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NK cell marker gene-based
model shows good predictive
ability in prognosis and response
to immunotherapies

in hepatocellular carcinoma

van Li%*=, Yi Li*?, Fulei Li ixia Xu
J Li%?*, Yi Li%?, Fulei Li* & Lixia Xu*

Hepatocellular carcinoma (HCC) is the fourth leading cause of malignancy worldwide, and its
progression is influenced by the immune microenvironment. Natural killer (NK) cells are essential

in the anti-tumor response and have been linked to immunotherapies for cancers. Therefore, it is
important to unify and validate the role of NK cell-related gene signatures in HCC. In this study, we
used RNA-seq analysis on HCC samples from public databases. We applied the ConsensusClusterPlus
tool to construct the consensus matrix and cluster the samples based on their NK cell-related
expression profile data. We employed the least absolute shrinkage and selection operator regression
analysis to identify the hub genes. Additionally, we utilized the CIBERSORT and ESTIMATE web-based
methods to perform immune-related evaluations. Our results showed that the NK cell-related gene-
based classification divided HCC patients into three clusters. The C3 cluster was activated in immune
activation signaling pathways and showed better prognosis and good clinical features. In contrast,
the C1 cluster was remarkably enriched in cell cycle pathways. The stromal score, immune score, and
ESTIMATE score in C3 were much higher than those in C2 and C1. Furthermore, we identified six hub
genes: CDC20, HMOX1, S100A9, CFHR3, PCN1, and GZMA. The NK cell-related genes-based risk score
subgroups demonstrated that a higher risk score subgroup showed poorer prognosis. In summary,

our findings suggest that NK cell-related genes play an essential role in HCC prognosis prediction and
have therapeutic potential in promoting NK cell antitumor immunity. The six identified hub genes may
serve as useful biomarkers for novel therapeutic targets.

Hepatocellular carcinoma (HCC) has become the most common gastrointestinal tumor globally with an increas-
ing incidence and high mortality rate'. The initiation and progression of HCC is an extremely complicated
and gradual process involving multiple factors, stages and genetic mutations®. The molecular mechanism of
tumorigenesis and development is intricate and is yet to be comprehensively understood. A growing number
of studies have focused on the regulation of immune cell-mediated functions in the tumor microenvironment
(TME) of HCC?. The TME in HCC has prominent roles in tumor initiation and progression, and the relevant
immune features have been defined*®. Several literatures support that genomic signatures have strong correla-
tions with response to immune checkpoint inhibitors, which might provide evidence of available biomarkers to
guide clinical decision-making’.

Natural killer (NK) cells have been reported as important members of the innate immune system, which are
involved in direct tumor cell killing in response to immunotherapies®. They are an attractive therapeutic target in
liver disease due to their role in immunosurveillance and their ability to recognize and eliminate malignant cells*.
NK cells are also particularly enriched in the liver and have been recognized to contribute to the pathogenesis
of liver cancer’. NK cells are involved in anti-tumor immunity by directly killing tumor cells and enhancing the
adaptive T cell activity to compromise the immune killing function of tumor cells®.
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NK cell-based immunotherapies cannot completely achieve human leukocyte antigen matching and have
fewer side effects’. It was originally thought that NK cells kill cancer cells mainly through apoptosis'®. Mean-
while, studies on NK cell homeostasis and function suggested a potential strategy for invigorating NK cell-based
immunotherapy'!. Researches had figured out the notion that the combination of BH3 mimetics and NK cells
might aggravate the tumor cell killing ability'% In a recent study, the use of NK cells for the generation of CAR
effector cells has been shown to be safe and effective, offering potential advantages'’. State-of-the-art research
focuses on the underlying mechanisms of NK cells in immunity and the molecular characteristics of NK cells in
cancers'?, whereas the internal molecular mechanisms of NK cells in HCC are relatively poorly known.

In the current study, we investigated the genomic expression of NK cell-related genes. Based on their expres-
sion level, samples were classified into clusters, which had significant differences in clinical and pathologic
features and immune microenvironment signatures. In addition to the expression of immune checkpoint genes,
immune cell infiltrations were also explored. Our study might provide clues for targeted therapeutics in HCC.

Results

Molecular classification based on NK cell-related genes. 1In order to explore the NK cell-related
gene signatures, we adopted the expression level of these genes and the R package ‘coxph’ with univariate Cox
regression analysis, and found 57 significant HCC prognosis-related genes (Fig. 1A). 12 NK cell related genes
were negatively correlated with HCC prognosis, and 45 NK cell related genes had positive correlation. Next, we
analyzed the correlations between these 57 genes, and found that they were closely related (Fig. 1B). We then
performed consistency cluster analysis on the 57 NK cell-related genes. The consensus cumulative distribution
function (CDF) curve (Fig. 1C) and the change in area under CDF delta area curve (Fig. 1D) showed that, for
consensus matrix k=3, NK cell-related gene-based classification had relatively stable clustering results. Three
clusters such as cluster 1 (C1), cluster 2 (C2) and cluster 3 (C3) were clearly identified (Fig. 1E). To better explore
the prognosis features of these clusters, we adopted Kaplan-Meier analysis. We figured out that the overall sur-
vival time of the C3 cluster was the best, and the C1 cluster had poor prognosis compared with C1 and C3
(Fig. 1F). We then performed the same methods on the ICIC cohort, and similarly identified three clusters. The
C1 cluster had better prognosis compared with C3 (Fig. 1G). In addition, we compared the expression level of
57 NK cell-related genes between the 3 clusters. We found out that these prognosis risk genes were generally
highly expressed in the C1 cluster, whereas the prognosis-related protective genes were highly expressed in the
C3 cluster (Fig. 1H).

Genomic alterations and mutational signatures between the 3 clusters. To better understand
the genomic profile signatures between the established 3 clusters, we performed the comparison of molecular
features, and found that the C1 cluster had higher aneuploidy score, homologous recombination deficiency,
intratumor heterogeneity, loss of heterozygosity, and ploidy (Fig. SIA-E). The TMB exhibited no significant
differences between the 3 clusters (Fig. S1IF). Among the 3 clusters, C2 had higher purity level compared with
C1, and C3 had lower purity level compared with C2 and C1 (Fig. S1G). Next, we classified HCC patients into 5
subgroups (1-5) based on their immune signatures. We further compared the proportion of immune subgroups
in each cluster and validated that the proportion of immune signatures-based subgroups in C1 was significantly
different compared with C3 (Fig. SIH). We also compared the correlation between gene mutations and molecu-
lar subtypes and found out significant difference between subtypes. The TP53, LRP1B and other genes had
extensive somatic mutations in HCC (Fig. S1I).

Differences in signaling pathways among the 3 clusters. To better explain the enriched signaling
pathways in NK cell-related gene-based clusters, we applied the Hallmark database and its candidate genes with
GSEA. The results indicated that 14 signaling pathways were markedly enriched in the C1 cluster compared with
the C3 cluster in the TCGA-LIHC cohort. Meanwhile, in the ICGC cohort, there were 30 enriched signaling
pathways, such as MYC TARGES, E2F TARGETS, G2M CHECKPOINT, MYC TARGETS-V2, DNA REPAIR,
etc. (Fig. S2A). Next, we compared the 3 clusters for differences in signaling pathways. The results demonstrated
that C1 was remarkably enriched in cell cycle pathways, and C3 was activated in immune activation signaling
pathways (Fig. S2B). Therefore, NK cell-related genes might play very important roles in the cell cycle and tumor
immune microenvironment activation.

Immune signatures between the 3 clusters. To better clarify the differences in tumor immune micro-
environment between the 3 established clusters, we investigated the gene expression and infiltration level of
immune cells by CIBERSORT and ESTIMATE. The results suggested that the infiltration level of most immune
cells was significantly different between the 3 clusters except for plasma cells, CD4 T cells, activated CD4 mem-
ory T cells, helper follicular T cells, M2 macrophages, resting dendritic cells, activated mast cells, and neutrophils
(Fig. 2A). The ESTIMATE results showed that the stromal score, immune score, and ESTIMATE score in the C3
cluster were much higher than those in the C2 and C1 cluster (Fig. 2B). In addition, we compared the immune
infiltration of the validation dataset with that of the ICGC cohort, and the latter had similar results as the TCGA
cohort (Fig. 2C,D). Furthermore, we analyzed the inflammatory activity of the three clusters. The enrichment
scores of the seven Meta-genes were significantly different among the three clusters. The C1 cluster had higher
inflammatory activity, followed by C1, as shown in Fig. 2E, and this phenomenon was also observed in the ICGC
cohort (Fig. 2F).

Evaluation of the expression of immune checkpoint genes and immunotherapy response
between the 3 clusters. Immune checkpoint blockade-mediated immunotherapy had shown promising
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Figure 1. Identification and classification of NK cell-related genes. (A) Forest map of natural killer cell-

associated genes that significantly correlated with HCC prognosis. (B) Univariate Cox correlations of significant

natural killer cell gene expression in TCGA-LIHC. (C) CDF delta area curves of TCGA-LIHC cohort samples.

3. (F) Overall survival time

curve between 3 clusters. (G) Prognostic differences among the three molecular subtypes in the ICGC cohort.

(D) Relative changes in the area under CDF curve. (E) Heatmap of consensus k

(H) Heatmap suggesting the expression of natural killer cell-related genes with significant prognosis in 3 clusters

of TCGA-LIHC.

nature portfolio

https://doi.org/10.1038/s41598-023-34602-0

(2023) 13:7294 |

Scientific Reports |



www.nature.com/scientificreports/

A B Subtype E3C1EIC2:9C3
06 *kk kK ns dkk ns *k ns ns *k kk kkk K *k  kkk kK ns * ns *kk ns * ns 4000 o o . ok .
c Y- . . .
o .
'g : N i S . ’ .
S04 RN .. 5 P
% . !. 8 2000
Q9 o o8 o
© ., . . Rl
£02]°, . o o
ol il TR ]
© 8 oo =
0.0 ]_.: !.ﬂ . ﬁ‘!r_! lr!j gll h. I.le 0
@ O R LSO L e QQ EERS T OB OO ®
e({b\ & fb&\eo u‘\(z}\«@eQ '\\“6\ K\Q}Q&&beb & \\“\ od\ ??@ ‘Z?\&‘Z?@@é\\@\ 06\\0\\“ \o Q(\@Q‘\
KL £ TN F DA a0 E S & ‘(\"”0"&\"’ RN N 0&
7 cF}\ ® \\eoe, °S \"\\0\)\'0 Cg’@ S Q«O SR oc’z \\% 2 \9 o< ~2000
Q © & @ & F S F 5 F
Q &oo b‘é; & 5 9&&1 QQ}\ < élr Rt (\&\&,\\\o ‘\fb\@
\eo 00 © oq}\ Oe'oé‘ StromalScore  ImmuneScore ESTIMATEScore
C:QZQQ>\6 A
s06 s s L - . ms ms ** ns ns  ns 5000 o e -
< . ' :
) . s . . .
g04 . . s . .
3 : . £ 2500 .
T . 2
-§°-2 . . . B 'l o8 . H S :
7] o o2 o o ofs o ': o .
S iy Wl .&éﬁ%é@é e 3
» £~
é\\\@&oc\cg}\@ ') @4?;\\& {5@5 Qe 5 &,}\ \\o‘* & \x@*’%@g 6@ N e\‘&é@ %(g Q)@t’Q § a
A AN > \\ °®<§;Q @.@\@ PR
Mo 6&00006 @0\%‘6‘ 6\\\6 ®o° B PP P &P o
> S e 06\0@0 S %0000\6 & °Q s FsE @\% @
S B o -2500
«c’ov bf& & %,\ozoe}\ ee‘l‘ @'7’ @Q’ @'Z’ & x\° @ @'b
\\%O QO ’\zc}?}\ Oe StromalScore  ImmuneScore ESTIMATEScore
b0l ™ - - ok .**: - . . - ok . | - sk
. ) :
g 1.5 g
3 3 .
7] ] H 7]
< 1.0 .t . . % e
» . 0
@ 0.5 N . » $
s . .
! . . : T
0.0 . $ !
-05 -
HCK IgG  Interferon LCK  MHCI| MHCIl STAT1 HCK I9G Interferon LCK MHC | MHCIl STAT1

Figure 2. Infiltration level of 22 types of immune cells in two hepatocellular carcinoma cohorts. (A) Differences
in 22 immune cell scores among different molecular subtypes in the TCGA-LIHC cohort. (B) Estimation of

the differences in immune infiltration between different molecular subtypes in the TCGA-LIHC cohort. (C)
Differences in 22 immune cell scores among different molecular subtypes in the ICGC cohort. (D) ESTIMATE
in the CGC cohort illustrated the difference in immune infiltration between different molecular subtypes. (E)
Differences in the scores of seven inflammatory gene clusters among different molecular subtypes in the TCGA-
LIHC cohort. (F) Differences in the scores of seven inflammatory gene clusters among different molecular
subtypes in the ICGC cohort.

effects against tumors, and had proved as effective in a significant proportion of refractory patients undergoing
standard therapy. In this analysis, we evaluated some representative targets, and found that PDCD1, CD274 and
CTLA4 were highly expressed in the C3 cluster (Fig. 3A).

The results supported that IFN-y response was notably higher in C1 compared with C2 and C3 (Fig. 3B). We
then compared the expression differences in INFG genes between the three subtypes and found out that INFG
was significantly overexpressed in C3 (Fig. 3C). The cytolytic activity score in the C3 cluster was much higher
compared with the other 2 clusters (Fig. 3D). The T cell inflamed GEP score showed a similar trend between the

Scientific Reports|  (2023) 13:7294 | https://doi.org/10.1038/s41598-023-34602-0 nature portfolio



www.nature.com/scientificreports/

A

vy)

C Subtype E3C183C2:3C3

. . . . g 205 o . 5IFNG "
- Co : . . .
4 : : $2.00 T20
o : : . £ Z : :
~ i H . . . S 175 g S : :
. H - N
g2 . i : i ¢ o 21.0] | ;
- H . @ ‘ o H i
. S 1.50 :
! ! i s 0.5 [ .
PDCD1 CD274 CTLA4 Subtype Subtype
6 . *kk 9 1 25 . *kk 2 Kk 2 *kk 2 Hkk
. o) N s . .
= s a : . :
s . . 1.00 1
Sa s i 5 S 1 1
© (O] . ‘B ° w
£ g0.75 30 5 Q |
> £ X B 0 =
I} ® w 2
32 E 0.50 -1 »
3 -1 :
— 0.25 . -2
Subtype Subtype Subtype Subtype Subtype

G Kruskal-Wallis test p=2.3e-12

Subtype ss C188 C2E3 C3

Kruskal-Wallis test p=1.5e-05 Kruskal-Wallis test p=1.1e-07 Kruskal-Wallis test p=3.8e-16 Kruskal-Wallis test p=0.002

Kruskal-Wallis test p=1.3e-06
ns |

Fekk Fekk Fedkk 20 ekk
o4 Hkk -3.25 Hokok Hekk -5.0 dekk o ns
8 ok o ns 3 3 0.2 ok ° ns 8 ok
> (@] o N @ 0 -
35 - [Boas0] | © 3 2 . | §-55 515 |
o 3 k L £ 00 3 s
£ §-3.75 £ £ g760 £10 ;
-6 £ % 2 = E &
&-4.00 w w02 £6.5
425 0 0.5 )
Ci_C2 C3 Tt o Yo 2 o3 Ci_C2 C3 C1 C2 C3 Ci C2z C3
Docetaxel Paclitaxel Cisplatin Cisplatin Cytarabine Gefitinib

Figure 3. Evaluation of immune-related indicators between the 3 clusters. (A) Differences in immune
checkpoint gene expression among the 3 clusters. (B) Differences in “T cell inflamed GEP score” among the 3
clusters. (C) Differences in response to IFN —gamma among the 3 clusters. (D) Differences in the expression
of INFG gene in the 3 clusters. (E) Differences in “Cytolytic activity” between the 3 clusters. (F) Differences in
the TIDE scores of the 3 clusters. (G) The box plots of the estimated IC50 for docetaxel, paclitaxel, cisplatin,
cytarabine, bortezomib, and gefitinib in the 3 clusters from the TCGA-LIHC cohort.

3 clusters (Fig. 3E). We further adopted TIDE software and evaluated the potential effect of immunotherapies.
The results demonstrated that C1 had the highest score in exclusion and TIDE compared with C2 and C3. The
dysfunction score of C1 was much lower compared with C3 (Fig. 3F). A higher TIDE score represents higher
immune escape and lower effectiveness in immunotherapies. Next, we evaluated the response of different clusters
to chemotherapies. Traditional chemotherapy drugs included docetaxel, paclitaxel, cisplatin, cytarabine, bort-
ezomib, and gefitinib in the TCGA-LIHC cohort. The results indicated that C1 was found to be more sensitive
to docetaxel, cisplatin, cytarabine, bortezomib, and gefitinib (Fig. 3G).

Identification of hub genes among the NK cell-related genes and risk model construction. In
the previous section, we have identified 3 clusters. The limma’ R package was applied to screen out the DEGs in
C1 versus others, C2 vs others and C3 vs others (FDR <0.05 and |log2FC|> 1). Overall, we recognized 345 DEGs
between different clusters. Next, we used univariate COX regression analysis on the DEGs and identified 183
genes with significant prognostic effects (p <0.05), including 49 “risk” genes and 134 “protective” genes (Fig. 4A).
These 183 genes with significant prognosis were further compressed using the R package ‘glmnet’ for LASSO
regression analysis, to minimize the number of hub genes for risk score model construction. From the change
trajectory of prognostic precursor genes of each independent variable, it could be seen that, with the gradual
increase in lambda, the number of independent variable coefficients tending to 0 also gradually increases. Then,
we applied tenfold cross-validation to construct the model and analyzed the confidence intervals under each
lambda. The results suggested that the model reached the optimum for lambda = 0.0462. Therefore, we selected
13 genes for this scenario as the target genes for the next step (Fig. 4B). Based on these 13 genes from the
LASSO analysis results, we further used stepwise multivariate regression analysis. In this step, the AIC Akaike
information criterion was used, and one variable was successively deleted to reduce AIC, to obtain the best fit
degree (Fig. 4C). Ultimately, we identified six genes as key genes associated with natural killer cells that influence
prognosis (Fig. 4D). We also adopted the qPCR analysis, and figured out that CDC20, HOMX and S1009A were
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Figure 4. Identification of hub genes and risk model construction. (A) A total of 183 promising candidates
were identified among the DEGs. (B) Trajectories of each independent variable with lambda. (C) The confidence
interval under lambda. (D) The distribution of LASSO coeflicients of the Natural Killer cell-related gene
signature. (E) RNA expression level between the Huh?7 cell line and the LO2 cell lines. (F) Risk score, survival
time and survival status, and the expression of necroptosis-related genes in the TCGA-LIHC dataset. (G) ROC
curve and the AUC of risk score classification in the TCGA-LIHC dataset. (H) Kaplan-Meier survival curve
distribution of risk score in the TCGA-LIHC dataset.
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significantly highly expressed in HCC cell lines compared with LO2 cell lines. Meanwhile, CFHR3, GZMA, and
PONT1 were lower expressed in Huh7 cell lines compared with LO2 cell lines (Fig. 4E).

Further better understanding the prognostic model based on 6 NK cell-related genes, we calculated the
prognostic risk score of each sample and normalized it. The distribution of risk score of each sample in the
TCGA-LIHC cohort was shown in Fig. 4F. According to the risk score distribution, survival status and heatmap
of gene expression, the high and low risk score subgroups had significant differences. The 1 year, 2 years, 3 years,
and 5 years AUC of the prognostic model based on these 6 genes exhibited a high AUC area, suggesting that this
model had stable and good overall performance (Fig. 4G). The overall survival time curve showed that low the
risk score subgroup had longer survival time (Fig. 4H).

The risk score combined with clinicopathological features further improves the prognostic
model and survival prediction. To comprehensively evaluate the model, we constructed a decision tree
based on the age, gender, TNM stage pathological information, and risk score of patients in the TCGA-LIHC
cohort. The results indicated that risk score and T stage were the only key factors in the decision tree, and
four different risk subgroups were identified as “lowest”, “low”, “medium’, and “high” subgroups (Fig. 5A). The
Kaplan—Meier curve highlighted that the lowest risk subgroup showed the highest survival probability (Fig. 5B).
The proportion of high and low risk score subgroups among these four subgroups indicated that low risk score
samples were mainly located in high and medium subgroups and had significant differences compared with the
high-risk score subgroup mainly located in the low and lowest groups (Fig. 5C). The proportions of C1, C2 and
C3 clusters were significantly different for the four subtypes (Fig. 5D). We adopted the univariate and multivari-
ate cox regression analysis of risk score and clinicopathological characteristics, and the results showed that the
clinical stage and risk score were the most significant prognostic factors (Fig. 5E-G). Furthermore, the calibra-
tion curve was used to evaluate the prediction accuracy of the model. The calibration curves from the points of 1,
3, and 5 years were close to the standard curve, indicating that the nomogram had good prediction performance
(Fig. 5H). The reliability of the model was also evaluated using the decision curve, and it was observed that both
the risk score and the nomogram had significantly higher benefits than the extreme curves. To quantify the risk
assessment and survival probability of patients with liver cancer, we developed a nomogram combining the
risk score with other clinicopathological features to demonstrate that the risk score had the greatest impact on
survival prediction (Fig. 5I).

Clinical features between high and low risk score subgroups. In order to better explore the clinical
characteristics between high and low risk score subgroups, our analysis revealed that high risk score subgroup
samples had advanced tumor stages and tumor grades (Fig. 6A,B). The advanced viral etiology had higher risk
score level (Fig. 6C). The NK cell-related gene-based 3 clusters had remarkably different risk score levels: the C1
cluster had a significantly higher risk score compared with C2 and C3 (Fig. 6D). We further investigated the dis-
tribution of risk score subtypes within the 3 clusters, and figured out that most samples with low risk score were
also located in C2 and C3 (Fig. 6D). Similar results were shown for the ICGC cohort (Fig. 6E,F). Taken together,
our findings revealed the clinical features between high and low risk score subgroups.

Immune cell infiltration level, enriched signaling pathways, and response to immunothera-
pies and chemiotherapies between high and low risk score subgroups. To clarify the differences
in immune microenvironment between the groups, we compared the infiltration level of 22 types of immune
cells and figured out that 11 of them were significantly different, as shown in Fig. 7A. The internal correlations
between these 22 immune cells were intricate (Fig. 7B). We also adopted the ESTIMATE software to assess
the immune cell infiltration level. The results showed that the low risk score subgroup had higher immune
cell infiltration level (Fig. 7C). Then, we adopted the ssGSEA and GSEA to investigate the enriched signaling
pathways between high and low risk score subgroups. The high risk score subgroup was mainly enriched in cell
cycle-related signaling pathways (Fig. 7D). Furthermore, the correlation between the enrichment scores of these
functions and risk score was calculated, and the functions with a correlation greater than 0.4 were selected. These
evidences supported that the risk score was positively correlated with cell cycle-related pathways (Fig. 7E). Col-
lectively, our results revealed the differences in immune cell infiltration level, enriched signaling pathways and
response to immunotherapies and chemotherapies between groups.

Discussion

Cancers are a group of malignancies that remain the leading cause of death worldwide'. With the difficulties of
early diagnosis and insufficient efficacy of advanced-stage therapies, the main obstacles for cancer management
are exploring novel diagnostic biomarkers for early diagnosis and improving therapy effectiveness and prognosis
prediction'®. The liver is the largest immune organ that has typical immune tolerance characteristics'”. HCC
has become the leading cause of cancer-related deaths in the world'®. It has a complex ecosystem featured by
high heterogeneity'®. In recent years, the roles of the immune system in hepatic physiology and the pathologi-
cal changes during tumor HCC initiation and progression have been increasingly recognized. HCC are distinct
from other cancers in that it typically features a status of long-term low-grade inflammation®. Investigating the
internal mechanisms that underlie inflammation-driven tissue remodeling of the hepatic immune environment
might help to provide novel approaches into much needed treatments for this devastating disease. Immune cells
in the liver play crucial roles in the initiation and progression of HCC*. NK cells, a group of adaptive immune
cells, are abundantly enriched in the liver and thought to contribute to the pathogenesis of liver cancer*'. Hence,
they are potential therapeutic targets, albeit underexplored given their important role in immunosurveillance
and their capability to recognize and eliminate tumor cells*.
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Figure 5. Model construction and validation based on risk score and clinical signatures. (A) Patients with full-
scale annotations, including risk score, age, gender, and TNM Stage, were used to build a survival decision tree
to optimize risk stratification. (B) Significant differences of overall survival were observed among the four risk
subgroups. (C, D) Comparison and analysis between different groups. (E, F) Univariate and multivariate Cox
analysis of risk score and clinicopathological characteristics. (G) The nomogram model based on risk score and
stage. (H) Calibration curves of nomogram for years 1, 3 and 5 based on this risk score and clinical feature-
based model. (I) Decision curve of nomogram with all factors.

Traditional approaches include chemotherapies, such as sorafenib or lenvatinib that are still listed as first-line
drugs. In recent years, the immune-checkpoint inhibitors (ICIs) have revolutionized cancer therapy in unsolid
tumors. They have shown promising effects against tumors and proven as effective in a significant proportion
of refractory patients undergoing standard therapy*?. Systematic evaluation of the immune microenvironment
provides alternative immunotherapeutic tools that could help overcome their limitations. NK cells have great
anti-tumor ability in HCC, initiating T cell response by chemical signals and also enhancing the density of
immune cells. Moreover, accumulating evidence has demonstrated that NK cell activities are also involved in
tumor progression*. The melanoma cell was often reported as insufficient to inhibit NK cell-mediated cyto-
toxicity. Studies also figured out that metastatic melanoma biopsies of pembrolizumab responders had higher
NK cell infiltration level compared with non-responders, which was also remarkably correlated with dendritic
cell infiltration®. The infiltration of NK cells is also closely associated with tumor prognosis: higher NK cell
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Figure 6. Differences in clinical features between high and low risk score subgroups. (A) Risk score differences
among different tumor stages in the TCGA-LIHC cohort. (B) Risk score differences in tumor grades in the
TCGA-LIHC cohort. (C) Risk score differences between different viral groups in TCGA-LIHC cohort. (D) Risk
score differences among 3 clusters in the ICGC cohort. (E, F) Risk score differences between different tumor
stages and grades in the ICGC cohort.

infiltration levels predict better prognosis in squamous cell lung carcinoma, gastric cancer, and colorectal
carcinoma?. Further exploring the immune environment in HCC from multiple perspectives might pave ways
to derive novel therapeutic approaches, identify novel biomarkers, assess pre-treatment effects and predict the
post-treatment prognosis risk.

In this analysis, we compared the NK cell-related gene expression levels of liver cancer patients from public
databases. We identified 3 clusters, among which the C3 cluster had better prognosis and C1 had the worst prog-
nosis. For immune subtype classification, we figured out that there was a significant difference in immune-related
evaluation, clinical pathological signatures, and genomic mutation landscapes. These results demonstrated that
distinguishing between NK cell-related gene-based clusters provides a novel classification avenue for HCC. In
addition, we identified 6 hub genes, namely CDC20, HMOX1, S100A9, CFHR3, PCN1, and GZMA, for risk
score evaluation and prognosis prediction. We constructed a risk score model and figured out that a higher risk
score suggests poor prognosis compared with a lower risk score. In addition to clinical features, immune infiltra-
tion level and enriched signaling pathways also showed significant differences between high and low risk score
subgroups, helping to predict the prognosis and the effects of chemotherapy and immunotherapy.

In conclusion, NK cell-related gene signature-based classification and NK gene-related risk score model
can facilitate prognosis prediction and the selection of individualized immunotherapeutics for HCC patients.

Materials and methods

Database sources. In this analysis, we adopted The Cancer Genome Atlas (TCGA) public database and the
Genomic Data Commons (GDC) API to download the RNAseq data of TCGA-LIHC (https://portal.gdc.cancer.
gov/). After screening, a total of 365 primary tumor samples were included. We downloaded the information of
International Cancer Genome Consortium (ICGC) LIRI-JP cohort via the Hepatocellular Carcinoma (HCCDB,
http://lifeome.net/database/hccdb/home.html) database. From this source, 212 liver cancer samples were
included. We also adopted the Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgiacc=GSE14520), which contained transcriptome profiles of HCC samples and corresponding adjacent nor-
mal liver tissues. And 221 liver cancer samples were included in this analysis. We recognized the TCGA-LIHC
cohort as the training database, while the ICGC-LIRI-JP and GSE14520 cohorts served as validation datasets.

Data processing. The gene expression profile was measured experimentally using the [llumina HiSeq2000
RNA Sequencing platform and transformed into log2 scale. We adopted patients histologically diagnosed with
HCC, with transcriptional profiles, and survival clinical information were included in this analysis. The clini-
cal parameters included gender, age, tumor T N M stages, clinical status, status, and follow-up period. Samples
without survival information were excluded.

Origin of natural killer (NK) cell-related genes. In this analysis, we adopted NK cell genes from the
ImmPort Portal (https://www.immport.org/home), which yielded 134 NK cell-related genes for analysis. The
18 NK cell-related pathways were downloaded from the molecular signatures database. In addition, we selected
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Figure 7. Immune cell infiltration and immune-related indicators between high and low risk score subgroups.
(A) Proportion of immune cell components in the TCGA cohort. (B) Correlation analysis between 22 immune
cell components and risk score in the TCGA cohort. (C) Proportion of immune cell components calculated

by the ESTIMATE software in the TCGA cohort. (D) Top 10 pathways with the most significant differences
between high and low risk score. (E) Correlation analysis between KEGG pathways with correlations greater

than 0.4.

79 NK cell genes from the LM22 database (LM22 containing 22 functionally defined human immune subsets),
which is a validated leukocyte gene signature matrix.
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Data preprocessing. The following steps were performed to preprocess the RNA-seq of TCGA. Samples
with insufficient clinical information, or those missing survival time or clinical tumor status were removed. The
Ensemble was converted into Gene Symbol. In addition to the GEO dataset, we downloaded the annotation
information of the corresponding genomic platform, mapped probes to genes according to the annotation infor-
mation, and removed probes that matched one probe to multiple genes. When multiple probes matched with a
gene, the mean value was taken as the gene expression value.

Molecular subtyping of NK cell-related genes. In order to better classify the NK cell-related genes into
different clusters, we adopted the ConsensusClusterPlus tool to construct the consensus matrix and cluster the
NK cell-related expression profile data of samples. We adopted the “KM” algorithm and “1-Pearson correlation”,
and applied the metric distance and 500 bootstraps, with each bootstrap process including 80% of patients in the
training set. We identified the cluster number as 2-10. To better determine the optimal classification, we calcu-
lated the consistency matrix and the consistency cumulative distribution function. We can get better clustering
quality when K =3. Finally, three specified molecular subtypes of the HCC cohorts were obtained.

Risk score model construction. In order to construct the risk score model, we recognized the dif-
ferentially expressed NK cell-related genes among the clusters with a false discovery rate (FDR) of 0.05 and
[log2FC|> 1. Genes with P less than 0.05 were regarded as significant prognosis-related differentially expressed
genes. To reduce the number of genes and construct the prognostic risk model, we performed least absolute
shrinkage and selection operator (LASSO) regression analysis, and obtained NK phenotype-related significant
prognostic genes. The risk score of each sample was calculated by riskscore=%pi x Exp, where “i” represents
the gene expression level of NK cell phenotype-related genes, and {8 represents the Cox regression coeflicient of
corresponding genes. Based on the threshold of “0”, patients were divided into high and low risk subgroups. We
applied the Kaplan-Meier method to draw survival curves, and performed the log-rank test to determine the
significance of the differences between clusters.

Evaluation ofimmunotherapy response. Tumor Immune Dysfunction and Exclusion (TIDE) is a con-
venient and efficient method to evaluate the response to immunotherapy based on the gene expression profiles?.
In this analysis, TIDE was carried out to verify the impact of the efficacy of risk score prediction model on clini-
cal responsiveness to immune checkpoint inhibitors (ICIs).

Single-sample gene set enrichment analysis (GSEA) and KEGG enrichment. All candidate dif-
ferentially expressed genes in the Hallmark database were adopted in this analysis. The GSEA analysis was also
conducted to explain differences in enriched signaling pathways, especially in immune infiltration and mac-
rophage-associated biological pathways. In addition, the correlation between the KEGG (https://www.kegg.jp/
kegg/keggl.html)* enrichment scores of these functions and risk score was calculated.

Evaluation of tumor immune microenvironment-related immune cell infiltration. The tumor
microenvironment (TME) is key to the pathogenesis of solid tumors. CIBERSORT? (https://cibersort.stanf
ord.edu) was utilized to reveal the immune cell infiltration patterns, determine the proportions of circulating
immune cells and analyze the correlation between these immune cells. ESTIMATE provides basic information
with tumor purity level, stromal cell infiltration level, and immune cell infiltration level in tumor tissues based
on the genomic profiles.

Evaluation of risk score and chemotherapy response. We employed the ‘pRRophetic’ R package to
calculate and evaluate the IC50 and sensitivity of immunosuppressants. This tool has good prediction abilities on
clinical chemotherapy response based on gene expression levels. The prediction by ‘pRRophetic’ included drug
sensitivity for methotrexate, parthenolide and rapamycin.

Cell culture, RNA extraction and real time PCR analysis. In this study, we adopted the LO2 cell line
and Huh?7 cell line and cultured them in 37 °C incubator with Dulbecco modified eagle medium +10% fetal
bovines serum and 1% penicillin streptomycin. The total RNA was extracted by Fastpure cell/tissue total RNA
isolation kit V2 (RC112-01, Vazyme, China) according to the instruction. We performed the ChamQ Universal
SYBR qPCR Master Mix kit (Vazyme, China) on the reverse transcription the by biosystems (Quant Studio
TMDx) machine. In addition, we conducted the real time PCR analysis by fluorescence qPCR instrument (ABI,
Quant Studio TMDx, Thermo Fisher Scientific, Inc.). Finally, we calculated the RNA expression level by fold
change =274¢T, All target genes primers were listed in Table S1.

Statistical analysis. All statistical analyses were conducted using the R software version 4.0.5. We also
used the Student’s t-test to compare the differences between two subgroups, and performed the Kaplan-Meier
method to analyze the differences in survival curves using the log-rank test.

Disclosure. TCGA, HCCB and GEO belong to public databases. The patients involved in the database have
obtained ethical approval. Users can download relevant data for free for research and publish relevant articles.
Our study is based on open-source data, so there are no ethical issues and other conflicts of interest.
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The datasets used and/or analysed during the current study are available from the public database (TCGA-LIHC,
ICGC-LIRI-JP, and GSE14520). And the original contributions presented in the study are included in the article/
supplementary material, further inquiries can be directed to the corresponding authors.
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