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Machine learning 
polysomnographically‑derived 
electroencephalography 
biomarkers predictive of epworth 
sleepiness scale
Matheus Araujo 1,9, Samer Ghosn 2,9, Lu Wang 3, Nengah Hariadi 4, Samantha Wells 1, 
Carl Y. Saab 2,5 & Reena Mehra 1,6,7,8*

Excessive daytime sleepiness (EDS) causes difficulty in concentrating and continuous fatigue during 
the day. In the clinical setting, the assessment and diagnosis of EDS rely mostly on subjective 
questionnaires and verbal reports, which compromises the reliability of clinical diagnosis and the 
ability to robustly discern candidacy for available therapies and track treatment response. In this 
study, we used a computational pipeline for the automated, rapid, high-throughput, and objective 
analysis of previously collected encephalography (EEG) data to identify surrogate biomarkers for 
EDS, thereby defining the quantitative EEG changes in individuals with high Epworth Sleepiness Scale 
(ESS) (n = 31), compared to a group of individuals with low ESS (n = 41) at the Cleveland Clinic. The 
epochs of EEG analyzed were extracted from a large overnight polysomnogram registry during the 
most proximate period of wakefulness. Signal processing of EEG showed significantly different EEG 
features in the low ESS group compared to high ESS, including enhanced power in the alpha and beta 
bands and attenuation in the delta and theta bands. Our machine learning (ML) algorithms trained on 
the binary classification of high vs. low ESS reached an accuracy of 80.2%, precision of 79.2%, recall 
of 73.8% and specificity of 85.3%. Moreover, we ruled out the effects of confounding clinical variables 
by evaluating the statistical contribution of these variables on our ML models. These results indicate 
that EEG data contain information in the form of rhythmic activity that could be leveraged for the 
quantitative assessment of EDS using ML.

Excessive daytime sleepiness (EDS) occurs when staying awake or alert is a progressive challenge for the indi-
vidual. This condition is not only inherent to hypersomnia disorders such as narcolepsy, idiopathic hypersomnia 
and sleep disordered breathing, but also can be associated with a range of clinical factors, including metabolic 
and neurological diseases, ultimately translating to impairment of voluntary activities during the day or night1. 
EDS has become a significant public concern when associated with fatigue, costing more than $135 billion 
annually in health-related lost productivity in the United States2. In addition to the financial cost, the individual 
perception of the difficulty to concentrate and the deterioration of the brain response to audio, visual, and other 
stimulation motivates the search for a non-invasive biomarker that can help identify EDS to provide effective 
treatment. Seeking to find associations between sleepiness and its intertwined dynamics in the central nervous 
system (CNS), we tested the hypothesis that EEG data contain information in the form of rhythmic activity that 
could be leveraged for the quantitative assessment of EDS using machine learning (ML).
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Day-time sleepiness affects the CNS and leads to changes in brain function and rhythms. Previous studies 
reported desynchronization between the left and right hemispheres under mental fatigue3, and imaging data 
suggest altered functional connectivity between thalamus and cortex4. In fact, EEG has shown promising results 
in identifying EDS biomarkers, especially for fatigue versus alert state classification during activities such as 
driving using portable EEG devices5 and for predicting driving reaction time6. In the clinic, subjective sleepi-
ness symptoms can be assessed by the Epworth Sleepiness Scale (ESS), which is the state-of-practice self-report 
to quantify EDS or dozing propensity, and in general, it is highly correlated to the standard of care sleepiness 
measurements such as the multiple sleep latency test7. However, current diagnostic methods remain essentially 
subjective, because they rely on questionnaires and verbal reports.

In this study, we recorded resting state EEG from awake human subjects obtained from the Cleveland Clinic 
registry of overnight polysomnograms and pre-processed the data using an automated artifact detection algo-
rithm that our team has previously developed8. Following a statistically-guided approach for EEG feature selec-
tion, we trained a ML algorithm to perform a binary classification of low versus high EDS. We further comple-
ment our study with a statistical analysis of the contribution of confounding clinical variables to our ML binary 
classifier.

Methods
Study population.  We leveraged the Cleveland Clinic Sleep Registry, a collection of multimodal physi-
ologic data, including continuous overnight EEG housing sleep studies. Data from this biophysiological reposi-
tory was extracted for the purposes of this study with a focus on overnight polysomnograms or split night sleep 
studies. We abstracted polysomnogram data from a merged initiative of Cleveland Clinic’s distributed sleep 
centers to capture those with severe hypersomnolence and those without symptoms of EDS. To serve as the ana-
lytic sample for the work, we identified from a total of 72 patients, 31 patients that had severe EDS, defined by an 
ESS greater or equal to 20 and 41 patients that had no EDS, defined by an ESS less than 5. This study (#22–135) 
was approved by Cleveland Clinic Institutional Review Board (IRB) Federal Wide Assurance (FWA 00005367) 
on 2/17/2022 as Exempt Human Subject Research, which granted a waiver of Informed Consent.

Awake data acquisition.  The polysomnogram studies were conducted in accordance with the American 
Academy of Sleep Medicine (AASM) guidelines using Polysmith software version 10 (Nihon Kohden). Signals 
were recorded using a standard 10–20 EEG montage. Only 6 referenced channels were selected for analysis, in 
some subjects, individual channels are referenced by ‘M1’ or ‘M2’. Odd channel numbers (located on the left 
side of the brain) are referenced by M1 and even channel numbers (located on the right side of the brain) are 
referenced by M2 in an ideal setting, rarely on cases of reference malfunction, the other side reference was used. 
The channels used are ‘F3’, ‘F4’, ‘C3’, ‘C4’, ‘O1’, and ‘O2’. The EEG was scanned and only the cleanest signal of 3 
continuous minutes interval between “lights out” and the first stage of sleep “N1” was selected, this is the period 
we define as “awake” epochs in the context for this study. The cleanest signal is based on the number of artifacts. 
“Lights out” is a log event added by the technician and it means that troubleshooting and the bio calibration 
has been done, and that the sleep study is ready to be recorded. The awake epochs align with AASM guidelines, 
which requires that more than 50% of the epoch consists of alpha frequency activity.

EEG preprocessing.  Pre-processing of EEG data, feature extraction, statistics, and ML were performed 
using MATLAB (MathWorks). Since sleepiness is a feature of wakefulness, only EEGs during resting state wake-
fulness were analyzed, defined as the EEG recording time when subjects were awake prior to the sleep study.

The “awake” epochs selected were scored and chosen as wake manually and annotated electronically in the 
EEG file. Sleep studies conducted in the Cleveland Clinic Sleep Disorders Laboratory were manually scored for 
sleep staging including sleep and wake using American Academy of Sleep Medicine scoring rules. After this 
step, the algorithm developed was based upon EEG data extracted automatically from the wake epochs of the 
sleep studies. In this respect, we considered the EEG analysis as being automated. Greater than 50% of the epoch 
was comprised of alpha frequency activity without microsleeps. EEG was collected at a sampling rate of 200 Hz. 
A high-pass filter with a passband frequency of 1 Hz and a notch filter with a stop-band of 57.5–62.5 Hz were 
applied to all recordings. All EEG recordings were first visually inspected to confirm overall signal quality for each 
channel; channels considered to be of low or irretrievable quality were excluded from the study. Waveforms in 
each channel were further divided into 1-s epochs, and each epoch was tested for the presence of artifacts using 
a previously validated support vector machine (SVM)8. Epochs containing artifacts were excluded.

Statistical analyses.  From the remaining artifact-free epochs of each recording, the following features 
were extracted: band-wise PSD for all channels and band-wise Phase-Amplitude Coupling (PAC). To create the 
band-wise PSD, a periodogram was gathered from artifact-free epochs for each channel, and then these peri-
odograms were averaged together for each channel within each subject. These averaged periodograms were nor-
malized by dividing each frequency bin by the sum of all bins from 3 to 30 Hz. The normalized PSD was used to 
calculate the band-wise PSD by taking the average of all bins within each of the following four frequency bands: 
Delta (1–4 Hz), Theta (5–9 Hz), Alpha (10–13 Hz), Beta (14–32 Hz), and low Gamma (33–52 Hz). This yielded 
5 PSD features for every channel included.

The Band by Channel PSD, is similar to the band-Wise PSD. The only difference is that channels are not 
averaged; each channel is considered separately. This yielded a total of 30 features (5 bands × 6 channels) to be 
considered.

PAC was calculated using the Modulation Index (MI) method9. The center frequencies used for the phase 
included all the even numbers from 2 to 20. The center frequencies used for amplitude included all multiples 
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of 3 from 30 to 54. MI was measured for each pair of phase and amplitude frequencies (90 total pairs) for each 
channel, including only those time points for which there were 5 or more consecutive artifact-free eyes-open 
epochs. This yielded a 9 × 10 MI matrix, for every channel of every subject, with each row corresponding to one 
phase center frequency and each column corresponding to one amplitude center frequency. This MI matrix was 
converted to band-wise PAC for the following 4 pairs of bands: Delta—low gamma, Theta—low Gamma, Alpha—
low Gamma, and Beta—low Gamma. Other band-wise PAC were computed for the following 4 pairs of bands: 
Delta—Medium Gamma, Theta—Medium Gamma, Alpha—Medium Gamma, and Beta—Medium Gamma. 
This conversion was accomplished by averaging across the appropriate regions of the MI matrix. This yielded 
4 PAC features for each channel and a maximum of 24 PAC features per subject (4 band-pairs × 6 channels).

Bandwise coherence was calculated from each of 15 unique channel pairs by averaging the coherence (MAT-
LAB function mscohere) from each artifact-free epoch during the recordings for both channels in a given pair. 
This average coherence was divided into five bands in the same manner as PSDs. This yielded 5 coherence fea-
tures for each channel pair, and a maximum of 75 coherence features per subject (5 bands × 15 channel pairs), 
coherence values were not computed from channel pairs for which one or both of the channels included artifacts.

We used paired two-tailed t tests to compare the band-wise Power Spectral Density (PSDs) between the high 
ESS and low ESS groups10. We used two-tailed Wilcoxon rank-sum tests to compare the band-wise phase-ampli-
tude coupling (PAC) from the two groups for each of 4 band pairs and 6 channels. We chose a non-parametric 
statistical test for PAC because values are constrained between 0 and 1 and are therefore less likely to follow 
a normal distribution, as required by Student’s t test. Statistical significance was established throughout at p 
value < 0.05. As individual testing was conducted, and the purpose of the statistical testing was primarily the 
selection of features for subsequent ML (rather than testing of a null hypothesis), there was no adjustment for 
multiple comparisons11,12. Unlike simultaneous family testing with a joint null hypothesis comprising two or 
more null hypotheses, individual testing is utilized to make a decision about one null hypothesis. As each test 
provides only one opportunity to make a Type I error, the alpha level does not require lowering.

Although it is common in the literature to include confounding factors as input in a regression model for fur-
ther adjustment, this approach is inadequate in ML classifiers that can learn complicated non-linear relationships 
between the input and output. Therefore, we performed the post-hoc analysis described in13, which proposes 
controlling for confounds by using traditional regression to compare the extent to which a trained ML predic-
tion itself can explain the target variable, in contrast to the independent performance of confounding variables.

Results
Our study population was overall middle-aged (mean age 54 years) with a relatively even distribution of men 
and women, race-based diversity (34.7% African American) and a mild degree of sleep-disordered breathing 
(apnea–hypopnea index = 13.4). Those with a higher degree of EDS were more likely to be slightly younger, female 
and more obese with longer total sleep time and a lower percentage of N1 sleep stage. Of note, as reflective of 
our pre-specified design, those with a high degree of EDS had a mean ESS of 21 ± 1, in contrast, those without 
EDS had a mean ESS of 2 ± 1. Detailed demographic information, sleep characteristics, and medical history for 
overall patients and their subsequent division into high ESS and low ESS groups are shown in Table 1.

Out of the above listed EEG features in Methods, 3 features were selected to create a feature-set for train-
ing binary classification algorithms shown to be significantly different between groups; these included 2 from 
bandwise coherence generated by channels pairs O2 – C4 for both Delta and Theta bands, and channel O2 for 
the Beta band in PSD.

Following recent trends in best ML practices14, several traditional ML classification algorithms were consid-
ered, using cross-validation and a grid-search strategy to find their optimal hyperparameters. The best results 
were obtained from k-nearest neighbors algorithm (KNN). To ensure data splits were properly distributed 
between folds, we validated the classifier using a stratified K cross-validation using k = 5. Within our dataset with 
n = 31 for the high ESS group and n = 41 for the low ESS group, we computed the following metrics for validation: 
accuracy, area under the receiver operating characteristic curve (AUC-ROC), precision, specificity and recall. 
Accuracy was calculated within the k-folds cross validation by counting the number of out-of-sample predicted 
labels that matched the true label of the sample, and dividing this total by the number of samples.

The spectral density for delta, theta, alpha, and beta power bands showed a statistically significant difference 
in the mean EEG power in high ESS compared to the low ESS group (Fig. 1), including.an increase in delta 
(0.294 ± 0.010 in high ESS, 0.239 ± 0.005 in low ESS, p < 0.001), in theta (0.208 ± 0.005 in high ESS, 0.181 ± 0.004 
in low ESS, p < 0.001) and a decrease in alpha (0.260 ± 0.011 in high ESS, 0.318 ± 0.007 in low ESS, p < 0.001) and 
beta (0.087 ± 0.003 in high ESS, 0.112 ± 0.007 in low ESS, p < 0.001). Analysis of power in individual 6 channels 
further showed that significant changes were not localized to particular brain areas. Significant differences in 
delta, alpha, and beta power bands in each EEG channel were found between low and high ESS groups (Fig. 2).

For Phase-amplitude coupling (PAC) in 6 individual EEG channels, there was no significant difference 
between low gamma and delta, theta, alpha, beta respectively, as well as between medium gamma and delta, 
theta, alpha, beta respectively (Fig. 3).

In Fig. 4, we compared the coherence in 6 individual EEG channels across each frequency band. Significant 
difference was found for the high ESS and low ESS groups and between coherence in some of the individual 
channels (C4 and O2).

We computed PSD by Hz (Fig. 5), which is similar to Band by Channel (Fig. 2 bottom right), except that 
instead of bands, we are using bins from 1 to 16 Hz. This yielded to 96 features (16 Hz × 6 channels) to be con-
sidered. In  Fig. 2 (Heat map (bottom right)), we compared average PSD in 6 individual EEG channels across 
each frequency bin. Significant difference was found between the high ESS and low ESS groups in channel O2 
in Beta band.
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The 3 features generated from the PSD and Coherence analysis were used to train k-NN binary classifier of 
high versus low ESS. Our model reached an accuracy of 80.2%, an AUC-ROC of 79.5%, a precision of 79.2% a 
recall of 73.8%, and specificity of 85.3%.

In our  analysis of confounding variables that could influence our EEG findings, we compared the predictions 
of our ML classifier with the potential confounding variables: age, BMI, and gender. After training our model, in 
each fold of our cross-validation, we used a generalized linear model to predict EDS on the test set in 3 scenarios: 
Using only our ML output, using only the confounding variables, using both the confounding variables and the 
ML output. To aggregate the results for the 5 folds, we computed the mean Pseudo-R2 and the mean p-values. In 
Fig. 6, we show the mean Pseudo-R2, whereas our ML only reached 41% and the confounding only reached 8%. 
When combining both ML and confounding variables reached 56%. Table 2 shows the mean p values from the 
generalized linear regression for the same 3 scenarios for each variable. We observed that we have a statistically 
significant predictor when only the ML output is used (p value < 0.05).

Table 1.   Patient Characteristics. p values: a1 t test, a2 Satterthwaite t test, b Wilcoxon rank sum test, c 
Pearson’s chi-square test, d Fisher’s exact test. Significant values are in [bold/italics]. 
Statistics presented as Mean ± SD, Median [P25, P75], N (column %).

Overall (N = 72) Low ESS (N = 41) High ESS (N = 31)

p valueN N N

Age (yrs) 72 54.4 ± 14.5 41 55.7 ± 14.5 31 52.7 ± 14.5 0.39a1

Gender, female 72 35 (48.6) 41 16 (39.0) 31 19 (61.3) 0.061c

Ethnicity, Hispanic 72 9 (12.5) 41 5 (12.2) 31 4 (12.9) 0.99d

Race 72 41 31 0.097c

 White 37 (51.4) 25 (61.0) 12 (38.7)

 Black or African American 25 (34.7) 10 (24.4) 15 (48.4)

 Other 10 (13.9) 6 (14.6) 4 (12.9)

Sleep procedure type 72 41 31 0.92c

 Polysomnograms 19 (26.4) 11 (26.8) 8 (25.8)

 Split 53 (73.6) 30 (73.2) 23 (74.2)

Body mass index (BMI), kg/m2 72 37.8 ± 9.6 41 36.5 ± 9.4 31 39.5 ± 9.9 0.19a1

Epworth sleepiness scale 72 2.0 [1.00, 21.0] 41 2.0 [1.00, 2.0] 31 21.0 [20.0, 22.0]  < 0.001b

Total sleep time, min 72 319.5 [278.0, 371.0] 41 311.0 [242.0, 359.0] 31 330.0 [304.0, 385.0] 0.031b

Apnea Hypopnea index (AHI) 72 13.4 [6.0, 38.7] 41 13.1 [6.4, 36.6] 31 13.4 [5.9, 42.1] 0.66b

Obstructive sleep apnea (AHI ≥ 5) 72 61 (84.7) 41 34 (82.9) 31 27 (87.1) 0.75d

Hypopnea rule (3% vs. 4%) − 3% 72 43 (59.7) 41 24 (58.5) 31 19 (61.3) 0.81

% Sleep time with SaO2 < 90% 72 1.6 [0.15, 10.6] 41 2.0 [0.30, 8.0] 31 1.00 [0.10, 19.7] 0.90b

Arousal index 71 22.5 [13.6, 39.9] 40 24.9 [15.6, 39.1] 31 19.9 [11.7, 39.9] 0.44b

Mean oxygen saturation 72 93.0 [92.0, 95.0] 41 93.0 [92.0, 94.0] 31 93.0 [91.0, 95.0] 0.58b

Minimum oxygen saturation 72 85.5 [75.0, 89.0] 41 86.0 [74.0, 89.0] 31 85.0 [77.0, 89.0] 0.72b

Sleep stage % N1 69 6.1 [3.5, 11.0] 39 6.8 [3.9, 13.4] 30 4.5 [2.6, 7.0] 0.023b

Sleep stage % N2 69 67.0 [55.3, 74.7] 39 67.2 [55.2, 74.7] 30 66.7 [55.3, 74.7] 0.96b

Sleep stage % N3 68 5.3 [0.00, 15.1] 39 2.4 [0.00, 16.3] 29 8.4 [0.00, 13.9] 0.51b

Sleep stage % REM 70 17.9 [12.6, 23.4] 40 17.4 [12.5, 20.1] 30 20.1 [13.1, 26.3] 0.17b

Coronary artery disease 72 8 (11.1) 41 4 (9.8) 31 4 (12.9) 0.72d

Hypertension 72 44 (61.1) 41 28 (68.3) 31 16 (51.6) 0.15c

Heart failure 72 10 (13.9) 41 6 (14.6) 31 4 (12.9) 0.99d

Asthma 72 22 (30.6) 41 11 (26.8) 31 11 (35.5) 0.43c

COPD/emphysema 72 13 (18.1) 41 4 (9.8) 31 9 (29.0) 0.035c

Cancer 72 11 (15.3) 41 7 (17.1) 31 4 (12.9) 0.75d

Diabetes 72 26 (36.1) 41 14 (34.1) 31 12 (38.7) 0.69c

Smoking 72 41 31 0.38d

 No 46 (63.9) 23 (56.1) 23 (74.2)

Current smoker 7 (9.7) 5 (12.2) 2 (6.5)

 Former smoker 19 (26.4) 13 (31.7) 6 (19.4)

Smoking pack years 72 41 31 0.092b

 0.Never smoked 59 (81.9) 31 (75.6) 28 (90.3)

 0–10 4 (5.6) 2 (4.9) 2 (6.5)

 10–30 8 (11.1) 7 (17.1) 1 (3.2)

 30 +  1 (1.4) 1 (2.4) 0 (0.00)
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Discussion
Clinically, EDS overlaps with other common sleep and mood disorders that are considered causal to EDS, such as 
obstructive sleep apnea (OSA), narcolepsy, depression, and post acute sequelae of COVID-1915, with an estimated 
prevalence of 20% of adults in the United States16. These causes are usually misdiagnosed or undiagnosed in the 
population, even when a patient performs a sleep study7,17.

Several approaches have been investigated to develop an objective neurophysiologic biomarker capable of 
capturing symptoms of EDS. For example, the least absolute shrinkage and selection operator (LASSO) was used 
to predict ESS from EEG signals collected from train drivers, but with varying degrees of success and requiring 
more complex computational techniques compared to our study, which was guided by a statistical approach 
for the selection of ML features18. Another proposed sleepiness biomarker is the odds ratio product, computed 
from the delta, theta, alpha-sigma, and beta frequency bands from EEG signals, and its association to ESS19. 
Despite previous work, however, the direct classification of high or low ESS using EEG lacks transparency in 
the ML approach.

In this study, we demonstrate the feasibility of an automated analytical pipeline, using resting state EEG dur-
ing wakefulness and ML, of accurately classifying EDS as low versus high. Our results showed that the average 
power spectrum across EEG channels in low ESS patients is significantly enhanced in the alpha and beta bands 
and attenuated in the delta and theta bands compared to high ESS subjects.

After analyzing sleep EEG in two groups of patients, we identified significant differences in the delta, theta, 
alpha, and beta frequency bands between those who reported high versus low sleepiness. Aiming to estimate 
daytime sleepiness at the individual level, we trained a k-NN classifier reaching 80.2% accuracy, 79.2% preci-
sion, 73.8% recall, and 85.3% specificity. Thus, our work demonstrates a potential for EEG analysis to generate 
biomarkers for excessive daytime sleepiness and the use of signal processing and ML to classify sleepiness at 
the individual level. Moreover, we emphasized the novelty of these biomarkers when we showed that even after 
controlling for confounding variables, ML predictors alone significantly explain EDS.

These results suggest that short duration, resting state, wake EEG contains information that could be leveraged 
to reliably assess EDS, thereby enhancing clinical care. These findings should be contextualized with the histori-
cal standard of utilizing EEG patterns to qualitatively and to a lesser extent quantitatively define sleep stages as 

Figure 1.   Power Spectral Density (mean of 6 EEG channels) in high ESS (n=31) and low ESS (n=41) subjects 
in the 0-50 Hz frequency range (upper row). Mean power in the frequency bands delta (1-4 Hz), theta (5-9 Hz), 
alpha (10-13 Hz), beta (14-32 Hz) and low gamma (33-52 Hz) (lower row).
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per the American Academy of Sleep Medicine and assessment of symptoms of excessive daytime sleepiness with 
time-intensive objective tests such as the multiple sleep latency test20.

Our results show that low ESS subjects have higher EEG activity in the beta band in the occipital region than 
high ESS subjects. Previous research has also highlighted the significant differences between these biomarkers in 
groups of EDS patients21. Others have suggested that neural mechanisms related to visual tasks and attention may 

Figure 2.   Histograms show Power Spectral Density in 6 individual EEG channels in high ESS (n=31) and low 
ESS (n=41) subjects in the frequency bands delta (1-4 Hz), theta (5-9 Hz), alpha (10-13 Hz), beta (14-32 Hz) 
and low gamma (33-52 Hz). Heat map shows corresponding t-test p-values for individual channels in each band 
(red hue indicates p < 0.05, highlighted cell indicates a feature selected for the training of a ML algorithm).

Figure 3.    Phase-amplitude coupling (PAC) in 6 individual EEG channels in high ESS (n=31) and low ESS 
(n=41) subjects between low gamma and delta, theta, alpha, beta respectively (upper row), as well as between 
medium gamma and delta, theta, alpha, beta respectively (lower row). No statistically significant difference was 
noted between groups in any individual channel.



7

Vol.:(0123456789)

Scientific Reports |         (2023) 13:9120  | https://doi.org/10.1038/s41598-023-34716-5

www.nature.com/scientificreports/

be linked to these biomarkers. For instance, an increase in response time for visual tasks among students in a real 
classroom is associated with a decrease in the mean baseline beta band power over the occipital region22. Also, 
in23, beta band activity in the occipital region was linked to attention deficits in elderly subjects, with increased 
activity preceding correct responses for visual tasks.

Some limitations of our work deserve attention. Since the sample size could be considered relatively small 
(n = 72) in the field of EEG/ML14, our model would benefit from validation against a prospective dataset as per 
ML best practices, as well as across different geographical sites. Our approach still depends on manual sleep 
staging annotation since the automated pipeline does not determine "wake" epochs. Still, the “wake” period is 
determined after we scan the data looking for the manual annotations of "lights out," "wake," and sleep stage 
"N1". Moreover, according to AASM, the awake epochs can range from full alertness through early stage of 
drowsiness. We also used signal processing techniques to extract EEG features, for example power in predefined 

Figure 4.    Coherence in 6 individual EEG channels in high ESS (n=31) and low ESS (n=41) subjects. The values 
are symmetrical across one diagonal (the 2 highlighted cells indicate features that were selected for the training 
of a ML algorithm).

Figure 5.   Heat map shows t-test p-values for individual channels, in high ESS (n=31) and low ESS (n=41) 
subjects, in each frequency bin from 1 Hz to 16 Hz. (red hue indicates p<0.05).
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delta, theta, alpha, beta, and gamma bands. This may have limited our feature space for biomarkers in contrast 
to other techniques that are based on training deep learning models directly from EEG raw signals24, although 
such techniques are non-transparent and more computationally demanding. We also acknowledge that some 
demographic variables might have an impact on EEG, such as age25–28 and gender29,30, and we did not specifically 
control for such parameters, although mean demographic values were overall comparable.

We chose extremes of subjective perception of dozing propensity defined by ESS as an exploratory use case 
for algorithm development. The sleep studies were not selected based upon obstructive sleep apnea status, but 
rather patients were most often referred for the sleep study based upon suspected OSA with varying levels of 
self-reported sleepiness. Therefore, there are opportunities to build upon this work in the future by examining 
EEG-based biomarkers which reflect the spectrum of sleepiness.

Finally, we envision that our automated and quantitative method for assessing EDS can be operationalized 
by adding our method’s output into patients’ Electronic Health Record after performing a polysomnogram test. 
Future investigation should focus on whether a point of care measure such as this could be used to risk stratify 
patients to identify those for example who may need drowsy driving education or to identify sleep phenotypes 
more responsive to specific interventions such as pharmacotherapeutics to treat hypersomnia disorders.

Conclusion
In this study, we investigated the potential of using EEG signals recorded during the awake period in polysom-
nograms as biomarkers for excessive daytime sleepiness. We identified significant differences in the delta, theta, 
alpha, and beta frequency bands between those who reported high versus low sleepiness measured by the widely 
used ESS. Aiming to estimate daytime sleepiness at the individual level, we trained a k-NN ML classifier that 
reached 80.2% accuracy, 79.2% precision, 73.8% recall, and 85.3% specificity in a retrospective cohort. After 
controlling for potential confounding variables, we show that this study innovates in building a direct association 
between EEG and ESS. Ultimately, we provide powerful techniques for those areas that can leverage advanced 
EEG analysis, such as underdiagnosed EDS studies.

Data availability
The data that support the findings of this study and the datasets generated and analyzed are not publicly avail-
able due to human subject concerns, but are available from the corresponding author on reasonable request.
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