria for the selection of the 
parameters, namely the t-distributed stochastic neighbor embedding (tSNE) visualization. TSNE is appropriate 
for maintaining local interactions, addressing non-linearity and robust to the presence of  outliers44, and showed 

Figure 4.  Behavioral Tasks. Examples for Flanker Task (left), 2-Back Task (middle) and Continuous 
Performance Task (right). In the Flanker  Task38, 5 arrows in a row were shown in which the middle one (target) 
points to the same or opposite direction as the rest (distractors). Participants had to indicate if the target pointed 
left or right. During the 2-Back  Task39 participants had to detect if a presented picture is the same as a picture 
shown 2 steps back. In the Continuous Performance  Task40, participants were presented with a series of letters. 
They were shown pairs of letters in which a cue is followed by a target. They had to respond when the target 
appears, only when it is preceded by the cue (which is only one of the 4 existent possibilities).

Figure 5.  Schematic of clustering and Wilcoxon test pipeline. EEG features are clustered and membership 
values are correlated with different behavioral metrics. If significance is reached (correlation p-value is less than 
0.05), a Wilcoxon Test is done between the behavioral metric of that cluster and the rest of the points.
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to be flexible enough to visually depict in a very clear manner the clusters determined by the employed algo-
rithms. We have also used PCA for visualization and found tSNE was offering a better visualization in terms of 
interpretability. This may be due to PCA considering linear interactions, and not being robust to the presence of 
outliers that spuriously increase the variance of some dimensions.

Cluster membership definition and computation. For each participant we used 4 independent recordings (cor-
responding to each pre-stimulation EEG resting state recorded in sessions T3–T6). We thus obtained 4 different 
membership functions for each subject, which may present small variability due to the time between recording 
sessions, i.e. 1 week. The FCM algorithm directly provides cluster prototypes and a fuzzy membership function 
of each particular datapoint to the different clusters. In Spectral Clustering, which does not provide these as 
direct outputs, cluster prototypes are first calculated as the average of the points belonging to each specific clus-
ter. The membership is then calculated as a probability function of the Euclidean distance from each datapoint 
to the aforementioned prototype. As we were trying to establish a participant profile, we averaged the cluster 
membership functions of each subject over the 4 sessions. This average membership function is expected to be 
more robust than the individual session membership and to get rid of the temporal variability of subject profiles.

It is worth pointing out that the membership of each data sample to each of the clusters is defined in a real-
valued domain in order to avoid loosing information due to the binarization of the data. By defining member-
ships in a real-valued domain we are able to treat differently the points that are close to the cluster centres and 
the points that are far from them, i.e. since they present very different membership values to the cluster under 
consideration. This is expected to increase the robustness of the analysis pipeline, given the fact that early bina-
rization thresholds largely influence final results.

Characterizing digital EEG phenotypes through statistical analysis. Correlation between clusters 
and behavioral data. After clustering, we correlated the membership function and the behavioral data of the 
tasks after tDCS of each participant using a Partial Spearman Correlation. This type of correlation allows to take 
into account spurious factors that may affect the EEG features. The correlation was corrected for age, sex, IQ and 
handedness. The False Discovery Rate (FDR) multiple comparisons correction was applied in order to avoid ran-
dom significant values of the correlation measure using the Benjamini and Hochberg step-up procedure (BH)45.

The purpose of the correlational analysis is to label the clusters of homogeneous EEG digital phenotypes that 
we obtained either as positive, negative or non-responders to the tDCS intervention depending on their behav-
ioral response. As behavioral response we used the accuracy and reaction times in the Flanker task, N-Back and 
CPT tasks performed after the tDCS stimulation. In order to obtain a unique behavioural measure to conduct 
the correlation, we computed the difference in performance between the active and sham tDCS conditions for 
each task and behavioural metric (accuracy and reaction time). This performance difference was computed 
independently for trials with a concurrent task during tDCS and trials without a concurrent task.

From combining the 2 stimulation sites (Groups A/B) with the 2 task concurrency conditions (concurrent/
non-concurrent) we obtained 4 different experimental conditions and thus for each clustering algorithm 4 cor-
relations were computed. Hence we correlated the performance difference between active and sham tDCS of each 
experimental condition and the average membership to the cluster of each subject. The rationale for computing 
these 4 correlations is to identify the concrete condition, i.e. stimulation site A/B and task concurrence, in which 
significant results are found and predict later the response of the subjects who fall into the same cluster. If there 
is a significant correlation (results are considered statistically significant if the corrected correlation p-value is 
less than 0.05), we can establish a relationship between the digital EEG profile and the behavioral performance 
difference between the active and sham conditions. Clusters of positive responders are defined as showing positive 
accuracy correlations and negative RT correlations, i.e. positive responders show higher accuracy and smaller RTs 
following active tDCS than following sham tDCS. On the contrary, clusters of negative responders, are defined 
as presenting a negative correlation with Accuracy and positive correlation with RT measures.

Statistical comparison of behavioral measures between clusters of positive and negative responders using the Wil-
coxon Test. This step aims at testing the significance of the difference in behavioral response between each 
specific clusters of positive or negative responders. If any of the 4 correlations computed for each cluster showed 
significance (positive or negative), we then analysed the difference in behavioral response between the specific 
cluster members and all non-members of the cluster. Hence, a rank-sum Wilcoxon Test was calculated on the 
behavioral metrics within each cluster samples and the samples belonging to the remaining clusters. The FDR 
Benjamini and Hochberg step-up  procedure45 was used here again to correct for multiple comparisons.

In this part of the analysis we want to assess if there are significant differences between the behavioral out-
comes for each specific cluster, once the cluster has shown a correlation between the membership to that cluster 
and the corresponding behavioral metric. We illustrate this operation with an example: If a significant correla-
tion is found for Cluster 1 in behavioral metric Accuracy of the Flanker task—i.e. considering the membership 
values of all data-points to that specific Cluster 1—then a Wilcoxon test is performed on the Flanker Accuracy 
active-sham difference. In this test we compare the performance of the subjects who belong to Cluster 1 versus 
the rest of the subjects. The objective of this step is to have an estimation of the improvement in the treatment 
response in case the clustering analysis is used for recruiting subjects in a future clinical trial.

At this point, since we have been calculating the significant difference between behavioral response of the 
subject samples belonging to a cluster and the rest of the subject samples, we need to determine to which final 
cluster a given subject belongs to. This was done using the argmax function over the membership values to the 
different clusters, i.e. determining the cluster with a highest membership value (e.g., if point X has a membership 
value of 0.2, 0.3, 0.4 and 0.1 for Clusters 1, 2, 3 and 4 respectively, then it would belong to Cluster 3).
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Results
Feature space analysis. We computed the relative band power in the delta, theta, alpha, beta and gamma 
frequency bands for each electrode, resulting in a feature space of 135 components. After removal of any arti-
facts and due to missing trials or dropout subjects, 206 data points were used in the analysis. Figure 6 shows 
the feature space visualization with t-SNE in 2 dimensions, given by an optimal perplexity index value of  3044. 
One interesting aspect here is to observe how reproducible is our approach given that for each subject there was 
a 1-week delay between the recording of each of the 4 samples. We can observe that the samples of all 4 trials 
for each participant are very close to each other. Therefore we can state that the intra-subject variability is small 
enough to consider the feature representation as a robust one, which gives grounds for averaging the member-
ship functions of a participant’s 4 trials in order to obtain a unique membership per subject for the correlational 
analysis.

Clustering results. We implemented the different clustering algorithms to establish homogeneous subgroups 
among subjects based on their resting-state EEG spectral features before intervention. The evolution of the valid-
ity measures over the different parameters does not offer a clear criterion for parameter selection. We believe 
this may be due to the high dimensionality of the feature space, i.e. the “curse of dimensionality”46, which seems 
to be not clearly tackled by the most common validity measures. Nevertheless, we observe some singular points 
in the evolution of the selected validity measures over clustering parameters (see Fig. 7B). Given the shortcom-

Figure 6.  Feature space. Visualization of EEG data-points with t-SNE in 2 dimensions. Each point corresponds 
to a specific trial for each participant, the features of each data-point are the RBP in each channel.

Figure 7.  Clustering results for spectral clustering. The left plot shows the feature Space, the colour code 
represents each cluster. From all data-points, 42,7% lie in Cluster 1, 7.3% in Cluster 2, 18.4% in Cluster 3 and 
31.6% in Cluster 4. The right plots show the evolution of the internal validity metrics Silhouette and Davies 
Bouldin when changing the number of centres. An elbow at k=4 can be seen.
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ing of the validity measures to offer clear objective criteria for parameter selection, we have taken into account 
an additional qualitative evaluation criteria based on the visualization of the t-SNE projection of the clustered 
feature space. Figure 7 A shows well separated and clear cluster clouds. For the Spectral Clustering, a number 
of components n equal to the number of centres was used, as it generally corresponds to the default parameter. 
This gives better results than a number of components n equal to 100 applied as an example for extreme values, 
and gives similar results than small values such as 2, 6 and 8. For FCM the chosen parameter was a fuzzification 
parameter m of 1.7 since it differs sufficiently from 1 (so as to be more dissimilar to K-means) and presenting 
optimal values for the validity metrics and visualization in the feature space.

Concretely we can observe some singular points, i.e. “elbows”, for k = 4 clusters for the Spectral Clustering 
algorithm that correspond to the optimal values. For the case of the FCM algorithm it is optimal in k = 5 . In 
order to have the largest amount of data-points in each cluster cloud, and since it shows clearly defined clusters 
in the visualization from both algorithms, we eventually defined the number of cluster centres as k = 4 . Since the 
clustering output visualized in the feature space shows similar results for both algorithms, a possible hypothesis 
for the light differences in point cluster assignment between Spectral and FCM is the difference in the way the 
membership functions are computed in each algorithm (FCM results for k = 4 can be found in Supplementary 
Information for the sake of comparison). Given the similarity of the clustering results the results in the following 
sections are shown only for the Spectral Clustering.

Clustering validation. The robustness of the parameter search in the clustering methodology was validated 
through an M-hold-out using 80% of the data for parameter search. The chosen algorithms with their cor-
responding parameters (i.e. fuzzification parameter m of 1.7 for FCM and a number of components n equal 
to the number of centers for Spectral Clustering) and number of centers k were found out in a subset of the 
data points and then tested in the remaining points, checking whether the clusters assigned in the test set gen-
eralize from the ones obtained on the training set. This was done by first clustering the train data samples and 
plotting them in the feature space. The remaining test data sample labels were then assigned according to their 
nearest distance to the final center obtained previously.

The validation is successful based on the visual overlap between the clusters assigned to the test set, which are 
not used in the parameter search (see Figure 6A in Supplementary Information). Moreover, the internal validity 
metrics follow the same trend in both data subsets (see Figure 6B in Supplementary Information).

Digital electroencephalography phenotypes. In order to characterize each of the clusters in terms of the associ-
ated digital EEG profiles, the prototypes generated for each cluster of each algorithm were used. The electro-
physiological profiles are set up as a combination of a representation in the frequency and spatial domains. First, 
the power spectral density (PSD) for each cluster prototype is plotted (Fig. 8) using the mean of occipital and 
parietal electrodes (i.e. O1, O2, Oz, P8, P4, P3, P7, PO3, PO4, Pz). Taking the alpha peak during eyes closed as a 
reference, differences can be observed between the different clusters. These can be further analyzed on hand of 
the scalp power distributions in the spatial domain. Topoplots are used for the representation of prototypes in 
the spatial domain (Fig. 9). They are visualized by calculating the mean of the relative band power of all of the 
data points belonging to each cluster.

Cluster 1 presents the neurotypical scalp power distribution for eyes closed, with alpha power localized over 
posterior regions. This could be observed as well in the PSDs (see Fig. 8). Cluster 2 presents a very clear slowing in 
both the PSD figure and the topographical maps, from the alpha band towards the theta band. Cluster 3 presents 
low amplitude at 10 Hz and large amplitudes at higher power values in the PSD. Cluster 4 presents the largest 
amplitude at 10 Hz and a peak at 20 Hz in the PSD, and the difference between frontal and parietal areas for the 
alpha band in the topoplot is smaller compared to the rest of the clusters. As a remark, Cluster 1 topographical 
map of activation is the most similar to the ones of the overall study population (see Fig. 10).

Figure 8.  Power spectrum density of each cluster for spectral clustering results.
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Behavioral correlational analysis. We applied the described correlation analysis between participants’ 
membership to each cluster and the post-tDCS behavioral results of Accuracy and RT for the Flanker, N-Back 
and CPT tasks. Due to the low variability in the baseline EEG spectral activity of each participant (Fig. 6), the 
average of the membership function over all trials of each participant was computed as formerly mentioned. 
Eleven subjects were excluded due to incorrect randomization and/or dropouts during the trials, and behavioral 
outliers are removed for each metric using a threshold of +/−2.5 standard deviations. The correlational analysis 
can be used to label the clusters in terms of their positive or negative responding nature. A specific example of the 
positive response is that of cluster 2, whose members are positive responding to the rIFG stimulation with non-
concurrent task (see Fig. 11). Negative responses are detected by the correlational analysis as well (see Figure 5A 
in Supplementary Information).

Figure 9.  Power spectrum plot of each cluster for spectral algorithm results.

Figure 10.  Overall population topographical map.

Figure 11.  Example of significant positive responder group for Spectral Clustering (Cluster 2), with rIFG 
stimulation with no concurrent task, measured with N-Back Accuracy. (A) Correlation between cluster 
membership of pre treatment EEG spectral features of all participants and N-Back Accuracy at the end of the 
trials. Best-fit line showing least square polynomial fit. (B) Wilcoxon Test between N-Back Accuracy of Cluster 2 
Spectral members, and the members of the rest of the Clusters. The raw data is visualized as points as well as the 
probability density, and key summary statistics in the boxplot (median, mean, and confidence intervals).
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The following matrices (Fig. 12) show the strength of the partial Spearman correlation and the range of the 
p-values when significant ( ∗ − 10%,∗∗ −5% and ∗∗∗ − 1% ) after correction for multiple comparison with FDR 
(24 corrections for Group B, 20 corrections for Group A). These matrices summarize the findings achieved by 
the correlational analysis.

Differences between cluster versus non‑cluster members. We computed the rank-sum Wilcoxon 
test only in clusters with significant correlation results. Responder clusters (positive or negative) are analyzed 
with respect to the difference to non-responder ones. Responding clusters are confirmed by giving significant 
differences in this test as well (see Fig. 11 for an example of a positive responder cluster and Figure 5B in Supple-
mentary Information for a negative one). Corrected results for multiple comparisons for the Wilcoxon analysis, 
as well as number of corrections, are presented in Table 1.

The robustness of the correlational analysis was tested through a 1000-hold-out validation with different 
percentages of the data set (specifically 80%, 60% and 40%). We find a trend for the coefficients and p-values of 
both correlations and Wilcoxon tests (see example in Supplementary Figure 7). Overall, the subsets have the same 
direction of correlation as the whole dataset, and the strength goes diminishing in the sequence 80%–60%–40%. 
With respect to the correlation p-value, it is almost always significant (correlation p-value is less than 0.05) for the 
80% dataset. In the 60% dataset it is generally non-significant although very close to the boundary (correlation 
p-value near 0.05) and for the 40% it is never significant. In both cases, the standard deviation increases when 
the percentage of data-points decreases. These takeaways have similar trends for the analysis using Wilcoxon 
test. For the case of the distance to the original fit line (with the 100% of data-points), the mean is very similar 
in all percentages of the dataset, whereas the standard deviation increases for decreasing percentages. Overall, 

Figure 12.  Correlation results for spectral clustering. Each matrix row corresponds to a specific behavioral task 
endpoint, and each matrix column corresponds to a particular treatment protocol. The colour bar represents 
the sign of the correlation (positive or negative) and p-values are written in the significant cells. For Group B, 24 
corrections are done; for Group A, 20 corrections are applied.

Table 1.  Spectral significant responders. These results correspond to significant correlations and significant 
Wilcoxon tests. In parenthesis are: (1) type of response (positive or negative), (2) Wilcoxon p-values. There 
are significant correlations only in Group B, therefore for Wilcoxon Test 4 corrections are done for Non-
concurrent Group and 3 for Concurrent Group. Stimulation protocol Group B (rIFG), offline mode (non-
concurrent task) presents positive response in Clusters 2 and 4 measured with N-Back Accuracy and Flanker 
RT respectively, and negative response in Cluster 3 assessed with Flanker RT. Stimulation protocol B (rIFG), 
active mode (with Flanker concurrent task) presents negative response in Clusters 1 and 4 measured with 
Flanker Accuracy and Flanker RT respectively, and positive response in Cluster 3 assessed with Flanker RT.

Cluster Group A, Concurrent Group A, Non-concurrent Group B, Concurrent Group B, Non-concurrent

1 Flanker accuracy (−, 0.0150)

2 N-back accuracy (+, 0.0345)

3 Flanker RT (+, 0.0150) Flanker RT (−, 0.0433)

4 Flanker RT (−, 0.0402) Flanker RT (+, 0.0345)
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results show that our correlation method is robust and that the sample size used is the minimum required for 
obtaining these results.

Since previous work state that subjects who better respond to treatment correspond to those who start in 
worst  conditions26,47,48, an extra analysis was done in order to discard any effect of this factor on the observed 
differential response. Hence we further studied whether there is a relationship between baseline behavioral 
performance (as measured in the first session at T3) and treatment response. The following Fig. 13 shows the 
behavioral response for the baseline (T3) of the main endpoints (Flanker Accuracy and N-Back Accuracy) as 
well as for the RT of those tasks. No cluster structure can be seen on the behavioral metric at baseline. Therefore 
we can state that the cluster structure is solely due to homogeneous digital electrophysiological profiles and not 
due to a differential baseline response to the tasks.

Discussion
Our work provides a novel approach to study the effects of multichannel anodal tDCS treatment in healthy 
children and adolescents with different specific brain profiles. This is of interest given the limitations of existent 
treatments in pediatric clinical populations, e.g. ADHD and ASD, for which new treatments with no side  effects49 
are being developed. The unsupervised learning approach we propose constitutes a good alternative to the use 
of one-model-fit-all approaches based on supervised learning, whose issues to predict behavioral response have 
been recently  analyzed50. Furthermore the prognostic value of unsupervised approaches can be exploited in the 
context of the development of reliable and well-defined personalized protocols. Given that a significant positive 
response to treatment is not always guaranteed, the proposed subject stratification approach can be of enormous 
value for the cost-effective development of new treatments.

By grouping experimental subjects in clusters of typical versus non-typical digital EEG phenotypes, a differen-
tial response can be found in subjects with a non-typical electrophysiological profile. EEG profiles (summarized 
in Fig. 14) are characterized only by homogeneous resting-state EEG spectral features before each intervention. 
The clustering does not take into account the behavioral response to tasks. This confirms our hypothesis that the 
electrophysiological profile can be used as a proxy of different biophysical characteristics of the brain in experi-
mental subjects. These characteristics are almost identical at 4 different measurement time points each taken a 
week apart as shown in the intra-subject variability analysis. Therefore we can state that the electrophysiological 
profiles are subject-specific and do not correspond to a difference in brain state. This is an important question 
given that brain state is known to influence as well the response to Non-Invasive Brain  Stimulation51. We propose 
the use of the stratified electrophysiological responses as shown in this article as digital EEG phenotypes for the 
characterization of tDCS response.

It can be observed that Group B (i.e. receiving the stimulation over the rIFG brain area) is the only one with 
responders (both positive and negative), and Group A does not have any significant correlations supported with 
significant Wilcoxon-test results. This suggests an advantage in terms of post-tDCS task performance in stimulat-
ing the rIFG over the more traditional approach of lDLPFC stimulation, even when participant stratification is 
applied. In almost all groups of participants, the behavioral task showing changes is the Flanker task, when the 
applied stimulation montage targets enhancing the activity of the rIFG. This result is consistent with the current 
understanding of the role of the rIFG, associated with response inhibition and behavioral  control52,53.

Future work could be done in order to establish a relationship between the electrophysiological profiles and 
functional outcomes. A hypothesis would be based on the transfer of stimulation effects from the stimulated 
working memory network components involved in the Flanker task to the working memory network com-
ponents involved in the N-Back  task36,54–56. There might be a response dependency due to the brain’s stage of 
development since, for example, Clusters 3 and 4 present different neurophysiological characteristics and show 
opposite  results36,57.

In summary, we can state that the effect of brain stimulation (and its parameters including location and 
presence/absence of concurrent task during the protocol), measured by different behavioral measures, depends 
on the individual digital EEG phenotype of the subjects undergoing the stimulation intervention. Such a digital 

Figure 13.  Baseline behavioral tasks distinguished by Spectral Algorithm clustering for (A) accuracy and (B) 
reaction time.
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phenotype can be derived by applying the unsupervised clustering approach that we have developed. The robust-
ness of our overall methodology was validated in 3 independent tests. First, the feature space of all participants 
was visualized showing that the features of all trials of pre-treatment EEG for each subject lie close to each other. 
Therefore, their baseline neurophysiological activity was similar over the different trials, which were conducted 
one week apart. Second, the k-hold-out methodology applied to the clustering pipeline demonstrates the robust-
ness of the clustering algorithms in our specific dataset. This validation let us ensure to a certain extent the gen-
eralization capability of the clustering for generating similar digital EEG phenotypes on unseen data. Finally, the 
M-hold-out validatioin with M = 1000 applied to the correlational and Wilcoxon test analysis shows a decreasing 
trend with decreasing sample sizes. Moreover it shows also that the correlational analysis and the behavioral 
response differences are robust enough to resist a reduction of 20% in the data set sample size.

Some limitations arise from the fact that the dataset is relatively small compared to the large amount of fea-
tures analysed, resulting in a very high dimensional space for the employed clustering validity measures. This 
hinders to a certain extent the full automation of the methodology. In order to reduce the feature space dimen-
sionality, Principal Feature  Analysis58, permutation  analysis20 and other feature selection  algorithms59,60 could 
be explored to reduce the number of features. However the application of such approaches would decrease the 
explainability of the resulting methodology, i.e. digital phenotypes could not be given in the form of a complete 
electrophysiological characterization.

Conclusions
The advanced clustering methodology we developed shows promising results in the context of broad and het-
erogeneous EEG  signals61. Moreover the use of unsupervised learning approaches allows to obtain an actual 
data-driven stratification, since the learning procedure is freely run without the constraints imposed by the 
ground truth. This is an important factor given the large misdiagnosis rates in the target  diseases62,63, especially 
important in  ADHD63. In case of having used a supervised approach, a false ground truth might have driven the 
class structure wrongly and hinder the accuracy of the stratification.

The stimulation target areas studied were the lDLPFC and rIFG, paired or not with concurrent tasks N-Back 
and Flanker Tasks respectively. Effectiveness of the treatment was assessed by behavioral reaction times and 
accuracy, when performing experimental tasks after the tDCS treatment. The digital phenotypes obtained from 
pre-treatment EEG, as computed by the clustering procedure described herein, can then be used to predict the 
response of individuals to particular stimulation protocols. We have successfully developed a procedure for 
labelling clusters in terms of their behavioral response in the different tasks. Moreover, a rank-sum Wilcoxon 
test is successfully applied for validation and consistency of results.

Figure 14.  Summary of EEG prototypes. Topoplots and PSD for Clusters that present a significant response in 
Spectral Algorithm. Cluster 1 (blue PSD) has a negative response to rIFG stimulation with Flanker concurrent 
task, measured with Flanker Accuracy. Cluster 2 (orange PSD) has a positive response to rIFG stimulation 
with no concurrent task, measured with N-Back Accuracy. Cluster 3 (green PSD) has a positive response to 
rIFG stimulation with Flanker concurrent task, measured with Flanker RT; and a negative response to rIFG 
stimulation with no concurrent task, measured with Flanker RT. Cluster 4 (red PSD) has a positive response 
to rIFG stimulation with no concurrent task, measured with Flanker RT; and a negative response to rIFG 
stimulation with Flanker concurrent task, measured with Flanker RT.
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Interestingly, positive responder groups correspond to participants with a non-typical brain profile, presenting 
either a slowing of the EEG or a spread of increased alpha rhythm over frontal areas. This finding is extremely 
interesting from a neurophysiological point of view. However, we focus in this communication on the methodo-
logical novelty of our work. A larger cohort of participants would be needed for confirming the clinical utility 
of the proposed approach, which we aim to achieve in future communications.

Data availibility
Due to ethical restriction, the data from this study will not be able to be accessible from public domain. The 
data are available upon request. Vera Moliadze (STIPED consortium), Institute of Medical Psychology and 
Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany (moliadze@
med-psych.uni-kiel.de).
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