
1

Vol.:(0123456789)

Scientific Reports |         (2023) 13:7412  | https://doi.org/10.1038/s41598-023-34683-x

www.nature.com/scientificreports

Designing highly potent 
compounds using a chemical 
language model
Hengwei Chen  & Jürgen Bajorath *

Compound potency prediction is a major task in medicinal chemistry and drug design. Inspired 
by the concept of activity cliffs (which encode large differences in potency between similar active 
compounds), we have devised a new methodology for predicting potent compounds from weakly 
potent input molecules. Therefore, a chemical language model was implemented consisting of a 
conditional transformer architecture for compound design guided by observed potency differences. 
The model was evaluated using a newly generated compound test system enabling a rigorous 
assessment of its performance. It was shown to predict known potent compounds from different 
activity classes not encountered during training. Moreover, the model was capable of creating highly 
potent compounds that were structurally distinct from input molecules. It also produced many novel 
candidate compounds not included in test sets. Taken together, the findings confirmed the ability of 
the new methodology to generate structurally diverse highly potent compounds.

Compound design is one of the major tasks for computational approaches in medicinal chemistry. The primary 
aim is the generation of compounds with desired properties, first and foremost, compounds with activity against 
individual pharmaceutical targets and high potency. For compound design and potency predictions, a variety 
of computational methods have been developed or adapted. Mainstays include quantitative structure–activity 
relationship (QSAR)  analysis1 for the design of increasingly potent analogues of active compounds and methods 
for ligand- or structure-based virtual  screening2,3 to identify new hits. Ligand- and structure-based methods 
have different requirements. For example, for docking  calculations4, a variety of scoring functions have been 
developed to evaluate the quality and strength of receptor-ligand interactions and estimate binding  energies5,6. 
For the structure-based prediction of relative potencies of congeneric compounds, free energy perturbation 
methods have been  introduced7,8. At the ligand level, machine learning (ML) methods are widely used for hit 
identification and non-linear QSAR  modeling9. For potency prediction, support vector regression (SVR)10 has 
become a standard ML approach. Furthermore, for both computational compound screening and potency predic-
tion, deep neural network (DNN) architectures are also increasingly  investigated11–13. Recently, a methodological 
framework was developed for evaluating the performance of deep generative models and a recurrent neural 
network (RNN) was used to explore predictions based on sparse training  data14. However, the analysis mainly 
focused on physicochemical properties. For potency prediction, the assessment and comparison of different 
methods typically relies on the use of standard benchmark settings. Such benchmark calculations are required 
but not sufficient to evaluate potency prediction methods and their potential for practical applications. Moreover, 
such calculations should be considered with caution. Notably, in benchmark settings, nearest neighbor analysis 
and mean or median value regression often meet the accuracy of increasingly complex ML  methods15. The 
high performance of these simple reference methods is supported by potency value distributions in commonly 
used compound data  sets15. In addition, narrow error margins separating ML-based and randomized potency 
value predictions limit conclusions that can be drawn from conventional  benchmarking15. Such findings call for 
alternatives to conventional benchmarking such as focusing predictions on the most potent data set compounds, 
consistent with the final goal of compound optimization efforts.

While potency predictions are mostly carried out for individual compounds, they can also be applied to assess 
potency differences in compound pairs such as activity cliffs (ACs), which are formed by structurally similar 
(analogous) active compounds with large differences in  potency16. In principle, ACs can be predicted by explicitly 
calculating potency differences between compounds in pairs or by distinguishing between ACs and other pairs of 
analogues using classification methods, which implicitly accounts for potency differences of varying magnitude.
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Previously, we have reported a deep learning approach for the prediction of ACs that further extended other 
ML classification methods by its ability to not only predict ACs, but also generate new AC  compounds17. Since 
ACs encode large potency differences, we have reasoned that this methodology might be adapted and further 
extended for the design of highly potent compounds. Therefore, in this work, we have devised and implemented 
a chemical language model (CLM) for the prediction of highly potent compounds from weakly potent ones 
used as input. These predictions do not depend on conventional benchmark settings and are thus not affected 
by their intrinsic limitations.

Methods
Compounds, activity data, and analogue series. From ChEMBL (release 29)18, bioactive compounds 
with high-confidence activity data were assembled. Only compounds with reported direct interactions (assay 
relationship type: “D”) with human targets at the highest assay confidence level (assay confidence score 9) 
were considered. As potency measurements, only numerically specified equilibrium constants  (Ki values) were 
accepted and recorded as (negative logarithmic)  pKi values. If multiple measurements were available for the 
same compound, the geometric mean was calculated as the final potency annotation, provided all values fell 
within the same order of magnitude; otherwise, the compound was disregarded. Qualifying compounds were 
organized into target-based activity classes. A total of 496 activity classes were obtained.

For each activity class, a systematic search for analogue series (ASs) was conducted using the compound-core 
relationship (CCR)  method19, which uses a modified matched molecular pair (MMP) fragmentation  procedure20 
based on retrosynthetic  rules21 to systematically identify ASs with single or multiple (maximally five) substitution 
sites. The core structure of an AS was required to consist of at least twice the number of non-hydrogen atoms of 
the combined  substituents19.

Ultimately, 10 classes comprising ligands of different G protein coupled receptors were extracted as test cases 
for compound predictions that each contained more than 900 compounds and more than 100 analogue series. 
Table 1 summarizes the targets and composition of these activity classes (first four columns from the left) and 
Fig. 1 shows exemplary ASs with single or multiple substitution sites.

Table 1.  Activity classes.

ChEMBL ID Target name Compounds ASs CCR pairs AC-CCR pairs

218 Cannabinoid CB1 receptor 1118 250 8889 585

226 Adenosine A1 receptor 1924 318 18,623 1207

233 Mu opioid receptor 1216 169 10,430 1110

234 Dopamine D3 receptor 1529 213 21,008 755

237 Kappa opioid receptor 940 129 19,277 2897

251 Adenosine A2a receptor 1825 312 16,084 870

256 Adenosine A3 receptor 2033 434 42,621 6219

3371 Serotonin 6 receptor 1535 201 36,735 2485

4792 Orexin receptor 2 1133 131 12,368 1271

5113 Orexin receptor 1 1086 155 23,169 817

Figure 1.  Exemplary analogue series. Shown are small ASs with single (left) or multiple substitution sites 
(right). Core structures are colored blue and substituents red.
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For each of 10 activity classes, the number of compounds, ASs, CCR pairs, and AC-CCR pairs are provided. 
In addition, for each class, the ChEMBL target ID, target name, and abbreviation are given. AS, CCR, and AC 
stand for analogue series, compound-core relationship, and activity cliff, respectively.

From each of the activity classes, all possible pairs of analogues (termed All_CCR  pairs) were extracted, as 
illustrated in Fig. 2 that shows All_CCR pairs for two different ASs. The 496 activity classes yielded a total of 
881,990 All_CCR pairs.

Tokenization. For use by a CLM, compounds and potency differences must be tokenized. All compounds were 
represented as molecular-input line-entry system (SMILES)  strings22 generated using  RDKit23 and tokenized 
using a single chemical character with the exception of two-character tokens (i.e., “Cl” and “Br”) and tokens 
in brackets (e.g. “[nH]” and “[O-]”). For the conditional transformer, potency differences must also be trans-
formed into input tokens. For tokenization of value ranges, different approaches have been introduced includ-
ing  binning17,24,25 and, more recently, numerical  tokenization26. Since human readability of token sequences 
supported by numerical approaches played no role for our analysis and encoding of drug discovery-relevant 
compound potency ranges via binning has yielded accurate predictions  previously17, we continued to use binned 
tokens herein. Accordingly, potency differences between source and target compounds, ranging from − 6.62 to 
6.52  pKi units, were partitioned into 1314 binned tokens of a constant width of 0.01. This granularity (resolution) 
defines the limits of experimental potency measurements and was thus most appropriate for our analysis. Each 
bin was encoded by a single token and each potency difference was assigned to the token of the corresponding 
 bin17.

Tokenization of compound SMILES strings and potency ranges yielded the chemical vocabulary for our 
model. In addition, the two special tokens “start” and “end” were added to the vocabulary indicating the start 
and end point of a sequence, respectively.

Generative chemical language model. Architecture. For compound design, a CLM with the trans-
former architecture previously reported for the DeepAC approach for AC  prediction17 was used. The trans-
former architecture consisted of multiple encoder-decoder neural modules with attention  mechanism27. In the 
model, a stack of encoding sub-layers including a multi-head self-attention sub-layer and a fully connected 
feed-forward network sub-layer constituted the encoder module. The encoder read an input sequence and com-
pressed it into a context vector in its final hidden state. The context vector served as the input for the decoder 
block that interpreted the vector to predict an output sequence. Subsequently, the decoder module, which was 
composed of a feed-forward sub-layer and two multi-head attention sub-layers, re-converted the encodings into 
a sequence of tokens (one token at a time). Both encoder and decoder utilized the attention mechanism during 
training to comprehensively learn from feature space.

During pre-training, the model was supposed to learn mappings of source to target compounds based on 
potency differences resulting from changes in substituent(s) (termed chemical transformations):

Then, given a new (Source compound, Potency difference) test instance, the model was applied to generate a 
set of candidate target compounds meeting the potency difference constraints, that is, having higher potency 
than the source compound (according to the given potency difference).

During pre-training, distinguishing between different activity classes was not required because at this stage, 
the model should learn the syntax of textual molecular representations and, in addition, a variety of analogue 

(Source compound, Potency difference) →
(

Target compound
)

.

Figure 2.  Analogue pairs. For each of two exemplary ASs, three representative All_CCR pairs are shown (top, 
middle, and bottom; increasing potency from the left to the right). The Markush structure representing each 
AS is displayed in the center. Core structures are colored blue and substituents red. For each compound, its  pKi 
value is reported.
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pair-associated potency differences caused by chemical transformations. By contrast, during fine-tuning, activ-
ity class (target) information was required to focus the model on specific compound series or classes, as further 
discussed below.

Model derivation. The transformer model was implemented using  Pytorch28. Default hyperparameter settings 
were used together with a batch size of 64, learning rate of 0.0001, and encoding dimension of 256. The models 
were derived over 200 epochs on the basis of the general training set. During training, the transformer model 
minimized the cross-entropy loss between the ground-truth and output sequence. A checkpoint was saved at 
each epoch and for a validation set, minimal loss was determined for selecting the final model.

Model pre‑training. A general data set for model pre-training was derived from the 881,990 All_CCR 
pairs of the 496 activity classes. From All_CCR pairs, All_CCR triples (CpdA, CpdB, PotB-PotA) were generated 
by recording the potency difference for an All_CCR pair. Here, CpdA represented the source compound that 
was concatenated with the potency difference (PotB-PotA) and CpdB represented the target compound. For each 
All_CCR pair, two triples were obtained such that each All_CCR compound was used once as the source and 
target compound. To avoid data ambiguities, All_CCR pairs were eliminated if (1) a given source compound and 
potency difference was associated with multiple target compounds from different activity classes or (2) multiple 
potency values from different classes were available for a pair. On the basis of these criteria, a curated general 
data set of 522,331 qualifying All_CCR triples was obtained and used for pre-training.

For each triple, the SMILES representation of the source compound concatenated with the binned token of 
the associated potency difference served as the input sequence for the encoder that was converted into a latent 
representation. Based on this representation, the decoder iteratively generated output SMILES sequences until 
the end token was detected.

Model fine‑tuning. For model fine-tuning and evaluation, the 10 activity classes in Table 1 were used. For 
fine-tuning, All_CCR pairs were extracted from each of the 10 activity classes and divided into subsets of so-
called CCR  pairs with a less than 100-fold potency difference and AC-CCR  pairs capturing an at least 100-fold 
difference in potency. Accordingly, AC-CCR pairs represented analogue pairs forming ACs. Depending on the 
activity class, 8889–42,621 CCR pairs and 585–6219 AC-CCR pairs were obtained (Table 1, last two columns on 
the right). AC-CCR triples were ordered such that CpdB was highly and CpdA weakly potent.

The pre-trained model was then separately fine-tuned and tested for each activity class. Therefore, AC-CCR 
pairs from each class were randomly divided into 80% fine-tuning and 20% test instances such that there was 
no overlap in core structures between these sets. Thus, the fine-tuning set exclusively consisted of AC-CCR 
pairs and was selected to train the model on activity class dependent analogue pairs with large potency differ-
ences. CCR pairs sharing core structures with the fine-tuning set were omitted from further consideration. The 
remaining CCR pairs were added to the test set. Hence, the fine-tuning and test sets were structurally distinct. 
Model evaluation is detailed below.

Results
Study concept. Our study had three primary goals. First, we aimed to devise a novel approach specifically 
for predicting highly potent compounds from weakly potent input molecules. Thus, rather than striving for 
prediction of potency values across large ranges, as is conventionally attempted using SVR or other machine 
learning methods, the primary focus was on potent compounds, in line with the practical relevance of potency 
predictions. Second, we aimed to generate a structural spectrum of output compounds, ranging from analogues 
of input molecules to structurally distinct compounds, thereby increasing medicinal chemistry novelty of pre-
dicted candidates. Third, it was intended to evaluate the methodology in a way that was not affected by limita-
tions of conventional benchmarking of potency predictions, as discussed above, and enabled a non-ambiguous 
assessment of the ability to predict potent compounds. To meet the first two goals, which were central to our 
study, we implemented a CLM consisting of a chemical transformer architecture conditioned on compound 
potency differences. To meet the third goal, we designed a new compound test system.

Compound pair‑based test system. For model evaluation, a compound pair-based test system was gen-
erated using the test set. By design, the fine-tuning and test sets were structurally distinct. Furthermore, in con-
trast to the fine-tuning set, the test set contained analogue pairs capturing small or large differences in potency 
(i.e., CCR and AC-CCR pairs, respectively). Table 2 summarizes the composition of the test set.

For each activity class, the test set contained varying numbers of CCR pairs and AC-CCR pairs yielding vary-
ing numbers of unique CCR and AC-CCR compounds. In the following, SC and TC are used as abbreviations for 
source (input) and target compound, respectively. For the evaluation of the fine-tuned CLM, test set compounds 
were divided into instances with maximally 1 μmol potency (corresponding to a  pKi value of 6), which served 
as SCs, and candidate compounds with higher than 1 μmol potency  (pKi > 6), which served as known candidate 
compounds (KCCs) for comparison with newly generated TCs.

In addition, the model generated varying numbers of novel (hypothetical) TCs. For each activity class, smaller 
numbers of SCs than KCCs were available. With the exception of activity class 251 (3838 KCCs), the test set 
contained 366–824 KCCs for the activity classes (Table 2), with on average 576 KCCs per class. Each CCR-SC 
 (pKi ≤ 6) and AC-CCR-SC  (pKi ≤ 6) was once used as an input compound for the model and in each case, 50 TCs 
were sampled, canonicalized, and compared to KCCs to search for exact matches, that is, fully reproduced com-
pounds with known potency. Because the model generated novel TCs, probabilities for re-generating known TCs 
could not be derived in a meaningful way. Consequently, the main measure for establishing proof-of-principle 
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for the ability of the model to predict potent compounds was the reproduction of any KCCs. For each activity 
class, compound statistics were derived over three independent sampling trials, as reported below.

Table 3 reports the possible predictions outcomes for the compound pair-based test system.
For each SC, a TC could be a known CCR or AC-CCR compound or a novel (hypothetical) compound 

representing a TC not contained in the fine-tuning or test set. Taking core structure matches into consideration 
(that is, a TC either contained the same core structure as a SC or not), a total of 12 formally defined prediction 
outcomes were possible, including six each for CCR-SCs and AC-CCR-SCs, as identified by indices 1.1.–1.6. 
and 2.1.–2.6. in Table 3, respectively. Accordingly, a newly generated compound might be a structural analogue 
of a given SC (having the same core structure) or contain a different core structure. Furthermore, SCs and 
TCs might be distinguished by single or multiple substituents. On the basis of this classification scheme, CLM 
predictions were rigorously evaluated focusing on the reproduction of known active compounds, as explained 
above. This was the most relevant measure of model performance because it enabled the exact determination of 
potency differences between SCs and TCs and hence the ability of the CLM to predict highly potent compounds. 
For novel (hypothetical) compounds generated by the model, no assessment was possible (without subsequent 
experimental evaluation).

Model performance. For the SCs from all activity classes, systematic compound predictions were carried 
out using the CLM. The model only produced 0.5–2% invalid SMILES (assessed using RDKit) for all activity 
classes.

With the exception of class 251 (1391 SCs), the test set contained 40–359 SCs for the activity classes, with on 
average 162 compounds per class (Table 2). The predictions were then assessed on the basis of well-defined pair 
categories detailed above, as reported in Table 4.

For each activity class and compound pair category indexed according to Table 3 (top row), the number of 
unique TCs produced by the CLM is reported. With the exception of categories 1.5., 1.6., 2.5., and 2.6., which 
report novel (hypothetical) candidate compounds not contained in the fine-tuning or test set, the TCs represent 
KCCs, as defined in the text.

Encouragingly, for all activity classes, the CLM successfully reproduced large numbers of KCCs for all SCs 
(categories 1.1.–1.4. and 2.1.–2.4., respectively). Frequently, multiple KCCs were obtained for the same SC. Fur-
thermore, depending on the activity class, the model produced varying numbers of TCs with the same or different 
core structure, thus confirming its ability to generate frequent core structure transformations. In many cases, 
more structurally unique TCs were generated than analogues of SCs. Moreover, large numbers of hypothetical 
candidate compounds not contained in the training set were obtained (categories 1.5.–1.6. and 2.5.–2.6., respec-
tively). The reproducibility of the limited numbers of available KCCs representing known ACs (12–84 unique 
compounds per activity class) was of particular interest (categories 2.1.–2.4.). AC-CCR KCCs were consistently 
reproduced and for five activity classes, the total count exceeded the number of unique AC-CCR KCCs per class 
(due to multiple reproductions of individual KCCs). Table 5 reports statistics for reproduction of KCCs.

Reported are statistics for the re-generation of KCCs including the mean number of KCCs over three inde-
pendent sampling trials and the proportion of reproduced KCCs relative to all available KCCs with standard 
deviations (±). In addition, the mean number of non-KCCs over three independent trials is provided.

The proportion of exactly reproduced KCCs over independent sampling trials ranged from ~ 7 to ~ 37%, 
depending on the activity class (with generally small standard deviations). For nine, six, and two classes, more 
than 10, 20, and 30% of all available KCCs were reproduced, respectively. Applying the most rigorous criterion 
of exact re-generation of known potent compounds as a performance measure (see above), the observed num-
bers and proportions represented unexpectedly good predictions, which clearly established proof-of-concept 
for the approach.

For each activity class, ASs were also extracted from newly generated (predicted) compounds. Table 6 reports 
the number of ASs (multiple compounds having the same core structure) and singletons (compounds with 

Table 2.  Test set. CPD stands for compound, SC for source compound, and KCC for known candidate 
compound. According to our analysis scheme, target compounds (TCs) produced by the model were compared 
to KCCs.

ChEMBL ID CCR pairs Unique CCR CPDs AC-CCR pairs Unique AC-CCR CPDs Overlapping CPDs
Unique 
CCR + AC-CCR CPDs SCs (pki ≤ 6) KCCs (pki > 6)

218 2198 579 6 12 9 582 129 453

226 5950 1174 144 84 80 1178 359 819

233 2332 590 36 36 33 593 76 517

234 7790 913 50 53 53 913 89 824

237 1032 477 31 24 20 481 115 366

251 4706 5210 85 57 38 5229 1391 3838

256 5012 888 40 44 42 890 250 640

3371 4420 722 42 44 44 722 40 682

4792 1941 615 49 50 48 617 146 471

5113 7543 664 13 15 15 664 256 408
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Table 3.  Possible predictions.

Index same/different core Compound pair category

1.1./1.2. (CCR-SC, CCR-TC)

1.3./1.4. (CCR-SC, AC-CCR-TC)

1.5./1.6. (CCR-SC, novel CPD)

2.1./2.2. (AC-CCR-SC, AC-CCR-TC)

2.3./2.4. (AC-CCR-SC, CCR-TC)

2.5./2.6. (AC-CCR-SC, novel CPD)

Table 4.  Prediction results.

ChEMBL 
ID 1.1. 1.2. 1.3. 1.4. 1.5. 1.6. 2.1. 2.2. 2.3. 2.4. 2.5. 2.6.

218 73 192 2 5 436 3301 3 3 4 11 24 34

226 262 433 4 25 1067 5030 11 11 27 79 129 529

233 217 179 2 14 252 570 6 9 0 10 21 45

234 141 92 3 2 286 705 3 2 6 7 24 13

237 488 250 0 11 181 766 9 26 14 4 4 10

251 2367 1400 235 128 1031 13,523 17 5 36 13 55 199

256 112 66 1 2 657 5336 10 7 0 12 13 359

3371 60 116 0 4 42 1202 7 4 3 8 33 101

4792 224 662 7 42 253 1222 7 6 7 17 17 25

5113 433 349 1 5 304 1638 5 2 11 2 15 24

Table 5.  Reproducibility of known candidate compounds.

ChEMBL ID KCCs Non-KCCs Reproduced KCCs (%)

218 103 3445 22.74 ± 1.10

226 211 5139 25.76 ± 0.49

233 143 1005 27.66 ± 1.35

234 92 825 11.17 ± 0.24

237 128 839 34.97 ± 1.37

251 251 4996 6.54 ± 0.29

256 76 5165 11.88 ± 0.63

3371 72 2145 10.56 ± 1.17

4792 172 1084 36.52 ± 1.91

5113 117 1499 28.68 ± 1.72

Table 6.  Structural organization of predicted compounds. “Reproduced cores” reports the percentage of the 
core structures contained in each original activity class that were detected in predicted compounds.

ChEMBL ID ASs Singletons Reproduced cores (%)

218 858 1235 4

226 905 1762 4

233 188 255 12

234 90 245 9

237 175 303 7

251 1304 978 4

256 1414 1386 7

3371 321 1022 4

4792 146 219 18

5113 233 440 9
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unique core structures not belonging to any AS). Depending on the activity class, 90–1414 ASs and 219–1762 
singletons were obtained, respectively.

Since each AS and singleton contained a unique core structure (scaffold), the core structure diversity of newly 
generated compounds was generally high. Between 4 and 18% of the core structures contained in the original 
activity classes (from ASs and singletons) were reproduced by the model, as also reported in Table 6.

Having confirmed the ability of the CLM to generate structurally analogous and diverse TCs including KCCs, 
the key question then was whether or not the model would produce TCs that had much higher potency than the 
corresponding SCs. Figure 3 shows the distributions of potency differences between pairs of known source and 
target compounds with experimental potency values involving compounds from ACs. For five activity classes, 
the median potency difference fell between one and two orders of magnitude (10–100-fold) and for the other 
five classes, the median value exceeded two orders of magnitude (100-fold). Furthermore, for all but one class, 
multiple compounds with at least 1000-fold higher potency than the corresponding SCs were generated (includ-
ing highly potent statistical outliers). Thus, these observations unambiguously confirmed the ability of the CLM 
to generate highly potent compounds from weakly potent (micromolar) input molecules.

Figure 4 shows exemplary pairs of SCs and newly designed compounds (TCs) with different structural rela-
tionships. Given our design strategy, all SCs were known compounds with experimentally determined potency. 
The generated TCs included known potent analogues of SCs (Fig. 4a), structurally distinct known potent com-
pounds (Fig. 4b), and novel (hypothetical) compounds (Fig. 4c). Taken together, these examples illustrate suc-
cessful CLM predictions.

Conclusion
The underlying idea for the development of the approach reported herein was to predict highly potent com-
pounds from individual weakly potent input molecules. For all practical purposes, this represents an ultimate 
goal of potency prediction, especially for compound optimization in medicinal chemistry. This prediction task 
could not be addressed using conventional regression models. In addition, going beyond the applicability domain 
of standard QSAR modeling, we also aimed to design structurally diverse compounds, in addition to analogues. 
Therefore, a different methodological framework was required and we adapted a conditional transformer archi-
tecture previously used for AC predictions. These predictions established that compound generation could be 
conditioned on potency differences. However, since AC predictions were also confined to structurally analogous 
compounds, it remained unclear whether or not potency difference conditioning was transferable to the design 
of structurally diverse compounds with high potency. The CLM reported herein was fine-tuned on pairs of SCs 
and TCs with associated potency differences and we then examined its ability to predict structurally diverse 
compounds with large increases in potency relative to input molecules. Therefore, a compound pair-based test 
system was generated that covered all possible prediction outcomes and enabled a well-defined and rigorous 
assessment of model performance. Our analysis confirmed the ability of the model to reproduce known potent 
compounds not encountered during training at unexpectedly high rates, including both analogues of weakly 
potent SCs and structurally distinct compounds. With median potency increases close to or above 100-fold 
across activity classes and multiple predictions with more than 1000-fold increases in compound potency, model 
performance was generally high. In addition, the CLM also produced large numbers of novel compounds for the 
activity classes that were not contained in the fine-tuning or test set.

Taken together, our findings indicate that the approach reported herein should have considerable potential 
for practical applications. In compound optimization, we envision that the CLM will be fine-tuned using sets of 

Figure 3.  Potency difference distribution. For all activity classes, boxplots report the distributions of 
logarithmic potency differences between pairs of known source and target compounds involving compounds 
from ACs. In boxplots, the median value is represented by the horizontal line, and the box defines upper and 
lower quantile. Upper and lower whiskers represent the maximum and minimum value, respectively. Diamond 
symbols mark statistical outliers.
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active compounds for a target of interest and that the predictions will then focus on input compounds prioritized 
by medicinal chemistry. For these and other applications, the CLM is made freely available as a part of our study.

Data availability
All calculations were carried out using publicly available programs and compound data. Python scripts used for 
implementing CLMs and the activity classes used herein are freely available via the following link: https:// doi. 
org/ 10. 5281/ zenodo. 77447 63.

Figure 4.  Exemplary predictions. Shown are pairs of corresponding source compounds (left of the arrow) and 
new compounds generated by the CLM (right) including (a) potent known compounds with conserved core 
structures (black, distinguishing substituents are red), (b) potent known compounds with distinct structures 
(blue), and (c) hypothetical compounds (green). For hypothetical compounds, no potency values were available. 
Numbers on arrows identify activity classes according to Table 1. Potency differences between SCs and KCCs are 
reported.

https://doi.org/10.5281/zenodo.7744763
https://doi.org/10.5281/zenodo.7744763
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