
1

Vol.:(0123456789)

Scientific Reports | (2023) 13:7735 | https://doi.org/10.1038/s41598-023-34600-2

www.nature.com/scientificreports

Quantum AI simulator using
a hybrid CPU–FPGA approach
Teppei Suzuki *, Tsubasa Miyazaki , Toshiki Inaritai & Takahiro Otsuka

The quantum kernel method has attracted considerable attention in the field of quantum machine
learning. However, exploring the applicability of quantum kernels in more realistic settings has
been hindered by the number of physical qubits current noisy quantum computers have, thereby
limiting the number of features encoded for quantum kernels. Hence, there is a need for an efficient,
application-specific simulator for quantum computing by using classical technology. Here we
focus on quantum kernels empirically designed for image classification and demonstrate a field
programmable gate arrays (FPGA) implementation. We show that the quantum kernel estimation
by our heterogeneous CPU–FPGA computing is 470 times faster than that by a conventional CPU
implementation. The co-design of our application-specific quantum kernel and its efficient FPGA
implementation enabled us to perform one of the largest numerical simulations of a gate-based
quantum kernel in terms of features, up to 780-dimensional features. We apply our quantum kernel to
classification tasks using the Fashion-MNIST dataset and show that our quantum kernel is comparable
to Gaussian kernels with the optimized hyperparameter.

Quantum computing1 is an emerging technology that could transform many areas of industries and scientific
research, including finance2, chemistry3, and machine learning (ML)4,5. In particular, quantum machine learn-
ing (QML)4–17 has received considerable attention at a rapid rate, indicating that QML is a plausible candidate
for the practical application of near-term quantum devices. While early fault-tolerant quantum computing
has been demonstrated recently18, noisy intermediate-scale quantum (NISQ) processors are currently available
through various hardware platforms with ∼ 10–100 physical qubits. However, the number of physical qubits
today’s NISQ computers have is generally insufficient to explore practical applications of QML. Therefore, there
is a need for application-specific quantum computing simulators to explore and validate the practicality of QML
in real-world settings.

The quantum kernel method is a NISQ algorithm in the framework of the hybrid quantum–classical
 approach19,20 and can also be feasible on current NISQ computers with shallow quantum circuits9,12,13,16,17. In
the quantum kernel method, a quantum feature map can be described explicitly by a quantum circuit and the
quantum kernel entry can be estimated by measuring the inner product of the quantum feature map8,9. The cal-
culation of quantum kernels when using real devices or general-purpose simulators based on quantum assembly
language (QASM) requires a number of measurements to obtain the quantum kernel entries (note that measure-
ments are a key part of the QASM simulator, which handles measurements by collapsing the state of the qubit
according to the probabilities predicted by quantum mechanics). Commonly used quantum kernels inspired by
instantaneous quantum polynomials (IQP)9 can be computationally prohibitive on classical computers as the
number of qubits increases; for instance, the number of entangled qubits in the simulation of quantum kernels
using state-of-the-art classical platforms is 3011. On the other hand, it becomes challenging to reliably estimate
such quantum kernels using near-term quantum devices with increasing size in circuits, owing to expensive
gate costs, low gate fidelities, and different qubit connectivities. The above points can be a drawback in explor-
ing practical applications of quantum kernels since machine learning models typically improve performance by
increasing training data samples or expanding the number of input features. There is still a gap between theoreti-
cal developments and practical applications in the quantum kernel method.

To bridge the gap between theory and practice in the quantum kernel method, in this paper, we focus on
an application-specific quantum kernel that can be applied to image data with a large number of features. To
this end, we demonstrate an implementation of an efficient quantum AI simulator by using a heterogeneous
classical computing platform. Our approach is highly customized for our specific tasks at the hardware level
and the main objective of our simulator differs from a general-purpose quantum simulator, which is designed
to be versatile and to perform a range of quantum algorithms. Until now, there have been considerable efforts
to develop quantum computing simulators21–27. Among hardware implementations, field programmable gate

OPEN

Research and Development Center, SCSK Corporation, Toyosu Front, 3-2-20 Toyosu, Koto-ku, Tokyo 135-8110,
Japan. *email: tep.suzuki@scsk.jp

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-34600-2&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2023) 13:7735 | https://doi.org/10.1038/s41598-023-34600-2

www.nature.com/scientificreports/

arrays (FPGA) are one of the desirable platforms, because FPGA has the properties of efficient parallelism, low
latency, and customization. FPGAs comprise programmable logic blocks that can be interconnected to perform
parallel processing, allowing each logic block to perform a specific task simultaneously. FPGAs can also be cus-
tomized to perform specific tasks using hardware description languages such as Verilog. Herein, we co-design
application-specific quantum kernels and our FPGA architecture, which allows efficient numerical simulations.
FPGA has been successfully applied to fault-tolerant quantum algorithms such as Grover’s algorithm28–30, quan-
tum Fourier transform28–31, and Deutsch’s algorithm32. However, an FPGA implementation of quantum kernels
has been unexplored and the present study is the first demonstration of a gate-based quantum kernel simulator
using an FPGA platform.

The rest of the paper is organized as follows. We provide a brief introduction to support vector machine
(SVM) and describe our quantum feature map that is useful for image classification. Then we explain the overview
of our quantum AI simulator using a heterogeneous CPU–FPGA computing. From an algorithmic point of view,
the quantum kernel method can be divided into the quantum kernel estimation and the rest of the tasks. The
simulation of the quantum kernel can be computationally demanding; hence, the workload can be accelerated by
FPGA hardware. On the other hand, the rest of the tasks, such as dimensionality reduction and the optimization
of machine learning parameters, can be efficiently performed on the CPU using existing classical libraries. The
FPGA implementation of the quantum kernel is checked in terms of both numerical precision and hardware
acceleration. We apply our quantum kernel simulator to binary and multiclass classification for a range of input
features using the Fashion-MNIST dataset. Then we summarize our conclusions.

Results
Quantum support vector machine. The quantum kernel method is one of the most important algo-
rithms in QML techniques and many studies have been reported4,5,8,9,11–17. In the classical kernel method33,34 the
inner product of the feature map is represented by kernel functions, which implicitly use the Hilbert space; on
the other hand, the quantum kernel explicitly defines a quantum feature map by means of a quantum state |φ(x)�
for d-dimensional input vectors x ∈ R

d . The quantum kernel matrix K
(

x, x
′
)

 can be estimated by calculating
the inner product of the quantum feature map8,9:

For binary classification in the framework of SVM, one can obtain a support vector classifier that estimates
the label for a new datum x:

where yi ∈ {+1,−1} and parameters {α∗
i } and b∗ are the optimal parameters obtained in the training phase34. In

the hybrid quantum–classical algorithm, the training phase can be performed on classical computers, whereas
the quantum kernel entries can be computed by NISQ computers or quantum computing simulators; such
methodology is called the quantum SVM (QSVM). The NISQ computation of the quantum kernel requires many
quantum measurements to obtain a quantum kernel entry with statistically reliable accuracy. For example, a
value for each computational-basis measurement is zero or one. For each quantum kernel entry, O

(

N2
)

 shots are
required with respect to the number of data samples N , resulting in the computational complexity of O

(

N4/ε2
)

operations with the maximum error ε , in order to obtain all the quantum kernel entries9. Such computational
complexity prohibits us from developing and validating quantum kernels as the number of data samples grows.
Also, the number of entangling qubits with different connectivities in the previously proposed quantum kernels
is increased with qubit count9, which requires additional computational resources.

To address these issues, here we introduce a shallow, fixed-depth quantum circuit that can be applied to a
quantum kernel for a larger number of input features. In the previously proposed quantum kernels based on
IQP circuits9, the number of dimensional features is typically set to the number of entangled qubits9,11,14,15. IQP
circuits are a subclass of quantum circuits that cannot be classically efficiently simulated unless the polynomial-
time hierarchy collapses to the third level35. Here, an IQP circuit is a circuit where a Hadamard gate is applied
to each qubit at the beginning and end of the computation, but the rest of the gates are diagonal. In the context
of the quantum kernel method, researchers have typically used a more specific type of IQP, called the ZZ feature
 map9. In the ZZ feature map, the connectivity of qubits is achieved in a pair-wise manner, resulting in n(n− 1)/2
interactions, where n is the number of qubits. This leads to a rapid expansion of expressibility and results in a
deterioration of generalization performance as qubit count increases11,14,15. Our approach aims to simplify the
quantum feature map, limit the extent to which qubits are entangled, and control the capacity of our QML model,
while increasing the number of input features. This framework can handle several hundreds of input features in
QSVM. For the mn-dimensional input vector x = [s1, s2, · · · , sm]

T ∈ R
mn , where sb is the n-dimensional vector

sb =
[

sb,1, sb,2, · · · , sb,n
]T , we consider a block product state (BPS) wavefunction36:

where

(1)K
(

x, x
′

)

=

∣

∣

∣

〈

φ(x)|φ(x
′

)

〉∣

∣

∣

2

.

(2)y = sgn

(

∑

I

yiα
∗
i K

(

x
(i), x

)

+ b∗

)

,

(3)
∣

∣�BPS(x)� = |ψ1(s1)� ⊗ |ψ2(s2)� ⊗ · · · ⊗ |ψm(sm)� ,

(4)|ψb(sb)� =

(

⊗n
q=1Rz

(

sb,q
)

)

Uent
2n

(

⊗n
q=1

(

Ry
(

sb,q
)

Rz(sb,q)H
)

)

∣

∣0⊗n� ,

3

Vol.:(0123456789)

Scientific Reports | (2023) 13:7735 | https://doi.org/10.1038/s41598-023-34600-2

www.nature.com/scientificreports/

and

In the BPS wavefunction, a modest number of qubits can be entangled within each block (in our numerical
simulations, n was varied from 2, 3, and 6); and for the wavefunction |ψb(sb)� , each component sb,q is encoded
three times as the input angle for the ration operator gates (i.e., sb,q is encoded in the Rz gate, in the Ry gate, and
again in the Rz gate in Eq. (4)). Such kind of redundant encoding leads to the better performance of QML mod-
els based on angle encoding37. The state |ψb(sb)� is related to matrix product states, a class of tensor networks
that have been used for the study of ground states of quantum systems and recently for machine learning. The
connectivity of qubits in Eq. (4) is limited to their nearest neighbors, resulting in (n− 1) interactions. The idea
of BPS has been originally used for ML models based on tensor networks36; yet, to our knowledge, this kind of
BPS-based quantum feature map has not been applied to quantum kernels. In this work, we will show that such
a feature map can be used for QSVM. The kernel associated with the quantum feature map defined by Eq. (3)
can be given by

The number of blocks m can be varied in order to allow a larger number of input features depending on dif-
ferent datasets. Another interesting aspect is that the quantum kernel is not translation invariant, which means
that the quantum kernel does not depend solely on the distance of input vectors, in contrast with Gaussian
kernels. A computational benefit of our approach is that the calculation of the quantum kernel can be divided
into m computational tasks, allowing an efficient computation on classical computers. In particular,

∣

∣

∣
�ψ i

b|ψ
j
b�

∣

∣

∣

2

in Eq. (6) can be computed separately; hence, each task can now be efficiently simulated through FPGA accelera-
tion and the multiplication can then be performed on CPU.

Quantum AI simulator using a hybrid CPU–FPGA approach. By co-designing FPGA architecture
and a quantum kernel given by a shallow quantum circuit, we implemented a fast and efficient quantum AI
simulator using a heterogeneous computing approach (Fig. 1a). Details of computational resources in the cloud
system (FPGA and CPU) are given in Methods. To begin with, using the principal component analysis (PCA)
 method38 we conducted the dimensionality reduction of the 28× 28 image data from the Fashion-MNIST
 dataset39; then the number of input features can be varied from d = 4 to d = 780 . After obtaining PCA-reduced
input vectors x(i) ∈ R

d , the input data are sent from CPU to the internal memory of an FPGA hardware via PCI
express. Then, for each block wavefunction |ψb(sb) �(b = 1, · · · ,m) of the quantum feature map, we calculate the
square of the norm of the inner products

∣

∣

∣
�ψ i

b|ψ
j
b�

∣

∣

∣

2
 (which is depicted in Fig. 1b) on our FPGA architecture in

the following procedure: First, the sine and cosine of the input angles for quantum gates are computed using the
COordinate Rotational DIgital Computer (CORDIC) algorithm40. Second, the square of the norm of the inner
product can be calculated using the unitary matrices in Eq. (4), together with an efficient implementation of n-
qubit entanglement. (The procedure is described in great detail in Methods and Supplementary Notes 1 and 2.)
This process can be repeated for all the pairs of data samples, namely, for N2/2 cycles. The processed, real-valued
data are sent back to the CPU. The kernel matrix element will thus be calculated by the multiplication of m
blocks. After all the kernel entries are obtained, the training phase of the SVM can be performed on the CPU
platform. In the test process (Fig. 1c), prediction can be done using the same FPGA acceleration with O(ND)
operations, where D is the number of test data.

FPGA implementation: numerical precision and acceleration. Herein we validate our FPGA imple-
mentation in terms of numerical precision and acceleration. We begin by comparing the quantum kernel values
obtained by the FPGA platform and those obtained by the CPU platform (Fig. 2a–c). The norms of inner prod-
ucts

∣

∣

∣
�ψ i

b|ψ
j
b�

∣

∣

∣

2
 have values between 0 and 1. Such property along with a shallow circuit depth is amenable to the

use of 16-bit fixed-point arithmetic in our FPGA architecture, which in turn makes the calculation faster with
efficient hardware utilization. We also employed 64-bit floating-point arithmetic in the CPU platform to validate
our FPGA implementation. The parity plot suggests the success of our FPGA implementation of the quantum
kernel (Fig. 2c). The numerical deviation between the two hardware platforms was ± ∼ 0.095%, indicating that
there was a negligible loss of numerical accuracy.

Next, we compare the execution time for computing a kernel matrix (in the case of 6 entangled qubits) using
the FPGA platform with the one obtained by our CPU implementation, as well as the one obtained by Qiskit
 Aer21, a QASM quantum computing simulator (Fig. 2d). Measurement is a vital aspect of the simulation process
in the QASM simulator, which handles measurements by collapsing the state of the qubit according to the prob-
abilities determined by the state of the qubit. Therefore, in the QASM simulator, a number of shots are required
to obtain the expectation value. In our CPU implementation, the kernel matrix entry is obtained directly by
calculating the inner product of the state vectors. In particular, we used NumPy41, which is a popular library for
scientific computing and data analysis (note that the core of NumPy is implemented in C Language). For our
particular tasks (in the case of 6 entangled qubits), the execution time by our CPU implementation is likely to
be somewhat faster than that by the state-vector simulator; this is because the state-vector simulator tracks the

(5)Uent
2n :=

n−1
∏

q=1

CNOTq,q+1.

(6)K
(

x
(i)
, x

(j)
)

=

∣

∣

∣

〈

�BPS
(

x
(i)
)

|�BPS
(

x
(j)
)〉∣

∣

∣

2

=

m
∏

b=1

∣

∣

∣

〈

ψb

(

s
(i)
b

)

|ψb

(

s
(j)
b

)〉∣

∣

∣

2

.

4

Vol:.(1234567890)

Scientific Reports | (2023) 13:7735 | https://doi.org/10.1038/s41598-023-34600-2

www.nature.com/scientificreports/

quantum state of the system as it evolves through the circuit, resulting in a slowing down of the execution time.
Thus, the plot for the state-vector simulation would be the upper side of the plot denoted by orange in Fig. 2d.

In our FPGA architecture, once the data are sent to the FPGA architecture, we used only the internal memory
of the FPGA hardware without accessing the external (off-chip) memory, which circumvents the associated com-
munication overhead (for more details of our FPGA architecture, see Supplementary Note 2). In addition, two
more factors are responsible for the FPGA acceleration. First, an FPGA allows each programable logic block to
perform a specific task simultaneously in an efficient manner. Second, an FPGA can be customized to perform
specific tasks using the hardware description language, resulting in faster performance in comparison with CPUs.

In our FPGA implementation, all the kernel entries were computed in 4.1 ms at N = 1000 ; and the execu-
tion time including CPU–FPGA communication overhead was 15.4 ms at N = 1000 . In other words, our FPGA
implementation achieved a 1784 × improvement in comparison with the CPU counterpart. Also, the execution
time including the communication overhead was 472 times faster (Fig. 2d); moreover, in comparison with the
execution by a QASM simulator (assuming that the computation cost grows as O

(

N4/ε2
)

 operations), a 10 mil-
lion times speedup was accomplished at N = 400 (Fig. 2d). The results show that our FPGA implementation
is highly efficient in terms of the number of data samples, with a modest number of entangling qubits (up to
6 qubits) being used in our quantum feature map. Owing to the limitation of the internal memory and digital
single processors within an FPGA, however, our implementation technique will be prohibitive for n large than 8.
Nonetheless, for our machine-learning tasks, this can be overcome by dividing input features into a number of
blocks, and each block’s quantum kernel can be efficiently computed in FPGA. Thus, the FPGA-based simulator
accelerates the numerical simulations of QSVM using our quantum kernel and allows us to validate its applica-
bility to much larger features in quantum kernel methods.

Figure 1. Schematic representation of our quantum AI simulator using a hybrid CPU–FPGA approach. (a)
PCA is used to reduce the dimension of the original data from Fashion-MNIST; a range of features from d = 4
to d = 780 can be used for machine learning. Then PCA-reduced features are sent from the CPU to the FPGA.
We calculate the square of the norm of the inner products for each block wavefunction |ψb � of the quantum
feature map. This process is repeated for all the pairs of the data points (i.e., N2/2 times). The data are then sent
back to the CPU. A kernel matrix value can be obtained by multiplying m blocks. After all the quantum kernel
entries are computed, the SVM algorithm is performed on the CPU. (b) 2-qubit example of a quantum circuit
that performs the estimation of the quantum kernel element. For the entangling gate, the CNOT gate is used.
The quantum circuit is simulated on FPGA using the procedure described in the text (see Methods). (c) Test
process: the decision function can be computed using the hybrid CPU–FPGA scheme. Details of computational
resources in the cloud system (FPGA and CPU) are given in Methods.

5

Vol.:(0123456789)

Scientific Reports | (2023) 13:7735 | https://doi.org/10.1038/s41598-023-34600-2

www.nature.com/scientificreports/

Binary classification on Fashion-MNIST dataset. Having shown the accuracy and efficiency of our
FPGA-based quantum kernel estimation, we now turn to the performance of our quantum kernel. To begin
with, we trained classical and quantum SVMs on Fashion-MNIST and obtained 45 binary classifiers. Among 45
pairs of binary classification tasks from 10 categories of Fashion-MNIST39 (0, t-shirt/top; 1, trouser; 2, pullover;
3, dress; 4, coat; 5, sandals; 6, shirt; 7, sneaker; 8, bag; 9, ankle boots), about half the pairs of classification tasks
were relatively easy to distinguish. On the other hand, more challenging tasks such as pullover versus shirt (2
vs. 6), pullover versus coat (2 vs. 4), and coat versus shirt (4 vs. 6) classification tasks were somewhat difficult to
distinguish (e.g., the images of pullovers are more similar to those of coats than to those of trousers). Hence, we
focused on the three binary classification tasks and investigate the performance in detail (Fig. 3).

The performance of our quantum kernel without introducing any hyperparameter was comparable to that of
the Gaussian kernel exp

(

−γ �x(i) − x
(j)�

2
)

 with the optimized bandwidth γ , for dimensions smaller than ∼ 300
(Fig. 3a). Here, a key hyperparameter in the Gaussian kernel is the kernel bandwidth γ , which is known to affect
the performance of kernel-based methods such as SVMs and is routinely optimized when SVMs are used in
practice. The hyperparameter γ controls the smoothness of the decision boundary in the SVM. Analogously, we
introduced a scaling hyperparameter � (i.e., x(i) ← �x

(i) in the quantum circuit) to improve the performance of
QSVM. The role of � appears to be similar to the classical counterpart. The hyperparameter � can calibrate the
angles of the rotation gates and directly affect the quantum feature map in the Hilbert space. From a physical
point of view, changing the hyperparameter � in the quantum kernel is related to changing the total evolution
time in the Hamiltonian evolution15. The best test accuracy for the quantum kernel was 0.87 at d = 180, 190, 200 ;

Figure 2. FPGA implementation of the quantum kernel and its execution time. The numerical simulations were
performed on a 6-qubit quantum circuit that estimates the quantum kernel element. (a) Quantum kernel matrix
obtained by an FPGA platform (16-bit fixed-point arithmetic). (b) Quantum kernel matrix obtained by a CPU
platform (64-bit floating-point arithmetic). (c) Parity plot for the quantum kernel values obtained by CPU and
FPGA platforms. Inset shows small differences between the two: the error between the two hardware platforms
was ± ∼ 0.095%. (d) Execution time with respect to the number of data N for different platforms: FPGA, blue;
FPGA (including CPU–FPGA communication overhead; denoted by the asterisk), green; CPU, orange; QASM
quantum simulator (Qiskit Aer), red. Note that the FPGA execution including communication overhead was
472 times faster than that for the CPU counterpart at N = 1000.

6

Vol:.(1234567890)

Scientific Reports | (2023) 13:7735 | https://doi.org/10.1038/s41598-023-34600-2

www.nature.com/scientificreports/

whereas that for the classical kernel with the optimal bandwidth was 0.88 at d = 190 . We found that introducing
the scaling parameter � improved the performance of our quantum kernel for larger dimensions (d >∼ 300),
maintaining its comparable performance to the classical kernel, which is indicated by the blue dotted line in
Fig. 3a (for the grid search over the hyperparameters of the classical and quantum kernels, see Supplementary
Note 3).

The test accuracy obtained by our quantum kernel was improved by increasing the number of data samples N
(Fig. 3b). In particular, as the number N was increased, the test accuracies for higher dimensional vectors tended
to improve gradually (Fig. 3b). But the relatively sharp drop for dimensions higher than ∼ 300 was difficult to
overcome just by increasing N ; nonetheless, the dimension d that gave the best test accuracy was typically in the
range between 100 and 200 for this particular application. We note that the drop in the test accuracy for higher
dimensions can be overcome by optimizing the aforementioned scaling parameter (which will be discussed in
multiclass classification).

Figure 3. Train and test accuracies of the quantum kernel on the Fashion-MNIST dataset. (a) Training and
test accuracies with a range of features from d = 4 to d = 780 using 1000 data samples. The coat versus shirt
(4 vs. 6) classification task was used. The performance of the Gaussian kernel with the optimized bandwidth
for each dimension (train: red triangle; test: yellow triangle) is compared with that of the quantum kernel
(train: green circle; test: blue circle). Note that the performance of our quantum kernel without introducing any
hyperparameter is comparable to that of the classical kernel with the optimized bandwidth for the dimension
d smaller than ∼ 300. Introducing the scaling parameter improved the performance of our quantum kernel for
the dimension d larger than ∼ 300, which is indicated by the blue dotted line. (b) Test accuracies obtained by the
quantum kernel for a range of features with varying the number of data samples (N = 20, 100, 500, 1000, 4000).
The results were averaged over the three tasks: pullover versus shirt (2 vs. 6), pullover versus coat (2 vs. 4),
and coat versus shirt (4 vs. 6) classification tasks. (c) Best test accuracies with respect to the number of data
samples N , up to N = 4000 for the best classical (red triangle) and the quantum (blue circle) kernels. Each plot
represents the best test accuracy for a given N . The results were averaged over the same three tasks as in (b). (d)
The effect of quantum entanglement within a block (the block size n = 2, 3, 6). The coat versus shirt (4 vs. 6)
classification task was used. The shaded regions indicate the standard deviation over 6 independent runs.

7

Vol.:(0123456789)

Scientific Reports | (2023) 13:7735 | https://doi.org/10.1038/s41598-023-34600-2

www.nature.com/scientificreports/

The performance of our hyperparameter-free quantum kernel was competitive with the Gaussian kernel with
the optimized bandwidth at N > 1500 (Fig. 3c), which might be beneficial for practical applications. The best test
accuracies at N = 2000 and N = 3000 were 0.89 and 0.90, respectively, for both of the two kernels. For smaller
numbers of data samples (N < 1000), the performance of our quantum kernel was slightly lower than the best
classical counterpart. To understand the role of quantum entanglement, we investigated the effects of enlarging
the number of entangled qubits. Increasing the number of entangled qubits (from 2 to 6 qubits per block) did
not significantly change the performance for PCA-reduced input vectors (Fig. 3d); this kind of insensitiveness
to quantum entanglement has been previously reported in an ML model based on tensor networks using BPS36.
Our results probably indicate that the capacity of our quantum feature map is already sufficiently high even in the
case of n = 2 . However, this may not necessarily mean that quantum entanglement is unimportant; the CNOT
entangling gate can make the quantum feature map more complex in comparison with no quantum entanglement.
Overall, the behavior of our quantum kernel is quite different from the previously used quantum kernels9,11–15.
The results suggest that our quantum kernel is comparable to the best classical kernel with good generalization
performance for a range of features.

Multiclass classification on Fashion-MNIST dataset. We also show the numerical results for 10-class
classification on Fashion-MNIST. We trained our multiclass QSVMs using a one-versus-rest strategy. As was
found in binary classification tasks, our quantum kernel was comparable to the best classical kernel (Fig. 4a).

Figure 4. Multiclass classification on Fashion MNIST dataset. (a) Test accuracies for a range of PCA-reduced
features from d = 4 to d = 390 (the block size n = 2) for the best classical (red triangle) and the quantum (blue
circle) kernels. The number of data samples was 1000. For the classical kernel, we used Gaussian kernels with
the optimized bandwidth for each dimension. For the quantum counterpart, the optimal scaling parameter
� (x(i) ← �x

(i)) was used for each dimension. The quantum kernel with the optimal scaling parameter is
competitive with the classical counterpart. (b) Grid search over the scaling parameter � for a range of features.
The scaling parameter that gave the optimal test accuracy is indicated by the red open square: �∗ = 0.6 at
d = 330 . (c) Confusion matrix obtained from the best classical kernel (dimension d = 330). The performance
metrics were as follows: accuracy, 0.855; precision, 0.853; recall, 0.855; F-measure, 0.851. (d) Confusion matrix
obtained by the quantum kernel with the optimized scaling parameter (dimension d = 330). The performance
metrics were as follows: accuracy, 0.855; precision, 0.850, recall, 0.855; F-measure, 0.848.

8

Vol:.(1234567890)

Scientific Reports | (2023) 13:7735 | https://doi.org/10.1038/s41598-023-34600-2

www.nature.com/scientificreports/

For multiclass classification using the quantum kernel, we found that it was important to introduce the scaling
parameter. Hence, we performed a grid search for the scaling parameter � for a range of features (4 < d < 340)
(Fig. 4b). The optimal value for � was 0.6 at d = 330 . On the other hand, the optimal value for γ of the Gaussian
kernel was 2.5 at d = 330 . The confusion matrices for QSVM and SVM were similar to each other (Fig. 4c,d).
The performance metrics for the quantum (classical) kernel were the following: accuracy, 0.855 (0.855); preci-
sion, 0.850 (0.853); recall, 0.855 (0.855); F-measure, 0.848 (0.851). We note that, among 45 pairs generated by
10 categories of Fashion-MNIST, about half the pairs of classification tasks were relatively easy to distinguish;
hence, the difference in the test accuracy between the classical and the quantum kernels tended to be decreased.
The results suggest that our quantum kernel performed competitively with the best classical kernel in the mul-
ticlass classification task.

Discussion
In this study, we have implemented an application-specific quantum AI simulator using a heterogeneous
CPU–FPGA computing, which was achieved by co-designing the FPGA architecture and our quantum kernel.
To this end, we have introduced a BPS structure as a quantum feature map for QSVM, where a small number of
qubits are entangled in each block. This is the first demonstration of the FPGA implementation of a gated-based
quantum kernel. The co-design of the quantum kernel and its efficient FPGA implementation have enabled us
to perform one of the largest numerical simulations of QSVM in terms of input features, up to 780-dimensional
data. In the literature, one of the largest simulations of quantum kernels in terms of qubit count was performed
by Huang et al.11. The number of qubits in their study is 30. For our particular study, increasing the number of
entangled qubits is not a practical direction. Instead, our strategy is to divide input features into a number of
blocks, and each block’s quantum kernel can be efficiently computed in FPGA. By doing this, hundreds of fea-
tures can be handled. Our approach is highly customized for our specific tasks at the hardware level; the focus
of our simulator differs from that of a general-purpose quantum simulator, which is designed to be flexible and
to perform various quantum algorithms. An application of our quantum kernel to dimensional features larger
than ∼ 1000 would be more challenging because off-diagonal kernel values could become much smaller. This
limitation is related to our formalism of the quantum kernel, owing to the multiplication of many values that are
less than one in Eq. (6). Nevertheless, the FPGA-based quantum kernel simulator has significantly accelerated
our numerical simulations and allowed us to validate the applicability to QSVM with hundreds of input features.
The quantum circuit presented in this work might have implications for co-designing quantum software and
hardware and for developing application-specific quantum computers42,43.

We have demonstrated that the FPGA-based quantum kernel simulator was 470 times faster than that
obtained by the CPU implementation, without loss of accuracy. The numerical simulations show that our FPGA
implementation is highly efficient in terms of the number of data samples (up to 4000), with a modest number
of entangling qubits being used in the quantum feature map. We have applied our quantum kernel to image
classification using Fashion-MNIST for a wide range of PCA-reduced features. The results suggest that our
quantum kernel is comparable to the best classical kernel, with similar generalization performance for binary and
multiclass classification tasks. In binary classification, our hyperparameter-free quantum kernel was comparable
to the Gaussian kernels; whereas, in multiclass classification, the scaling parameter played a significant role in
improving the performance of our quantum kernel, in line with recent studies15,44.

Whether quantum kernels could perform better than classical kernels or have a practical advantage in real-
world settings is still an open question. Our quantum kernel may be helpful for understanding the applicability
of quantum kernels as well as their limitations. While our quantum kernel was applied to classification, the
quantum kernel could be used for other kernel-based ML tasks, such as regression, spectral clustering, Gauss-
ian process17, and causal discovery45. With hundreds of input features being handled in our quantum kernel,
other possible applications might include financial data, cheminformatics, and medical data. There is room for
improvement in our quantum feature map. For instance, a recent approach based on the automatic design of
quantum feature maps46 may possibly improve our quantum feature map or reduce the number of quantum
gates required. Nonetheless, our results might have implications for developing quantum-inspired algorithms
and designing practical quantum kernels in the NISQ era.

Methods
FPGA implementation of the quantum kernel. We describe an approach for efficient simulation of
our quantum kernel, which is particularly designed for our FPGA architecture. The quantum kernel is given by
the inner product of the quantum feature map, which in principle requires O

(

23n
)

 operations, owing to the mul-
tiplication of 2n × 2n matrices to generate the quantum feature map. Such computational complexity becomes
prohibitive for efficient FPGA implementation of quantum kernels, because FPGA architecture is memory-
bound and the number of complex multipliers is limited. For that reason, efficient resource utilization of FPGA
was crucial for calculating our quantum kernel. In this work, we employed a shallow quantum circuit so that
we were able to calculate the quantum kernel with O(2n) operations, as we will see below. This enabled efficient
parallelization and the use of internal memory in FPGA.

We consider the following quantum state:

where U1,U2, · · · ,Un and V1,V2, · · · ,Vn are single-qubit gates and Uent
2n :=

∏n−1
q=1CNOTq,q+1 represents n-qubit

entanglement operation. For the sake of our discussion, it is convenient to rewrite |ψ� as f = VUent
2n U f 0 with f 0

being a vector [1, 0, · · · , 0]T , where U := U1 ⊗ · · · ⊗ Un and V := V1 ⊗ · · · ⊗ Vn . First, we note that, in the

(7)|ψ� = (V1 ⊗ V2 ⊗ · · · ⊗ Vn)U
ent
2n (U1 ⊗ U2 ⊗ · · · ⊗ Un)

∣

∣0
⊗n�.

9

Vol.:(0123456789)

Scientific Reports | (2023) 13:7735 | https://doi.org/10.1038/s41598-023-34600-2

www.nature.com/scientificreports/

calculation of U f 0 , only the first column of U is needed; hence, U f 0 can be obtained without the need for fully
conducting tensor operations. By denoting the first column vector of each 2× 2 unitary matrix Uq as

[

χ
(q)
1 ,χ

(q)
2

]T

and the first column vector of U as u = [u1, u2, · · · , u2n]
T ∈ C

2n , then we have

This calculation can be performed by 4 · (2n−1 − 1) operations using complex multipliers in FPGA (more
details are given in Supplementary Fig. 5). The feature map can thus be rewritten as f = VUent

2n u . Next, we note
that V is a diagonal matrix in our quantum circuit and that Uent

2n is a sparse matrix, in which each row vector
contains only one non-zero entry. By denoting the diagonal elements {Vkk} as v = [v1, v2, · · · , v2n]

T ∈ C
2n , we

can calculate f as

Here ξk is the index of the non-zero element in the i th row of Uent
2n (e.g., for n = 2 , then ξ1 = 1 , ξ2 = 2 , ξ3 = 4 ,

and ξ4 = 3). In general, Uent
2n can be calculated recursively by

where Uent
2 and Y2 denote the 2× 2 identity matrix and the Pauli X matrix, respectively, and O2n denotes the

2n × 2n zero matrix. The proof of the recurrence relation is given in Supplementary Note 1. The indices {ξk}
in Eq. (9) can be determined once Uent

2n is obtained. Finally, the inner product �ψ i|ψ j� can be calculated by
∑

kf
∗
k

(

s
(i)
)

fk
(

s
(j)
)

.

Details of computational resources. Our quantum AI simulator based on a hybrid CPU–FPGA system
is implemented on the Amazon Web Services (AWS) Elastic Computing Cloud (EC2) platform, in which AWS
EC2 F1 instances of AMD Xilinx FPGA hardware are accessible. In particular, we used the f1.2xlarge instance
size, which has 1 FPGA, 8 vCPUs, and 122 GB of memory. More specifically, we used AMD Xilinx Virtex™
UltraScale + ™ VU19P FPGA and Intel Xeon™ E5-2686 v4 with a base clock speed of 2.3 GHz as vCPU. The details
of our FPGA architecture and block diagrams are provided in Supplementary Note 2.

Machine learning. Here we provide the details of our ML models. Preprocessing was applied to the original
data to make them suitable for quantum angle encoding: PCA was used to reduce the dimension of the 28× 28
original image data to d-dimensional input vectors x(i) ∈ R

d (where d was varied from 4 to 780), which were
then transformed such that x(i) ∈ [−1, 1] . In the training of support vector classifiers, hinge loss was used for
the loss function. Throughout the paper, the regularization parameter C for soft margin SVM47 was set to 1.0 for
both classical and quantum ML models. For the multiclass classification task shown in Fig. 4, a one-versus-rest
strategy was employed.

To compare the performance of our quantum kernel with the classical counterpart, we used the Gaussian
kernel, which is given by exp

(

−γ �x(i) − x
(j)�

2
)

 , with γ being a hyperparameter. To obtain the optimal test
accuracy, we performed a grid search over the bandwidth.

It is also possible to introduce a hyperparameter in our quantum feature map
∣

∣�BPS(x)〉 . In this work, we
consider that the input vector x can be scaled by � (i.e., x(i) ← �x

(i)), which is similar to an approach by recent
 work15. Thus, we performed a grid search over the scaling parameter.

The effect of the scaling parameter � was somewhat different from that of γ . In particular, we found that, for
binary classification, the case of � = 1 typically gave the near-optimal performance (see also Supplementary Note
3), implying that our quantum kernel gave a reasonable performance without introducing any hyperparameter.
Nonetheless, to further optimize the value for � , we narrowed the range for � and performed another grid search
over the scaling parameter

(8)U f 0 = u =

χ
(1)
1 · · · · · χ

(n−2)
1 · χ

(n−1)
1 · χ

(n)
1

χ
(1)
1 · · · · · χ

(n−2)
1 · χ

(n−1)
1 · χ

(n)
2

χ
(1)
1 · · · · · χ

(n−2)
1 · χ

(n−1)
2 · χ

(n)
1

χ
(1)
1 · · · · · χ

(n−2)
1 · χ

(n−1)
2 · χ

(n)
2

...

χ
(1)
2 · · · · · χ

(n−2)
2 · χ

(n−1)
1 · χ

(n)
1

χ
(1)
2 · · · · · χ

(n−2)
2 · χ

(n−1)
1 · χ

(n)
2

χ
(1)
2 · · · · · χ

(n−2)
2 · χ

(n−1)
2 · χ

(n)
1

χ
(1)
2 · · · · · χ

(n−2)
2 · χ

(n−1)
2 · χ

(n)
2

.

(9)fk = vkuξk .

(10)Uent
2n+1 =

[

Uent
2n O2n

O2n Y2n

]

; Y2n+1 =

[

O2n Uent
2n

Y2n O2n

]

(n ≥ 1) .

(11)γ ∈ {0.001, 0.1, 0.25, 0.5, 0.75, 1, 1.25, 2.5, 3.75, 5, 6.25, 7.5, 8.75, 10, 50, 100, 1000}.

(12)� ∈ {0.001, 0.1, 0.25, 0.5, 0.75, 1, 1.25, 2.5, 3.75, 5, 6.25, 7.5, 8.75, 10, 50, 100, 1000}.

� ∈ {0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1, 1.05,

10

Vol:.(1234567890)

Scientific Reports | (2023) 13:7735 | https://doi.org/10.1038/s41598-023-34600-2

www.nature.com/scientificreports/

We found that the test accuracy was slightly improved from 0.870 to 0.875 in binary classification (see
also Supplementary Note 4) and that the use of the scaling parameter � played an important role in multiclass
classification.

Data availability
All the datasets used in the present study are publicly available at https:// github. com/ zalan dores earch/ fashi on-
mnist. We cited the reference of the data in the manuscript.

Received: 21 September 2022; Accepted: 4 May 2023

References
 1. Nielsen, M. A. & Chuang, I. L. Quantum Computing and Quantum Information, 10th Anniversary (Cambridge University Press,

2010).
 2. Woerner, S. & Egger, D. J. Quantum risk analysis. NPJ Quantum Inf. 5, 15. https:// doi. org/ 10. 1038/ s41534- 019- 0130-6 (2019).
 3. Cao, Y. et al. Quantum chemistry in the age of quantum computing. Chem. Rev. 119, 10856–10915 (2019).
 4. Rebentrost, P., Mohseni, M. & Lloyd, S. Quantum support vector machine for big data classification. Phys. Rev. Lett. 113, 130503

(2014).
 5. Liu, Y., Arunachalam, S. & Temme, K. A rigorous and robust quantum speed-up in supervised machine learning. Nat. Phys. 17,

1013–1017 (2021).
 6. Biamonte, J. et al. Quantum machine learning. Nature 549, 195–202 (2017).
 7. Mitarai, K., Negoro, M., Kitagawa, M. & Fujii, K. Quantum circuit learning. Phys. Rev. A 98, 032309 (2018).
 8. Schuld, M. & Killoran, N. Quantum machine learning in feature Hilbert spaces. Phys. Rev. Lett. 122, 040504 (2019).
 9. Havlíček, V. et al. Supervised learning with quantum-enhanced feature spaces. Nature 567, 209–212 (2019).
 10. Benedetti, M., Lloyd, E., Sack, S. & Fiorentini, M. Parameterized quantum circuits as machine learning models. Quantum Sci.

Technol. 4, 043001 (2019).
 11. Huang, H.-Y. et al. Power of data in quantum machine learning. Nat. Commun. 12, 2631. https:// doi. org/ 10. 1038/ s41467- 021-

22539-9 (2021).
 12. Peters, E. et al. Machine learning of high dimensional data on a noisy quantum processor. NPJ Quantum Inf. 7, 161. https:// doi.

org/ 10. 1038/ s41534- 021- 00498-9 (2021).
 13. Hubregtsen, T. et al. Training quantum embedding kernels on near-term quantum computers. Preprint at https:// arxiv. org/ abs/

2105. 02276 (2021).
 14. Jerbi, S. et al. Quantum machine learning beyond kernel methods. Preprint at https:// arxiv. org/ abs/ 2110. 13162 (2021).
 15. Shaydulin, R. & Wild, S. M. Importance of kernel bandwidth in quantum machine learning. Preprint at https:// arxiv. org/ abs/ 2111.

05451 (2021).
 16. Kusumoto, T., Mitarai, K., Fujii, K., Kitagawa, M. & Negoro, M. Experimental quantum kernel trick with nuclear spins in a solid.

NPJ Quantum Inf. 7, 94. https:// doi. org/ 10. 1038/ s41534- 021- 00423-0 (2021).
 17. Moradi, S. et al. Error mitigation for quantum kernel based machine learning methods on IonQ and IBM quantum computers.

Preprint at https:// arxiv. org/ abs/ 2206. 01573 (2022).
 18. Postler, L. et al. Demonstration of fault-tolerant universal quantum gate operations. Nature 605, 675–680 (2022).
 19. Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79. https:// doi. org/ 10. 22331/q- 2018- 08- 06- 79 (2018).
 20. Bharti, K. et al. Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys. 94, 015004 (2022).
 21. Aleksandrowicz, G. et al. Qiskit: An open-source framework for quantum computing. Qiskit. https:// doi. org/ 10. 5281/ ZENODO.

25621 11 (2019).
 22. Guo, C. et al. General-purpose quantum circuit simulator with projected entangled-pair states and the quantum supremacy frontier.

Phys. Rev. Lett. 123, 190501 (2019).
 23. Wang, Z. et al. A quantum circuit simulator and its applications on Sunway TaihuLight supercomputer. Sci. Rep. 11, 355. https://

doi. org/ 10. 1038/ s41598- 020- 79777-y (2021).
 24. Suzuki, Y. et al. Qulacs: A fast and versatile quantum circuit simulator for research purpose. Quantum 5, 559. https:// doi. org/ 10.

22331/q- 2021- 10- 06- 559 (2021).
 25. Efthymiou, S. et al. Qibo: A framework for quantum simulation with hardware acceleration. Quantum Sci. Technol. 7, 015018

(2022).
 26. Vincent, T. et al. Jet: Fast quantum circuit simulations with parallel task-based tensor-network contraction. Quantum 6, 709.

https:// doi. org/ 10. 22331/q- 2022- 05- 09- 709 (2022).
 27. Nguyen, T. et al. Tensor network quantum virtual machine for simulating quantum circuits at exascale. Preprint at https:// arxiv.

org/ abs/ 2104. 10523 (2021).
 28. Khalid, A. U., Zilic, Z. & Radecka, K. FPGA emulation of quantum circuits. In IEEE International Conference on Computer Design:

VLSI in Computers and Processors (ICCD) (2004).
 29. Lee, Y. H., Khalil-Hani, M. & Marsono, M. N. An FPGA-based quantum computing emulation framework based on serial-parallel

architecture. Int. J. Reconfigurable Comput. 2016, 5718124 (2016).
 30. Mahmud, N. & El-Araby, E. A scalable high-precision and high-throughput architecture for emulation of quantum algorithms.

In 2018 31st IEEE International System-on-Chip Conference (SOCC) (2018).
 31. Mahmud, N., El-Araby, E. & Caliga, D. Scaling reconfigurable emulation of quantum algorithms at high precision and high

throughput. Quantum Eng. 1, e19. https:// doi. org/ 10. 1002/ que2. 19 (2019).
 32. Pilch, J. & Długopolski, J. An FPGA-based real quantum computer emulator. J. Comput. Electron. 18, 329–342 (2019).
 33. Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20, 273–297 (1995).
 34. Schölkopf, B. & Smola, A. J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond (MIT Press,

2002).
 35. Bremner, M. J., Jozsa, R. & Shepherd, D. J. Classical simulation of commuting quantum computations implies collapse of the

polynomial hierarchy. Proc. R. Soc. A 467, 459 (2011).
 36. Martyn, J., Vidal, G., Roberts, C. & Leichenauer, S. Entanglement and tensor networks for supervised image classification. Preprint

at https:// arxiv. org/ abs/ 2007. 06082 (2020).
 37. Suzuki, T. & Katouda, M. Predicting toxicity by quantum machine learning. J. Phys. Commun. 4, 125012. https:// doi. org/ 10. 1088/

2399- 6528/ abd3d8 (2020).
 38. Subasi, A. & Gursoy, M. I. EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Syst. Appl. 37,

8659–8666 (2010).

(13)1.1, 1.15, 1.2, 1.25, 1.3, 1.35, 1.4, 1.45, 1.5, 1.55, 1.6}.

https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
https://doi.org/10.1038/s41534-019-0130-6
https://doi.org/10.1038/s41467-021-22539-9
https://doi.org/10.1038/s41467-021-22539-9
https://doi.org/10.1038/s41534-021-00498-9
https://doi.org/10.1038/s41534-021-00498-9
https://arxiv.org/abs/2105.02276
https://arxiv.org/abs/2105.02276
https://arxiv.org/abs/2110.13162
https://arxiv.org/abs/2111.05451
https://arxiv.org/abs/2111.05451
https://doi.org/10.1038/s41534-021-00423-0
https://arxiv.org/abs/2206.01573
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.5281/ZENODO.2562111
https://doi.org/10.5281/ZENODO.2562111
https://doi.org/10.1038/s41598-020-79777-y
https://doi.org/10.1038/s41598-020-79777-y
https://doi.org/10.22331/q-2021-10-06-559
https://doi.org/10.22331/q-2021-10-06-559
https://doi.org/10.22331/q-2022-05-09-709
https://arxiv.org/abs/2104.10523
https://arxiv.org/abs/2104.10523
https://doi.org/10.1002/que2.19
https://arxiv.org/abs/2007.06082
https://doi.org/10.1088/2399-6528/abd3d8
https://doi.org/10.1088/2399-6528/abd3d8

11

Vol.:(0123456789)

Scientific Reports | (2023) 13:7735 | https://doi.org/10.1038/s41598-023-34600-2

www.nature.com/scientificreports/

 39. Xiao, H., Rasul, K. & Vollgraf, R. Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. Preprint
at https:// arxiv. org/ abs/ 1708. 07747 (2017).

 40. Volder, J. E. The CORDIC trigonometric computing technique. IRE Trans. Electron. Comput. 3, 330–334 (1959).
 41. Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).
 42. Li, G. et al. On the co-design of quantum software and hardware. In Proceedings of the Eight Annual ACM International Conference

on Nanoscale Computing and Communication (2021).
 43. Tomesh, T. & Martonosi, M. Quantum codesign. IEEE Micro 41, 33–40 (2021).
 44. Canatar, A., Peters, E., Pehlevan, C., Wild, S. M. & Shaydulin, R. Bandwidth enables generalization in quantum kernel models.

Preprint at https:// arxiv. org/ abs/ 2206. 06686 (2022).
 45. Kawaguchi, H. Application of quantum computing to a linear non-Gaussian acyclic model for novel medical knowledge discovery.

Preprint at https:// arxiv. org/ abs/ 2110. 04485 (2021).
 46. Altares-López, S., Ribeiro, A. & García-Ripoll, J. J. Automatic design of quantum feature maps. Quantum Sci. Technol. 6, 045015

(2021).
 47. Chang, C. C. & Lin, C. J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 1–27 (2011).

Acknowledgements
We thank Hideki Asoh (National Institute of Advanced Industrial Science and Technology) for useful discussions.

Author contributions
T.S. and T.O. conceived the concept of co-designing the quantum kernel and the FPGA implementation. T.S.
conceived the idea of the quantum kernel for image classification in this work. T.M. developed the computer
code for the quantum kernel simulator. T.I. executed the FPGA implementation and performed the numerical
simulations. T.S., T.I., and T.M. analyzed the results of the quantum support vector machines. T.S. wrote the
manuscript. All the authors commented on the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/
10. 1038/ s41598- 023- 34600-2.

Correspondence and requests for materials should be addressed to T.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

https://arxiv.org/abs/1708.07747
https://arxiv.org/abs/2206.06686
https://arxiv.org/abs/2110.04485
https://doi.org/10.1038/s41598-023-34600-2
https://doi.org/10.1038/s41598-023-34600-2
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Quantum AI simulator using a hybrid CPU–FPGA approach
	Results
	Quantum support vector machine.
	Quantum AI simulator using a hybrid CPU–FPGA approach.
	FPGA implementation: numerical precision and acceleration.
	Binary classification on Fashion-MNIST dataset.
	Multiclass classification on Fashion-MNIST dataset.

	Discussion
	Methods
	FPGA implementation of the quantum kernel.
	Details of computational resources.
	Machine learning.

	References
	Acknowledgements

