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Transmission dynamics 
of a novel HIV/AIDS model 
through a higher‑order Galerkin 
time discretization scheme
Attaullah 1, Kamil Zeb 1, Ilyas Khan 2*, Riaz Ahmad 3 & Sayed M. Eldin 4

There are numerous contagious diseases caused by pathogenic microorganisms, including bacteria, 
viruses, fungi, and parasites, that have the propensity to culminate in fatal consequences. A 
communicable disease is an illness caused by a contagion agent or its toxins and spread directly or 
indirectly to a susceptible animal or human host by an infected person, animal, vector, or immaterial 
environment. Human immunodeficiency virus (HIV) infection, hepatitis A, B, and C, and measles are all 
examples of communicable diseases. Acquired immunodeficiency syndrome (AIDS) is a communicable 
disease caused by HIV infection that has become the most severe issue facing humanity. The research 
work in this paper is to numerically explore a mathematical model and demonstrate the dynamics of 
HIV/AIDS disease transmission using a continuous Galerkin–Petrov time discretization of a higher-
order scheme, specifically the cGP(2)-scheme. Depict a graphical and tabular comparison between the 
outcomes of the mentioned scheme and those obtained through other classical schemes that exist in 
the literature. Further, a comparison is performed relative to the well-known fourth-order Ruge–Kutta 
(RK4) method with different step sizes. By contrast, the suggested approach provided more accurate 
results with a larger step size than RK4 with a smaller step size. After validation and confirmation of 
the suggested scheme and code, we implement the method to the extended model by introducing a 
treatment rate and show the impact of various non-linear source terms for the generation of new cells. 
We also determined the basic reproduction number and use the Routh-Hurwitz criterion to assess the 
stability of disease-free and unique endemic equilibrium states of the HIV model.

History shows that infectious diseases can cause havoc in the human population. Although epidemic control has 
made great strides, infections were thought to be eradicated soon, but they were not. The effect of contagious 
diseases on society is predicted to be one-fourth of all fatalities worldwide1. Some infectious diseases, known as 
communicable diseases, can be spread from human to human, from human to animal, or from animal to human. 
The HIV infection is a communicable disease that is among the most devastating and a serious public health 
issue, and more than 37.9 million individuals are infected worldwide1. Infection with HIV damages CD4 + T cells, 
which are the most essential components of the immune system. The virus progressively weakens the human 
immune response, making the infected person susceptible to diseases. HIV can be transmitted from HIV-infected 
people through bodily fluids like blood, vaginal fluids, pre-seminal fluids, sperm, breastfeeding (which can pass 
HIV from the mother to her infant), sexual activity, and sharing injectable medication equipment like injectors 
with HIV positive people. HIV infection progresses to AIDS, which is the most severe and chronic phase of the 
infection2. Currently, no effective medication or vaccine exists to cure AIDS, but it can be managed with adequate 
medical care, such as antiretroviral therapy (ART), which improves health and life while lowering the chance 
of recurrence. In 2018, the number of individuals living with HIV/AIDS and deaths worldwide is expected to 
hit 37.9 million and 1.2 million, respectively. Approximately 62% of those infected were confirmed and started 
on ART​3. Many therapies have been proposed to improve the health and quality of life of patients infected with 
HV, including ART​4, chemotherapy, and stem cell therapy. The combination of drugs in an ART is mostly used 
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to treat HIV infection, which has numerous side effects5. Stem cell therapy is very limited due to the high cost of 
the procedure as well as the difficulty of obtaining healthy and consistent donors. The media may play a critical 
role in enhancing public knowledge about AIDS infection by persuading individuals to take preventive precau-
tions. In this technological environment, social media platforms are effective tools for spreading awareness about 
infectious diseases and preventative care.

Mathematical modelling of biological systems is an intriguing area of study that has piqued the interest of 
a significant number of researchers. A mathematical model is a representation of a dynamical system based on 
mathematical principles. It is significant in forecasting, evaluating, and regulating HIV infections and several 
other disease dynamic systems. Several assumptions and parameters have significant consequences for construct-
ing a model utilising controlling functions. Thus, using the idea of optimal control theory, a mathematical model 
of the HIV pandemic can be reconstructed, and the disease’s regulating systems may be studied. This theory 
explains how biological controls may be used to regulate epidemics and pandemics. Numerous researchers have 
adopted this idea about how to control infections. HIV models have been established recently to understand the 
behaviour of the virus after infection, HIV disease dynamics, the immune response, and the interactions of the 
virus with CD4 + T cells. Tripathi et al.6 presented an HIV mathematical model and claimed that HIV infection 
may be reduced significantly because of increased awareness of HIV-infected individuals identified by screening 
and contact tracing, but the illness remains prevalent due to immigration and the lack of contact tracing. They 
assessed that the most effective strategy for reducing the burden of the disease is to increase public awareness 
about HIV/AIDS. Nyabadza and Mukandavire7 investigated an HIV model that described HIV counselling and 
testing (HCT) and examined the influence of therapy during infection. Mushanyu8 suggested a model for HIV 
dynamics and examined the impact of delayed HIV diagnosis on the disease’s emissions. They demonstrated 
HIV treatment motivation and enhanced HIV self-testing regimens that provide more undiagnosed individuals 
with the information necessary to determine their HIV status, ultimately minimising HIV transmission. Wang 
et al.9 explored the dynamics of an age-structured hybrid HIV/AIDS model with self-protection and media 
coverage. Granata et al.10 used an optimization technique to investigate the propagation of HIV-infected cells. 
Yuzbasi and Karacayir11 used the Galerkin scheme in order to solve the HIV transmission model. Attaullah and 
Sohaib12 employed Galerkin and Legendre wavelet collocation schemes for solving the HIV model. They also 
solved the model using the standard Runge–Kutta technique and compared the RK4-method findings to those 
obtained using the suggested techniques to validate their validity. Seatlhodi et al.13 proposed an entirely new 
HIV pandemic model that allows for an influx of new infected individuals into the community. They examined 
the impact of public health education initiatives on the prevalence of the condition and found that they had 
no effect. In order to define the control and determine the best system, they employed "Pontryagin’s maximal 
principle." Arenas et al.14 concentrated on the mathematical analysis and numerical solution of a discrete time 
delay HIV model. Elaiw et al.15 developed an HTLV/HIV dual infection model. The model considers the role of 
the cytotoxic T lymphocyte (CTL) immune response in controlling the dual infection. The model demonstrates 
how uninfected CD4 + T cells interact with HIV-infected cells, HTLV-infected cells, free HIV particles, HIV-
specific CTLs, and HTLV-specific CTLs. Parand et al.16 proposed an HIV model and solved it using the quasi-
linearization-Lagrangian method. Ongun17 implemented the Laplace-Adomian decomposition method (LADM) 
to approximate the HIV infection solution. Merdan18 performed the variational iteration method (VIM) and 
modified VIM to provide an approximation of the HIV model. Yüzbaş19 used the Bessel collocation method to 
approximate the HIV infection solution. Doğan20 used the multistep LADM method for solving the HIV model. 
Gandomani21 applied the Müntz-Legendre polynomial approach and solved the HIV model. Several research-
ers in the literature presumed that HIV dynamics would occur with a stable supply of newly generated T cells 
from the thymus. However, instead of consistent occurrences, fluctuating phenomena have been observed due 
to the HIV infection’s proclivity to infect these cells. We develop a new concept of numerous nonlinear variable 
source terms for thymic production of new T cells in order to depict more realistic behaviors. The computational 
analysis mentioned above has aroused our interest in implementing an innovative technique called the continu-
ous Galerkin–Petrov scheme to determine an approximation to the nonlinear model. Investigate the effects of 
several variable source terms on the dynamics of the populations of healthy T-cells, infected T-cells, and free 
viruses. The model is critical for mathematically simulating HIV infection of T-cells. This will be used to analyse 
the population dynamics of T-cells in the presence and absence of HIV, which is beneficial for monitoring the 
clinically observed hallmarks of AIDS and slowing the disease’s spread. This research will be a useful contribu-
tion to the existing body of information previously accessible on biomathematics. The following are the key 
contributions of the present investigation:

1.	 To implement the continuous Galerkin–Petrov time discretization scheme having polynomial order two for 
the novel HIV model including treatment rate.

2.	 To compare the solutions of the suggested methodology to the findings of the well-known Runge–Kutta 
method and other results obtained through conventional techniques exist in the literature.

3.	 To approximate numerical solutions with various time step sizes using the Runge–Kutta and Galerkin meth-
ods and to analyse the precision and validity of these approaches based on their absolute errors.

4.	 The fourth objective of the study is to improve a model by including treatment rates and analyses of the 
extended model based on the basic reproduction number and stability analysis.

5.	 To investigate the influence of different nonlinear and varied source terms for the growth of new healthy 
T-cells on the dynamical behaviour of the improved model.
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Mathematical model for HIV infection
In this section, a mathematical model for the HIV infection is considered. After HIV infection the blood is 
divided into three classes: uninfected class T(t), infected class I(t) , and free HIV particles V(t). The parameter γ 
denotes population of uninfected T-cells, ̟  , ζ and d represent death rate of uninfected and infected T-cells and 
virus respectively. The parameter ρ shows the growth rate of uninfected T-cells, M denotes the virus infection 
rate of uninfected T-cells, α shows virus particles per infected T-cells,Tmax describes the maximum concentra-
tion of uninfected T-cells and p shows the cure rate. The system of nonlinear differential equations proposed by 
Parand et al.16 is presented below:

The initial conditions for state variables are follows:

The graphical illustration of the mathematical model of HIV infection is presented in Fig. 1. A comprehensive 
explanation of all the parameters involved in the model are summarized in Table 1.

The continuous Galerkin Petrov technique
The Galerkin technique is an effective tool for numerically investigating critical challenges. This approach is 
commonly employed for complicated problems and is capable of dealing with nonlinear systems and complicated 
problems (see for detail23–27 information).

This section is focused with the application and implementation of the suggested tech-
nique to the model addressed by Parand et  al.16. For simplicity some assumptions are given i.e., 
u1(t) = T(t), u2(t) = I(t), u3(t) = V(t), initially at t = 0,

Find  u : J = [0,T] → V . Here J = [0,T] describes the time interval, for function

(1)

dT

dt
= γ −̟T + ρT

(
1−

T + I

Tmax

)
−MVT ,

dI

dt
= MVT − ζ I ,

dV

dt
= αζ I − dV ,

T(0) = 0.1mm−3day−1, I(0) = 0mm−3day−1,V(0) = 0.1mm−3day−1.

u1(0) = T(0) = ρ1, u2(0) = I(0) = ρ2, u3(0) = V(0) = ρ3.

Figure 1.   Diagrammatic illustration of the HIV infection model, where G = γ + ρT(1− T+I

Tmax
).

Table 1.   Explanation of the parameters involved in HIV infection model. The units are mm
−3day−1 . All 

parameter values are obtained from Parand et al.16.

Parameters Explanation Values

γ
̟
ζ
ρ
d
M
α
Tmax
p

Population of uninfected T-cells
Death rate of uninfected T-cells
Death rate of infected T-cells
Growth rate of T-cells
Virus death rate
Virus infection rate of T-cells
Virus particles per infected T-cells
Maximum population of healthy T-cells
Rate of cure

0.1
3.0
0.3
3.0
2.4
0.0027
10
1500
0.01
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Here dtu(t) refers to the time derivative of u(t) . The derivative of u(t) w.r.t. t u(0) = ( u1(0), u2(0), u3(0)) ∈ V  
represents u (t) at t = 0, and ψ = (ψ1,ψ2,ψ3) and described as ψ : J× V → V. The formulation of Eq. (2) is: find 
u ∈ X

′ such that u(0) = uo and

where X ′,and Y ′ represent the solution space the test space respectively. To describe function t → u(t) , we consider 
the space E(J, V) = EO(J, V ) as the space of contionuous functions u : J → V link up with norm

M2(J, V) represents space of square intergrable function M2(J, V) by containing discontinuous functions, which 
is expressed in the form as M2(J, V) =

{
u : [0,T] → V : �u�M2(J,V) < ∞

}
 with �u�M2(J,V) = (

∫
J�u(t)�V

2dt)
1
2

We divide the time interval J  into N  subintervals for Galerkin time discretization.Jn = [tn−1, tn ], where 
n = 1, 2, 3, . . .N , and 0 = t0<t1<. . . tN−1 < tn = T . The symbol τ  denotes the time discretization parameter, which 
will be used to determine the maximum time step size τ = max

1≤n≤N
τn , where τn = tn − tn−1 , which is the length 

of each Jn . Now we will approximate u : J → V using a function uτ : J → V (see12,22 for details). Then, we will 
find the space for

where Hl(Jn,V) =

{
u : Jn → V, u(t) =

l∑
j=0

Ujtj, ∀t ∈ Jn, U
j ∈ V , forallj

}
, and test space for uτ is Yk

τ , illustrated 

as:

where Y ′ l

τ consists of piecewise polynomials of order l − 1 , which are discontinuous at the ends points of the time 
intervals. By taking a test function ϑτ ∈ Y

′ l

τ and multiply it by Eq. (2), and integrate over J (see12,22 for details). 
Find uτ ∈ X

′ l

τ such that uτ (0) = 0 and

This discretization is called the exact cGP technique of order l (see12,22 for details). Now, to find u|Jn ∈ Hl(Jn,V) 
such that

with the initial condition uτ |Jn (tn−1) = uτ |Jn−1
(tn−1) for n ≥ 2 and uτ |Jn (tn−1) = u0 for n = 1 . To find the inte-

gration on the right-hand side of Eq. (3.4), the (l + 1)-points Gauss–Lobatto quadrature methodology will be 
used (see12,22 for details). Find

where wj are the weights.
To determine uτ |Jn , we represent it by a polynomial ansatz

where the coefficient Uj
n is the elements of V  and the real valued function ∅n,jH(Jn) are the Lagrange basis func-

tions with respect to (l + 1) suitable nodal points tn,j ∈ Jn satisfying the conditions.

where δi,j is the Kronecker delta that is,

(2)
u : J× V → and t ∈ T

dtu(t) = ψ(t, u(t))∀t ∈ J = [0,T]u(0) = u0,

(3)
∫

J
�dtu(t),ϑ(t)�dt =

∫

J
�ψ(t, u(t),ϑ(t)�dtforallϑ ∈ Y

′
,

uE(J ,V)=EO(J , V) = supt∈=[0,T]u(t)V .

X
′ l

τ =
{
u ∈ E(J → V) : u|Jn ∈ Hl(Jn,V)forallJn ∈ Gτ

}
,

Y
′ l

τ =
{
V ∈ M2(J, V) : V |Jn ∈ Hl−1(Jn,V)forallJn ∈ Gτ

}
,

(4)∫
J
dtuτ (t),ϑτ (t)dt = ∫

J
ψ(t, uτ (t)),ϑτ (t)dt∀ϑτ ∈ Y ′l

τ

(5)∫
Jn

dtuτ (t),ϑϕ(t)dt = ∫
Jn

ϕ(t, uτ (t)),ϑϕ(t)dt∀ϑ ∈ Vand∀ϕ ∈ H(Jn)

(6)

u|Jn ∈ Hl(Jn,V), such that

uτ (tn−1) = un−1

l∑

j=0

wjdtuτ
(
tn,j

)
ϕ
(
tn,j

)
=

l∑

j=0

wjψ
(
tn,j, uτ

(
tn,j

))
ϕ
(
tn,j

)
∀ϕ ∈ Hk−1(Jn)

(7)uτ (t) =

l∑

j=0

U
j
n∅n,j(t)∀t ∈ Jn

(8)∅n,j

(
tn,j

)
= δi,j , i, j = 0, 1, 2, . . . , l,

δi,j =

{
1 : ifi = j
0 : ifi �= j.
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For the choice of initial conditions, we set tn,0=tn−1, which implies that the initial conditions for Eq. (5) is 
given as

The other points tn,1, tn,2, . . . . . . , ttn,l are selected as the l-points (quadrature points) of the Gauss–Lobatto 
formula on the interval Jn . For representation (7), for dtuτ , we get

Using Eq. (10) in Eq. (5), we get

This implies that

we define the basis functions ∅n,j∈ Hk(Jn) via the affine reference transformation̟n : ĵ → Jn, where ĵ = [−1, 1] 
and

Let ∅̂ j ∈ Hk(ĵ) , j = 0, 1, 2, . . . , l, denote the basis functions satisfying the conditions

Then, we define the basis functions on the original time interval Jn by the mapping (see12,22 for details as 
follows:

Furthermore, we provide the test basis functions ϕn,i by using appropriate reference basis functions

Now, we transform the integration into a reference interval ĵ = [−1, 1] and (l + 1) point Gauss–Lobatto 
quadrature technique is used to approximate it for each test basis function ϕ ∈ Hl−1 and for all  ϑ ∈ V  as follows:

This implies that

Here ̟̂µ are the weights and t̂µ ∈ [1, −1] are the integration points with the t̂0 = −1 and t̂l = 1

Afterwards, find the l  unknown coefficients Uj
n ∈ V  where j = 1, 2, 3, . . . , l, such that

where Uo
n = Ul

n−1forn > 1andUo
1 = u0forn = 1, indicated intial values and zi,j and σi are define as

(9)
U0
n = uτ |Jn(tn−1), if n ≥ 2,

U0
n = u0, if n = 1.

(10)dtuτ =

l∑

j=0

U
j
n∅

′
n,j(t), ∀t ∈ Jn,

∫

Jn

�dtuτ (t),ϑ�ϕ(t)dt =

∫

Jn

�

l∑

j=0

U
j
n,ϑ�∅

′

j(t)ϕ(t)dt.

(11)
∫

Jn

�dtuτ (t),ϑ�ϕ(t)dt =

l∑

j=0

�U
j
n,ϑ�

∫

Jn

∅
′

j(t)ϕ(t)dt

(12)t = ̟nt̂ =
tn + tn−1

2
+

τn

2
t̂ ∈ Jn∀t̂ ∈ ĵ, n = 1, 2, 3, . . . ,N .

(13)∅̂(̂ti) = δi,j , i, j = 0, 1, 2, . . . , l,

∅n,j(t) = ∅̂j
(̂
t
)
witĥt = ̟−1

n (t) =
2

τn

(
t +

tn−1−tn

2

)
∈ ĵ.

(14)
ϕ̂i ∈ Hl−1

(
ĵ
)
, i.e,

ϕn,i(t) = ϕ̂i(̟
−1
n (t) ∀t ∈ Jn, i = 1, 2, 3, . . . , l.

∫
ĵn

l�

j=0

U
j
n,ϑ ∅̂

′

j

�
t̂
�
ϕ̂
�
t̂
�
dt̂ =

τn

2
∫
ĵn

ψ



ωn

�
t̂
�
,

l�

j=0

U
j
n

�
t̂
�


,ϑϕ̂
�
t̂
�
dt̂ ∀ϑ ∈ V

(15)
l�

µ=0

�̟µ

l�

j=0

�U
j
n,ϑ��∅

′

j

��tµ
�
�ϕ
��tµ

�
=

τn

2

l�

µ=0

�̟µ�ψ



ωn�tµ,
l�

j=0

U
j
n

��tµ
�


,ϑ��ϕ
��tµ

�
.

(16)ϕ̂i
(̂
tµ
)
= ( ̟̂µ)

−1
δi,µi,µ = {1, 2, 3, . . . , l},

(17)
l∑

j=o

ˆ̟ i,jU
j
n =

τn

2

{
ψ

(
tn,i,U

j
n

)
+ σiψ

(
tn,0,U

o
n

)}
∀i = 1, 2, 3, . . . l

(18)̟̂ i,j = ∅̂
′

j

(̂
tµ
)
+ σi∅̂

′

j

(̂
tµ
)
, tn,µ = ̟̂n

(̂
tµ
)
andσi = ̟̂0ϕ̂i

(̂
tµ
)
.
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The cGP(2)‑scheme.  Here, Gauss–Lobatto formula along the points tn,0 = tn−1 , tn,1 =
(
tn+tn−1

2

)
, tn,2 = tn 

and the weights ̟̂0 = ̟̂2 =
1
3 ,  ̟̂1 =

4
3 are used to get the coefficients

with respect to the time interval ĵn = ]tn−1, tn] , The system can be determined for two unknowns such as
U

j
n = uτ (tn,j) with tn,j = ̟n(̂t) for j = (1, 2 ). The couple (2 × 2) block-system for U1

n ,U
2
n ∈ V  , is as follows:

U0
n indicates the initial value at the time interval ĵn obtaining from the time interval or the intial value u0.

The Runge–Kutta scheme.  This well-known scheme is established by Kutta having order four (see37 for 
details information).

Comparative analysis of present scheme with other conventional schemes
In this section, we implemented the Galerkin and RK4 techniques and compared the outcomes with those 
achieved through other conventional techniques. Tables 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 present the 
numerical results, whereas Figs. 2, 3, 4 show the graphical results, and the absolute errors between the outputs 
of the Galerkin and Q-L methods were analysed in comparison to the results of the traditional RK4 technique. 
The findings obtained by the Galerkin and RK4 approaches that overlap each other throughout the entire domain 
demonstrate the reliability and validity of the implemented techniques. Tables 2, 3, 3 indicated that the errors are 
extremely small and the results are very close to each other, which assures the accuracy of the suggested schemes 
and codes. We also compared the RK4 and Galerkin methods’ results to those obtained by other conventional 
techniques, such as LADM17, VLM18, MLCM20, and MVIM18, as shown in Tables 5, 6, 7 for and, respectively. A 
comparative assessment revealed vividly that the mentioned methods yield more accurate findings. Furthermore, 
we investigated the outputs and absolute errors relative to the RK4 method for and of the proposed schemes 
with traditional techniques, as shown in Tables 8, 9, 10. It demonstrated that our approximate solutions are more 
comparable to RK4-method solutions than the solutions obtained via previously developed methods. Afterwards, 
we performed different numerical experiments for the proposed scheme and the RK4 scheme with the same and 
different step sizes shown in Tables 11, 12, 13, 14, 15. It revealed that Galerkin solutions with larger step sizes 
obtained significant accuracy as compared to RK4 solutions with much smaller time steps. Furthermore, the 
results of the Galerkin, RK4, and Q-L methods are depicted graphically in Figs. 2, 3, 4. It has been observed that 
the suggested method performs well for finding solutions to real-world problems. Additionally, we presented the 
mesh grid graphs in Figs. 5, 6, 7, 8, 9 for the results of all the methods used for the above model.

̟̂ i,j =

(
−5
4 1 1

4
2 −4 2

)
, σi =

(
1
2
−1

)
, i = 1, 2j = 0, 1, 2.

(19)̟̂1,1U
1
n + ̟̂1,2U

2
n = − ̟̂1,0U

0
n +

τn

2

{
ψ
(
tn,1,U

1
n

)
+ σ1ψ

(
tn,0,U

o
n

)}
,

(20)̟̂2,1U
1
n + ̟̂2,2U

2
n = − ̟̂2,0U

0
n +

τn

2

{
ψ
(
tn,2,U

2
n

)
+ σ2ψ

(
tn,0,U

o
n

)}
,

Table 2.   Comparative analysis for T(t) with RK4, |QLM-RK4| and |Galerkin-RK4|.

t Galerkin Q-L method1 RK4-method |QLM-RK4| |Galerkin-RK4|

0.0 0.1000000000000 0.1000000000000 0.1000000000000 0.000000000000000 0.000000000000000

0.2 0.2088079854767 0.2088080843259 0.2088075606565 0.000000523669510 0.000000424820214

0.4 0.4062401842998 0.4062405427886 0.4062386428473 0.000001899941428 0.000001541452568

0.6 0.7644229239703 0.7644238985049 0.7644187304208 0.000005168084188 0.000004193549580

0.8 1.4140444992445 1.4140468518885 1.4140343636464 0.000012488242188 0.000010135598083

1.0 2.5915895355574 2.5915948518626 2.5915665907902 0.000028261072428 0.000022944767145

1.2 4.7239535650329 4.7239650647145 4.7239037826421 0.000061282072517 0.000049782390844

1.4 8.5783869462398 8.5784110217119 8.5782822405967 0.000128781115292 0.000104705643135

1.6 15.522907829643 15.522956803180 15.522693209630 0.000263593549379 0.000214620012294

1.8 27.961562951032 27.961659661690 27.961133839532 0.000525822158401 0.000429111500811

2.0 50.008412764626 50.008597034795 50.007578859332 0.001018175463273 0.000833905294527

2.2 88.367937884312 88.368272307407 88.366377456808 0.001894850599157 0.001560427503478

2.4 53.006888073211 153.00745446872 53.004124842076 0.003329626644501 0.002763231134622

2.6 56.267306528950 256.26817818681 56.262801069901 0.005377116909926 0.004505459049255

2.8 407.94071286853 407.94189926565 407.93419138481 0.007707880839178 0.006521483718359

3.0 605.33064968016 605.33204616786 605.32257582540 0.009470342465988 0.008073854766621
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Mathematical formulation of modified model for HIV infection
This section presents a mathematical model describing the population dynamics of healthy T cells, infected T 
cells, and the HIV virus. This model is an enhancement of a previously examined model introduced by Parand 
et al.16 by introducing the cure rate. The model is compartmentalised into three classes described as follows:

Table 3.   Comparative analysis for I(t) with RK4, |QLM-RK4| and |Galerkin-RK4|.

t Galerkin Q-L scheme RK4-scheme |QLM-RK4| |Galerkin-RK4|

0.0 0.000000E−0 0.00000000E−0 0.000000E−0 0.0000E−00 0.0000E−00

0.2 0.603269E−5 0.60327022E−5 0.603264E−5 5.3682E−11 4.3995E−11

0.4 0.131583E−4 0.13158340E−4 0.131582E−4 1.2320E−10 1.0067E−10

0.6 0.212237E−4 0.21223785E−4 0.212235E−4 2.1007E−10 1.7116E−10

0.8 0.301773E−4 0.30177420E−4 0.301771E−4 3.1673E−10 2.5739E−10

1.0 0.400377E−4 0.40037815E−4 0.400373E−4 4.4638E−10 3.6195E−10

1.2 0.508784E−4 0.50878544E−4 0.508779E−4 6.0306E−10 4.8811E−10

1.4 0.628271E−4 0.62827260E−4 0.628264E−4 7.9177E−10 6.4005E−10

1.6 0.760822E−4 0.76082488E−4 0.760814E−4 1.0191E−10 8.2342E−10

1.8 0.909592E−4 0.90959537E−4 0.909582E−4 1.2947E−09 1.0466E−10

2.0 0.107990E−3 0.10799080E−3 0.107989E−3 1.6341E−09 1.3238E−10

2.2 0.128129E−3 0.12812960E−3 0.128127E−3 2.0656E−09 1.6802E−10

2.4 0.153143E−3 0.15314397E−3 0.153141E−3 2.6422E−09 2.1636E−10

2.6 0.186329E−3 0.18633049E−3 0.186327E−3 3.4619E−09 2.8616E−10

2.8 0.233693E−3 0.23369467E−3 0.233690E−3 4.6562E−09 3.9285E−10

3.0 0.305684E−3 0.30568418E−3 0.305678E−3 5.7410E−09 5.6223E−10

Table 4.   Comparative analysis for V(t) with RK4, |QLM-RK4| and |Galerkin-RK4|.

t Galerkin Q-L scheme RK4-scheme |QLM-RK4| |Galerkin-RK4|

0.0 1.000000000E−1 1.000000000000E−1 1.000000000E−1 0.00000E−00 0.0000E−00

0.2 6.187985172E−2 6.18798432237E−2 6.187989993E−2 5.67597E−08 4.8200E−08

0.4 3.829489839E−2 3.82948877731E−2 3.829495805E−2 7.02324E−08 5.9646E−08

0.6 2.370455988E−2 2.37045500445E−2 2.370461520E−2 6.51562E−08 5.5342E−08

0.8 1.468037171E−2 1.46803636840E−2 1.468041739E−2 5.36950E−08 4.5617E−08

1.0 9.100851256E−3 9.10084499664E−3 9.100886468E−3 4.14301E−08 3.5211E−08

1.2 0.565328299E−2 0.56532784219E−2 0.565330903E−2 3.06099E−08 2.6032E−09

1.4 0.352542932E−2 0.35254260732E−2 0.352544795E−2 2.18791E−08 1.8630E−09

1.6 0.221476879E−2 0.22147665690E−2 0.221478174E−2 1.51729E−09 1.2948E−09

1.8 0.141047146E−2 0.14104700109E−2 0.141048017E−2 1.01619E−09 8.7084E−09

2.0 0.920401419E−3 0.92040054118E−3 0.920407000E−3 6.45908E−09 5.5804E−09

2.2 0.626019016E−3 0.62601856977E−3 0.626022273E−3 3.70384E−09 3.2576E−09

2.4 0.454616816E−3 0.45461670237E−3 0.454618288E−3 1.58599E−09 1.4721E−09

2.6 0.362403747E−3 0.36240386282E−3 0.362403731E−3 1.30885E−10 1.5827E−11

2.8 0.324492781E−3 0.32449257921E−3 0.324491335E−3 1.24344E−09 1.4452E−09

3.0 0.329409100E−3 0.32940341266E−3 0.329406006E−3 2.59412E−09 3.0936E−09

Table 5.   Comparative analysis of the findings of Galerkin scheme and other classical schemes for T(t). 

t Galerkin RK4-method LADM17 VIM18 MLCM20 MVIM18

0.0 0.100000000 0.100000000 0.100000000 0.100000000 0.10000000 0.100000000

0.2 0.208806496 0.208800678 0.208807329 0.208807321 0.2088080840 0.208808086

0.4 0.406234784 0.406213674 0.406135831 0.406134658 0.406240543 0.406240794

0.6 0.764408254 0.764350814 0.762476222 0.762453035 0.766442390 0.764428724

0.8 1.414009061 1.413870248 1.398082863 1.397880588 1.414046852 1.414094173

1.0 2.591509458 2.591195190 2.507874151 2.506746669 2.591559480 2.591921076
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Table 6.   Comparative analysis of the findings of Galerkin scheme and other classical schemes for I(t). 

t Galerkin RK4 method LADM17 VIM18 MLCM20 MVIM18

0.0 0.000000000E−0 0.000000000E−0 0.00000000E−0 0.0000000E−0 0.000000E−0 0.10000000E−13

0.2 6.032546494E−6 6.031878972E−6 0.60327069E−5 0.6032634E−5 0.603270E−5 0.60327016E−05

0.4 1.315797854E−5 1.315648606E−5 0.13158910E−4 0.1314878E−4 0.131583E−4 0.13158301E−04

0.6 2.122315973E−5 2.122067760E−5 0.21232981E−4 0.2101417E−4 0.212237E−4 0.21223310E−04

0.8 3.017646616E−5 3.017281029E−5 0.30242701E−4 0.2795130E−4 0.301774E−4 0.30174509E−04

1.0 4.003645811E−5 4.003141584E−5 0.40333218E−4 0.2431562E−4 0.400378E−4 0.40025404E−04

Table 7.   Comparative analysis of the findings of Galerkin scheme and other classical schemes for V(t). 

t Galerkin RK4-method LADM17 VIM18 MLCM20 MVIM18

0.0 0.10000000000 0.10000000000 0.10000000000 0.10000000000 0.100000000 0.1000000000

0.2 0.06187998051 0.06188084740 0.06187995305 0.06187995314 0.061879843 0.0618799087

0.4 0.03829505758 0.03829613043 0.03830818047 0.03830820126 0.038294888 0.0382959576

0.6 0.02370470746 0.02370570312 0.02391981608 0.02392029257 0.023704550 0.0237102948

0.8 0.01468049325 0.01468131432 0.01621234343 0.01621704553 0.014680364 0.0147004190

1.0 0.00910094475 0.00910157907 0.01605502238 0.01608418711 0.009100845 0.0091572387

Table 8.   Comparative analysis of absolute errors between Galerkin scheme and conventional approaches 
relative to RK4 technique for T(t).

t 0.1 0.2 0.4 0.6 0.8 1.0

cGP(2) 0.0 5.18760E−6 2.11093E−5 5.74299E−5 1.38812E−4 3.14268E−4

LADM17 0.0 6.65092E−6 7.78434E−5 1.87459E−3 1.57873E−2 8.33210E−2

VIM18 0.0 6.64252E−6 7.90162E−5 1.89777E−3 1.59896E−2 8.44485E−2

MLCM20 0.0 7.40512E−6 2.68680E−5 2.09157E−3 1.76603E−4 3.64289E−4

MVIM18 0.0 7.40792E−3 2.71193E−2 7.77909E−2 2.23924E−1 7.25885E−1

Table 9.   Comparative analysis of absolute errors between Galerkin scheme and conventional approaches 
relative to RK4 technique for I(t).

t 0.1 0.2 0.4 0.6 0.8 1.0

cGP(2) 0.0 6.67521E−10 1.49248E−9 2.48213E−9 3.65587E−9 5.04227E−9

LADM17 0.0 8.27884E−10 2.42395E−9 1.23041E−8 6.98912E−8 3.01802E−7

VIM18 0.0 7.55394E−10 7.77006E−9 2.06505E−7 2.22150E−6 1.57157E−5

MLCM20 0.0 8.23268E−10 1.85483E−9 3.10779E−9 4.60980E−9 6.39965E−9

MVIM4 0.0 8.22679E−07 1.81560E−6 2.63240E−6 1.69902E−6 6.01179E−6

Table 10.   Comparative analysis of absolute errors between Galerkin scheme and conventional approaches 
relative to RK4 technique for V(t).

t 0.1 0.2 0.4 0.6 0.8 1.0

cGP(2) 0.0 8.66885E−7 1.07285E−6 9.95660E−7 8.21068E−7 6.34323E−7

LADM17 0.0 8.94351E−7 1.20500E−5 2.14112E−4 1.53102E−3 6.95344E−3

VIM18 0.0 8.94261E−7 1.20708E−5 2.14112E−4 1.53573E−3 6.98260E−3

MLCM20 0.0 1.00440E−6 1.24243E−6 2.14112E−4 9.50322E−7 7.34076E−7

MVIM18 0.0 9.38641E−4 1.72757E−4 4.59167E−3 1.91046E−2 7.34076E−7
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Table 11.   Analysis of absolute errors between Galerkin and RK4 results for the similar step sizes.

|cGP(2)τ = 0.1-RK4τ = 0.1|

t T(t) I(t) V(t)

0.0 0.0000000E−0 0.0000000E−00 0.0000000E−0

0.2 5.8176074E−6 6.6752196E−10 8.6688500E−7

0.4 2.1109347E−5 1.4924805E−09 1.0728542E−6

0.6 5.7429902E−5 2.4821350E−09 9.9566078E−7

0.8 1.3881221E−4 3.6558718E−09 8.2106806E−7

1.0 3.1426857E−4 5.0422736E−09 6.3432370E−7

Table 12.   Comparison of the absolute errors of Galerkin scheme and RK4 for T(t). 

t cGP(2)τ = 0.2 RK4τ = 0.01 |cGP(2)-RK4|

0.0 1.000000E−1 1.0000E−1 0.000000E−0

0.2 2.087822E−1 2.0880E−1 2.580348E−5

0.4 4.061469E−1 4.0624E−1 9.357408E−5

0.6 7.641695E−1 7.6442E−1 2.543614E−4

0.8 4.134328E−0 1.4140E−0 6.140232E−4

1.0 2.590207E−0 2.5910E−0 1.387372E−3

Table 13.   Absolute errors between the findings of Galerkin scheme and RK4 for I(t). 

t cGP(2)τ = 0.2 RK4τ = 0.01 |Galerkin-RK4|

0.0 0.0000E−0 0.0000E−0 0.000000E−0

0.2 6.0301E−6 6.0327E−6 2.539618E−9

0.4 1.3152E−5 1.3158E−5 5.907922E−9

0.6 2.1213E−5 2.1223E−5 1.019899E−9

0.8 3.0161E−5 3.0177E−5 1.554771E−8

1.0 4.0015E−5 4.0037E−5 2.212079E−8

Table 14.   Absolute errors between the findings of Galerkin scheme and RK4 for V(t). 

t cGP(2)τ = 0.2 RK4τ = 0.01 |cGP(2)-RK4|

0.0 1.000000E−1 1.000000E−1 0.000000E−0

0.2 6.188206E−2 6.187984E−2 2.219134E−6

0.4 3.829763E−2 3.829488E−2 2.744747E−6

0.6 2.370709E−2 2.370455E−2 2.544546E−6

0.8 1.468245E−2 1.468036E−2 2.094335E−6

1.0 9.102457E−3 9.100845E−3 1.612383E−6

Table 15.   Absolute errors between the findings of Galerkin scheme and RK4 with different step sizes.

|cGP(2)τ = 0.2-RK4τ = 0.01|

t T(t) I(t) V(t)

0.0 0.000000E−0 0.000000E−0 0.000000000E−0

0.2 2.580348E−5 2.539618E−9 2.219134007E−6

0.4 9.357408E−5 5.907922E−9 2.744747372E−6

0.6 2.543614E−4 1.019899E−9 2.544546229E−6

0.8 6.140232E−4 1.554771E−8 2.094335180E−6

1.0 1.387372E−3 2.212079E−8 1.612383063E−6
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Figure 2.   Graphical comparison of absolute errors for concentration of healthy T-cells.
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Figure 3.   Graphical comparison of absolute errors for concentration of infected T-cells.
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Figure 4.   Graphical comparison of absolute errors for virus.
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Figure 5.   The mesh grid graph for LADM.

Figure 6.   The mesh grid graph for VIM.

Figure 7.   The mesh grid graph for MLCM.
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(21)

dT

dt
= γ −̟T + ρT

(
1−

T + I

Tmax

)
−MVT + pI ,

dI

dt
= MVT − ζ I − pI ,

dV

dt
= αζ I − dV .

Figure 8.   The mesh grid graph for MVIM.

Figure 9.   The mesh grid graph for QLM.

Figure 10.   Diagrammatic representation of the mathematical Model (21) for HIV infection.
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where T  , I and V  represent the concentration of uninfected T-cells, infected T-cells and free virus particle 
respectively. The detail explanation of all parameters are presented in Table 1. The pictorial representation of the 
mathematical model (21) of HIV infection visualized in Fig. 10.

The initial conditions are follows:

Basic reproduction number ( R
0
).  The basic reproduction number is used to examine disease transmis-

sion, depicts the increase and controlling of the illness. If R0 < 1 then the disease-free equilibrium is stable, 
and the disease stops existing in the community. If R0 > 1 , the endemic equilibrium exists because the disease 
spreads throughout the community. The reproduction number is obtained using the Next-generation matrix.

Let X = (I ,V), then, based on Model (21):

The Jacobian matrix of FandV are as follows:

The next-generation matrix for the System (21) is

The eigenvalues of the matrix  FV−1 is  �1 = 0and�2 =
MαζT

(ζ+p)d
. Hence R0 is the maximum (dominant) of the 

two eigenvalues of FV−1 . Thus we have

Which is the basic reproduction number R0 for the System (21). The threshold theorem stated that if the 
epidemic will not get started unless the initial number of healthy cells exceeds a certain threshold value. i.e.,

If R0 < 1 then the disease-free equilibrium is stable.
If R0 > 1 the endemic equilibrium exists because the disease spreads throughout the community.
If  R0 = 1 disease die out.

Local stability and equilibria.  The nonnegative equilibria of Model (21) is E0 = (T0, 0, 0),

The significance of the value R0 is well-known, which is called as the basic reproduction number. The basic 
reproduction R0 is formulated to represent the average number of people who will catch a disease from one con-
tagious host. If we want to understand the nature of transmissible diseases and how disease can spread through 
a population, we must need to understand the concept of the basic reproduction number. Now we shall look at 
the geometric features of Model (21) equilibria.

Since T0 and T ′ satisfy

We can get

T(0) = 0.1mm−3day−1, I(0) = 0mm−3day−1,V(0) = 0.1mm−3day−1.

dX

dt
= F − V ,

F =

(
MVT
0

)
and V =

( (
ζ+ p

)
I

−αζ I+ dV

)
.

F =

(
0 MT
0 0

)
and V =

(
(ζ+ p) 0
−αζ d

)
.

FV
−1 =

(
MαζT

(ζ+p)d
M
d

0 0

)
.

R0 =
MαζT(
ζ+ p

)
d
.

E
′
= (T

′
, I

′
,V

′
), whereT0 =

Tmax

2ρ
(−(̟ − ρ)±

√
(̟ − ρ)2 + 4

ρ

γ
),

T
′
= d

(ζ + p)

Mαζ
, I

′
=

1

ζ

[
γ −̟T

′
+ ρT

′
(1−

T
′
+ I

′

Tmax
)

]
,V

′
=

αζ

d
I
′
.

γ −̟T0 + ρT0

(
1−

T0 + I0

Tmax

)
= 0,

γ −̟T
′
+ ρT

′

(
1−

T
′
+ I

′

Tmax

)
=

1

αζ
[
(
αζT

′
− d

(
ζ + p

)]
.
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Thus if R0 > 1 , then the positive equilibrium E′
= (T

′
, I

′
,V

′ ) exists. The Jacobian matrix of Model (21) is 
follows as:

Let E∗ = (T∗, I∗,V∗) be any arbitrary state of equilibrium. Then the characteristic equation about E∗ is 
define as follows:

For equilibrium E0 = (T0, 0, 0) , (22) reduces to

Hence E0 = (T0, 0, 0) is locally asymptotically stable (LAS) for R0 < 1.

Theorem 5.1  If the basic reproduction number R0 < 1 , then E0 = (T0, 0, 0) is locally asymptotically stable and if 
R0 > 1 , then E0 = (T0, 0, 0) is unstable.

Theorem  5.2.   Let  Q > 0 then for  any positive solution (T(t), I(t),V(t) )  of  Model  (21), 
T(t) ≤ Q, I(t) ≤ QandV(t) ≤ Q , for all t .

Proof.  Let G1(t) = T(t)+ I(t) . Determine the derivative of G1(t) with the solution of the Model (21), we get

where Q0 =
Tmaxρ

2+4ργ
4ρ  , h = min(̟ , ζ ) . Then there exists Q1 > 1 , depending only the parameters of Model 

(21), such that G1(t) < Q1 , for all t. Then T(t) and I(t) are subsequently bounded above. According to the last 
equation of Model (21), V(t) has ultimately an upper bound, say, their maximum is Q . This completes the proof.

Define D =
{
(T , I ,V) ∈ R3 : 0 < T ≤ Q,< I ≤ Q, 0 < V ≤ Q

}
 . Obviously, D is convex.

Theorem 5.3.  Suppose that

Then the positive equilibrium E′
= (T

′
, I

′
,V

′ ), Eq. (23) reduce to

T ′ > d

(
ζ + p

)

Mαζ
⇒ γ −̟T0 + ρT0

(
1−

T0 + I0

Tmax

)
> 0 ⇒ T0 > T ′

T ′ < d

(
ζ + p

)

Mαζ
⇒ γ −̟T0 + ρT0

(
1−

T0 + I0

Tmax

)
< 0 ⇒ T0 < T ′.

J =




−̟ + ρ − 2ρT+ρI

Tmax
−MV −ρT

Tmax
−MT

MV −(ζ + p) MT
0 αζ −d



.

(22)

∣∣∣∣∣∣

�+̟ − ρ + 2ρT∗+ρI∗

Tmax
+MV∗ ρT∗

Tmax
MT∗

−MV �+ ζ + p −MT∗

0 −αζ �+ d

∣∣∣∣∣∣
= 0

(23)
(
�+̟ − ρ +

2ρT0

Tmax

)
[
(
�
2 + �(d + ζ + p

)
+ d

(
ζ + p

)
− αζMT0)] = 0

Ġ1(t) = Ṫ(t)+ İ(t)

= γ −̟T + ρT

(
1−

T + I

Tmax

)
− ζ I

= −̟T − ζ I + ρT −
ρT2 + ρTI

Tmax
+ γ

≤ −hG1(t)+ Q0,

R0 < 0;

(
d + ζ + p+̟ − ρ +

2ρT
′
I
′

Tmax
+MV

′

)[
−̟ + ρ −

2ρT
′
I
′

Tmax

(
d + ζ + p

)
+MV

′
(d + ζ )

]
> 0.

�
3 + x1�

2 + x2�+ x3 = 0, where

x1 = d + ζ + p+̟ − ρ +
2ρT

′
I
′

Tmax
+MV

′
> 0,

x2 = (̟ − ρ +
2ρT

′
I
′

Tmax
)
(
d + ζ + p

)
− pMV

′
> 0,
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We also have

By Routh-Hurwitz criterion38, we have E′
= (T

′
, I

′
,V

′ ) is LAS.
Global asymptotic stability (GAS).  This section describes the GAS of the disease steady state. We also 
established the characteristics for a disease steady state that is GAS.

Definition 5.1.  The Model (21) is said to be competitive in D if, for some diagonal matrix Z = diag(ǫ1,ǫ2, . . . ǫn) 
for ǫi(i = 1, 2, 3 . . . n) is either 1 or −1, Z ∂f

∂x Z has no positive off diagonal elements for all x ∈ D.

Theorem 5.4.  The Model (21) is a competitive system.

Proof.  By analyzing the Jacobian matrix of Model (21) and selecting the matrix Z as.

We can see that, Model (21) is competitive in D in terms of the partial order specified by the orthant 
J =

{
(T , I ,V) ∈ R3 : T ≤ 0, I ≤ 0,V ≤ 0

}
. By direct calculation, we get

Remarks 5.1.  Since D is convex and Model (21) has a competitive in D. The Poincare-Bendixson39 property is 
therefore satisfied by Model (21).

Lemma 5.1.  Assume that n = 3 and D is convex. Suppose Model (21) is competitive in D is convex. And let Model 
(21) is competitive in D and L is a nonempty compact omega limit set of Model (21). If L contains no equilibria, 
then L is a closed orbit.

We know that Model (21) has nontrivial periodic orbits from Remarks 5.1 and Lemma 5.1. Let A be a linear 
operator on Rn and denote its matrix representation with respect to the standard basis of Rn . Let �2Rn denote 
the exterior product of Rn . A include canonically a linear operator A[2] on �2Rn u1, u2 ∈ Rn,define

and extend the definition over �2Rn by linearity. The matrix representation of A[2] with respect to the canonically 

basis in �2Rn is called the second additive compound matrix of A . This is an
(
n
2

)
 
(
n
2

)
 matrix and satisfies the 

property (A+ B)[2] = A[2] + B[2] . In the special case when n = 2 , we have A[2]
2×2 = trA. In general, each entry 

of A[2] is a linear expression of those of A. For instance, when n = 3 , the second additive compound matrix of 
A = (aij) is

Let σA = {�1, �2, �3, . . . �n} be the spectrum of A. Then σA[2] =
{
�i + �j1 ≤ i ≤ j ≤ n

}
  is spectrum of A[2].

Let x  → f (x) ∈ R2 be a C1 function for x in an open set D ∈ Rn . Consider the differential equation

The solution to Model (21) denoted by x(t, x0 ) such that by x(t, x0) = x0 . A set K is said to absorbing in D 
for Model (2). if  x(t,K1)[K  for each compact K1 [D and t sufficiently large. We make the following two basic 
assumptions:

(H1) There exists a compact absorbing set K[D.
(H2) Model (21) has a unique equilibrium x′ in D.
If the equilibrium x′ is locally stable and all trajectories in D converge to it, it is said to be globally stable 

in D. If x′ is globally stable in D, the assumptions (H1) and (H2) are satisfied. For viral models and many other 
biological systems with a bounded cone as the feasible region.

(H1) is equal to the uniform persistence of Model (21).

Lemma 5.2.  A periodic orbit � =
{
�(t); 0 < t < y

}
 of Model (21) is orbitally asymptotically stable with asymp-

totic phase if the linear system.

x3 = dζMV
′
> 0.

x1x2−x3 =

(
d + ζ + p+̟ − ρ +

2ρT
′
I
′

Tmax
+MV

′

)[(
−̟ + ρ −

2ρT
′
I
′

Tmax

)
(
d + ζ + p

)
+MV

′
(d + ζ )

]
> 0.

Z =

(
1 0 0
0 −1 0
0 0 1

)
,

Z
∂f

∂x
Z =




−̟ + ρ − 2ρT+ρI

Tmax
−MV −ρT

Tmax
−MT

MV −ζ − p −MT
0 −αζ −d





A[2](u1�u2) := A(u1)�u2 + A(u2)�u1

A[2] =

(
a11 + a22 a23 −a13

a32 a11 + a33 a12
−a31 a21 a22 + a33

)

ẋ = f (x).
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is asymptotically stable, where ∂f
[2]

∂x  is the second additive compound matrix of the Jacobian matrix ∂f
[2]

∂x  of f .

Lemma 5.3. 

1.	 Assume thatassumptions (H1) and (H2) hold
2.	 Model (21) satisfies the Poincare- Bendix son property.for each periodic solution x = �(t) to Model (21) with 

�(0) ∈ D, Model (21) is asymptotically stable.

3.	
(
−1)ndet

(
∂f
∂x (x

′
))

> 0.

4	 Then the unique equilibrium x′ is GAS in D.

Formulation of the extended HIV model
Throughout the dispersion of HIV infection, several researchers attempted to formulate and solve its epidemic 
model using a variety of methodologies, analyzing, and comparing their findings to previous findings in order 
to identify a more effective treatment. In the proposed Model (2), γ represents the production of new cells from 
thymus. The models presented in the literature (see[28–31] for details information) based on a stable source term 

(24)ϒ
′
(t) =

∂f [2]

∂x
�(t)ϒ(t)

Figure 11.   The impact of source terms on T(t) of HIV infected model.

Figure 12.   The impact of source terms on I(t) of HIV infected model.
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to produce new T-cells. However, these viruses may be capable of infecting T-cells in the thymus and bone mar-
row after entrance into the human body, leading to a reduced formation of new cells32. Therefore, in the current 
literature, the HIV model (see32–36 for details) considered with a nonlinear varying viral load for the formation 
of new T-cells from the thymus, i.e., Kirschner33 and Webb et al.36 used the term γ1 = 0.5γ + 5γ

1+V(t) , Perelson 
et al.40 used γ2 = γ

1+V(t) , and Perelson32 assumed γ3 = γ exp(−V(t) . In this paper, we investigated the HIV 
model outlined above and demonstrated that how varying source depending on viral load affect the dynami-
cal behavior of the improved model. In order to determine solutions of the model, the Galerkin technique is 
employed. Figures 11, 12, 13 demonstrated that the dynamics of healthy and infected T-cells for γ1 behave 
differently than γ , γ2 , and γ3 throughout the given period, and that the population dynamics of virus particles 
significantly exhibit the same dynamics as the stable source term visualized in Fig. 11. Finally, Figs. 14, 15, 16, 
17 show the phase diagrams of I(t)− T(t) , V(t)− T(t),V(t)− I(t), and V(t)− I(t)− V(t), for HIV-infected 
model. The graph of each phase has numerically distinct meanings at each stage and does not emphasize on the 
medical evaluation of solutions.

Conclusions
In this study, we examined the HIV model, which consists of three nonlinear ordinary differential equations. To 
solve the model, we used a novel numerical scheme called the continuous Galerkin–Petrov scheme and examined 
its accuracy and reliability. For comparative analysis, the results of the Galerkin and RK4 schemes are contrasted 
with those of other conventional techniques, i.e., QL-M, LADM, VLM, MLCM, and MVIM. In addition, we 
compared the output and absolute errors between the findings of Galerkin and RK4 schemes with the same and 
different step sizes. After a comparison, it is evident that the suggested scheme produced more accurate and 
comparable solutions than the solutions of the previously applied schemes for the model. The proposed approach 

Figure 13.   The impact of source terms on V(t) of HIV infected model.
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Figure 14.   The chaotic behavior of I(t) verses T(t) of the HIV infection model.
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Figure 15.   The chaotic behavior of V(t) versus T(t) of the HIV infection model.
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Figure 16.   The chaotic behavior of V(t) versus I(t) of HIV infected model.
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has been proven to be reliable for identifying an approximate solution to real-world situations. After validating 
the scheme and the MATLAB code, we applied the method to a new model that included the treatment rate. The 
basic reproduction number is calculated, and the global dynamics of the novel model are determined. It could be 
observed that the disease-free equilibrium is globally asymptotically stable when it is less than unity and unstable 
when it becomes greater than unity. On the other hand, we discussed the influence of different non-linear source 
terms for the production rate of healthy T-cells on the dynamical behaviour of the model. From the observations, 
we inferred that the patterns of healthy and infected T-cells behave differently throughout the given time and that 
the population dynamics of virus particles substantially follow the same dynamics as the constant source term. 
In addition, graphical observations are made to demonstrate the phase diagrams of the mentioned model. The 
graph of each phase has numerically unique interpretations at each point and is not associated with the medical 
assessment of solutions. In the future, we plan to apply the suggested Galerkin scheme to other mathematical 
models in population biology and epidemiology.

Data availability
All the data available in the manuscript.
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