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A new correlation belief function 
in Dempster‑Shafer evidence 
theory and its application 
in classification
Yongchuan Tang 1*, Xu Zhang 2, Ying Zhou 3, Yubo Huang 4 & Deyun Zhou 1,3

Uncertain information processing is a key problem in classification. Dempster-Shafer evidence theory 
(D-S evidence theory) is widely used in uncertain information modelling and fusion. For uncertain 
information fusion, the Dempster’s combination rule in D-S evidence theory has limitation in some 
cases that it may cause counterintuitive fusion results. In this paper, a new correlation belief function 
is proposed to address this problem. The proposed method transfers the belief from a certain 
proposition to other related propositions to avoid the loss of information while doing information 
fusion, which can effectively solve the problem of conflict management in D-S evidence theory. The 
experimental results of classification on the UCI dataset show that the proposed method not only 
assigns a higher belief to the correct propositions than other methods, but also expresses the conflict 
among the data apparently. The robustness and superiority of the proposed method in classification 
are verified through experiments on different datasets with varying proportion of training set.

Classification is a hot topic in artificial intelligence. Many practical approaches have been proposed for improving 
the classification accuracy such as the logistic regression1, k nearest neighbors2, linear discriminant analysis3, 
support vector machines4, random forests5, and artificial neural networks6,7. Classification usually faces uncer-
tain information sources, e.g., the data collected by sensors or manually may be subject to a certain amount of 
errors. In general, the uncertain information in classification problem can be divided into three kinds: (1) The 
imprecision data. For example, samples from different categories often overlap in the feature space, which may 
lead to a result that these samples can not truly reflect the accurate distribution of different categories. (2) The 
incompleteness data. This usually means that the training data cannot describe the real distribution effectively. 
(3) The noise in the training data in terms of categories or characteristics. This work adopts information fusion 
and uncertainty management methods to address classification problem.

To address the uncertainty in classification problems, many valuable methods have been proposed. Porebski8 
propose a new technique of linguistic rule extraction, which adopts a fuzzy membership function to describe 
the imprecision of linguistic values and measured the uncertainty by a fuzzy confidence function. Yang et al.9 
establish a rule-based system named Cumulative Belief Rule-Based System to overcome the limitation of the 
classical rule-based system. Based on fuzzy rough set theory, Wang et al.10 propose a new measure to describe 
the inherent uncertainty in the data and it improves the performance of the classifier. To reduce the impact of 
redundant data, Salem et al.11 propose a new feature selection framework based on ideal vector which extracts 
all possible feature relationships with minimal computational cost. Subhashini et al.12 develop a decision-making 
framework with which fuzzy concepts are used to classify positive, negative and boundary areas. Sun et al.13 
construct a multi-label classification method based on neighborhood information and it is used for incomplete 
data with missing labels in neighborhood decision-making system. Sauglam et al.14 introduce a new clustering 
Bayesian classification method to detect different concentrations in a class. To reduce the uncertainty introduced 
by the noise data in classification problem, Yao et al.15 propose a new hybrid integrated credit scoring model 
based on stacked noise detection and weight assignment to remove or adjust the noise data in the original data 
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set and form the noise detection training data. This work adopts multi-source information fusion technology16–19 
for uncertain information processing in classification.

Information fusion technology has been greatly developed and applied in practical applications such as 
decision-making20–23, pattern recognition24,25, fault diagnosis26–28, risk analysis29,30, and reliability assessment31–33. 
Many mathematical methods are adopted for information fusion, such as Dempster-Shafer evidence theory 
(D-S evidence theory)34,35, belief function theory36,37, fuzzy set theory38, probability theory39, D-numbers40, 
Z-numbers41, generalized evidence theory42,43, and so on44,45. As a widely used theory in information fusion, 
D-S evidence theory is an effective method for modeling and fusing uncertain information in many fields such 
as clustering46,47, classification48–50, fault diagnosis51,52, decision support system53, reliability analysis54, correla-
tion analysis19,55, multi-attribute decision analysis56, and so on57,58. Nevertheless, there are still some open issues 
to be addressed including the computational complexity of Dempster’s combination rule59 and the uncertainty 
measurement in the evidence theory60–63. Uncertainty measurement in D-S evidence theory is an important step 
to deal with potential conflict information fusion. To address Uncertainty management in the evidence theory, 
Gao et al.64 propose a new uncertainty measurement based on Tsallis entropy. Based on the belief intervals of 
D-number, Deng and Jiang65 propose a total uncertainty measurement that comprises several basic properties 
including the range, monotonicity, and generalized set consistency. Deng and Wang66 measure the Hellinger 
distance between the belief interval and the most uncertain interval for each single case as the total uncertainty. 
Besides, for the existing methods of uncertainty measurement, Moral-García and Abellán67 pointed out that 
the maximum value of entropy on the belief interval is the most suitable way of measurement for practical 
applications because of its excellent mathematical properties. This work focuses on information fusion in clas-
sification problem with respect to uncertainty management with a new correlation factor in the framework of 
D-S evidence theory.

There are many works proposing new classification methods based on D-S evidence theory or belief func-
tions. Geng et al.68 combine evidence association rule with classification and propose an evidence association 
rule-based classification method. Wang et al.69 propose an ensemble classifier that uses the evidence theory to 
fuse the outputs of multiple classifiers. For classification problem with high-dimensional data, Su et al.70 estab-
lish a rough evidential K-NN classification rule in the framework of rough set theory which selects features by 
minimizing the neighborhood pignistic decision error rate. To address the uncertainty caused by fuzzy data, Li 
et al.71 propose a new framework to combine the results of multi-supervised classification and clustering based on 
belief function. With the popularity of deep learning, Tong et al.72 propose the use of convolutional and pooling 
layers in convolutional neural networks to extract data features and then transform them into belief function. 
From the perspective of information fusion and uncertainty management in classification, in this paper, a novel 
correlation belief function is proposed to manage the uncertainty and improve the performance of D-S evidence 
theory in information fusion in classification.

The rest of this paper is organized as follows. Dempster-Shafer evidence theory is reviewed in section “Prelimi-
naries”. Section “The correlation belief function” introduces the correlation belief function with some numerical 
examples. Section “Application in classification” is the correlation belief function-based classification method and 
its application. Section “Discussion” discusses the robustness and superiority of the proposed method. Conclu-
sions are given in section “Conclusions”.

Preliminaries
Dempster‑Shafer evidence theory. 
Definition 1  Define � as a nonempty set of n exhaustive and mutually exclusive elements. � is called the frame 
of discernment (FOD).

The power set of � is composed of 2n propositions, which can be denoted as follows:

Definition 2  For � , a basic belief assignment (BBA), which is also called mass function, is a mapping m : 
2� → [0, 1] . m satisfies:

A is called a focal element if m(A) > 0 . m(A) indicates the degree to which evidence supports proposition A.

Definition 3  In D-S evidence theory, two independent pieces of evidence can be fused by Dempster’s combina-
tion rule:

where K represent the degree of conflict between m1 and m2:

(1)� = {θ1, θ2, θ3, . . . θn}

(2)2� = {∅, {θ1}, {θ2}, . . . , {θ1 ∪ θ2}, . . . , {θ1 ∪ θ2 ∪ θ3 ∪ θi}, . . . , �}

(3)m(∅) = 0,
∑

A∈2�

m(A) = 1

(4)m(A) = m1(A)⊕m2(A) =
1

1− K

∑

B∩C=A

m1(B)m2(C)
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K = 0  means that there is no conflict between the evidence and K = 1 means that the evidence is completely 
conflicting.

Pignistic probability transformation.  The Pignistic probability transformation in transferable belief 
model was first proposed by Smets73.

Definition 4  Assume m is a BBA on � , both A and B are any set in the power set 2� . Its associated pignistic 
probability function BetPm : � → [0, 1] is defined as follows:

where m(∅) �= 1 , |A| is the cardinality of subset A.

The correlation belief function
In information fusion, it is important to take advantage of all available data. If some information is lost, a coun-
terintuitive combination result may be got. For instance, assume the FOD � is {θ1, θ2, θ3} , the power set of � is 
2� and the mass functions m1 and m2 are as follows.

where n is the number of elements in the FOD, 0 < p ≤ 1, 0 ≤ qi ≤ 1,
∑n

i=1 qi = 1, B1 is any set in 2� except 
{θ1} and ∅, Ai is any set in 2� and its subset does not contain {θ1} . No matter how the values of p and qi change, 
the combination result m1 ⊕m2({θ1}) is always equal to 0. In other words, all information about the proposi-
tion {θ1} in m1 is lost. To address this issue, the correlation belief function is proposed. The correlation belief 
function consists of two steps: belief gathering and correlation belief transfer. The flowchart of the correlation 
belief function is shown in Fig. 1.

Belief gathering.  In a closed world assumption, let � be a set of n possible values that are mutually exclusive, 
� = {θ1, θ2, θ3, . . . , θi , . . . , θn} . The power set of � is 2� , 2� = {∅, {θ1}, {θ2}, . . . , {θ1 ∪ θ2}, . . . ,

{θ1 ∪ θ2 ∪ θ3 ∪ θ
i
}, . . . , �} . Single subset propositions in 2� are marked as αi (i = 1, 2, 3, . . . , n) , and 

multi-subset propositions in 2� are marked as βj (j = 1, 2, 3, . . . , 2n − n− 1) . Assume m is the original BBA 
on � and m∗ is the modified BBA by this step. In this step, single subset propositions ( αi ) are pignistic probability 
transformed in Eq. (6) and the belief value of multi-subset propositions ( βj ) are set as zero. The modified BBA 
( m∗ ) of proposition αi and proposition βi are defined as follows:

where αi is any single subset proposition ( |αi| = 1 ) in the power set 2� , A is any proposition in the power set (2�).

where βj is any multi-subset proposition (|βj| > 1) in 2�.

Correlation belief transfer.  This step is the core of correlation belief function, which is called correlation 
belief transfer. It is defined in section “Definition” and a simple example is presented to clearly illustrate the 
process of this step in section “Illustrative example”. Figure 2 visualizes this example, which is also an illustration 
of STEP 2 in Fig. 1.

Definition.  Assume the FOD is � = {θ1, θ2, θ3, . . . , θi , . . . , θn} , the power set of � is 2� . m is a BBA on � 
and m∗ is the modified BBA by belief gathering in section “Belief gathering”. In this step, the single subset propo-
sition αi transferred its belief to the multi-subset propositions βj where αi ⊂ βj , and the result is called the trans-
ferred BBA marked as m∗∗ . mt(αi → βj) is defined as the transferred belief value from single subset proposition 
αi to multi-subset proposition βj . The transferred BBA m∗∗ of single subset propositions αi and multi-subset 
proposition βj is defined as follows:

(5)K =
∑

B∩C=∅

m1(B)m2(C)

(6)BetPm(B) =
∑

A∈2� ,B∈2�

|A ∩ B|

|A|

m(A)

1−m(∅)

m1({θ1}) = p, m1(B1) = 1− p

m2(A1) = q1, m2(A2) = q2, . . . , m2(Ai) = qi , m2(An) = qn

(7)m∗(αi) = BetPm(αi) =
∑

αi∈2� ,A∈2�

|αi ∩ A|

|A|

m(A)

1−m(∅)

(8)m∗

(

βj
)

= 0

(9)mt(αi → βj) =
m∗(αi)

(2n − 1) ·
∣

∣βj
∣

∣
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where αi ,βj ∈ 2�, |αi| = 1 , |βj| > 1 , n is the number of element in the FOD �.

Illustrative example.  To better understand the process of correlation belief transfer, a sim-
ple illustrative example is presented. Assume FOD � = {θ1, θ2, θ3} , the power set of � is 2� , 
2� = {∅, {θ1}, {θ2}, {θ3}, {θ1, θ2}, {θ1, θ3}, {θ2, θ3}, {θ1, θ2, θ3}} . Since the problem is discussed in a closed world 
assumption, ∅ is not taken into consideration. Suppose that the BBAs after belief gathering are given as fol-
lows: m∗({θ1}) = p1, m∗({θ2}) = p2, m∗({θ3}) = p3 , where p1, p2, p3 ∈ (0, 1) and 

∑3
i=1 pi = 1 . For proposition 

{θ1} , its belief should be transferred to the propositions {θ1, θ2}, {θ1, θ3}, and {θ1, θ2, θ3} based on the proposed 
method. And the transferred belief value is as follows:

(10)m∗∗(αi) = m∗(αi)−
∑

αi∩βj �=∅

mt(αi → βj)

(11)m∗∗

(

βj
)

=
∑

αi∩βj �=∅

mt(αi → βj)

Generate BBAs from data of information sources

BBA 1 BBA 2 BBA n

STEP 1   For each BBA, gather the belief based on belief function

Pignistic Probability transformation is carried out for each 

single subset proposition

Make the belief of all multi-subset propositions to be 0

STEP 2  Transfer the belief  of the single subset to the correlated multi-subset

The multi-subset proposition receives belief from single subset proposition

n is the number of elements in FOD

The single subset proposition needs to transfer its belief to 

correlated multi-subset proposition

n is the number of elements in FOD

Single subset propositions are marked as Multi-subset propositions are marked as 

Figure 1.   The flowchart of proposed method.
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The remaining belief of proposition {θ1} is m∗∗({θ1}) , in other words, m∗∗({θ1}) = m∗({θ1})−mt({θ1}

→ {θ1, θ2})−mt({θ1} → {θ1, θ3})−mt({θ1} → {θ1, θ2, θ3}) = p1−
p1

(

23 − 1
)

× 2
−

p1
(

23 − 1
)

× 2
−

p1
(

23 − 1
)

× 3 . Sim-
ilarly, the proposition {θ2} and proposition {θ3} go through the same belief transfer process and m∗∗({θ2}) , 
m∗∗({θ3}) are as follows:

For the proposition {θ1, θ2} ,  it  receives belief from proposition {θ1} and {θ2} ,  therefore: 
m∗∗({θ1, θ2}) = mt({θ1} → {θ1, θ2})+mt({θ2} → {θ1, θ2}) =

p1
(23−1)×2

+
p2

(23−1)×2
 . Similarly, the result of 

m∗∗({θ1, θ3}) , m∗∗({θ2, θ3}) , m∗∗({θ1, θ2, θ3}) is as follows:

The whole process of this example can be illustrated in Fig. 2.

Discussion of the correlation belief function.  To summarize the above two steps of the correlation 
belief function, firstly, all the belief is put into the single subset propositions. The first step aims at gathering the 
belief for an easier decision-making and a convenient in transferring correlation belief. In the next step, the belief 
of single subset propositions is transferred to correlated multi-subset propositions. Note that in this assignment, 
the single subset proposition must be a subset of the multi-subset proposition. In other words, the intersection 
of the single subset proposition which supplies belief and the multi-subset proposition which receives belief is 
not empty set. The idea is that if the belief of proposition {θ1} is greater than 0, the belief of the proposition which 
contains {θ1} must also be greater than 0. For example, assuming that there are three opaque bags {θ1} , {θ2} , and 
{θ3} , now there is a ball in one of these three bags at random. If this ball is in bag {θ1} , now pack bag {θ1} and bag 
{θ2} in a larger bag {θ1, θ2} . If it is stated that this ball is in bag {θ1} , it is reasonable to assume that it is also in the 
larger bag {θ1, θ2} . That is to say, if m({θ1}) > 0 , m({θ1, θ2}) is also supposed to be greater than 0.

The most advantage of the correlation belief function is that it makes use of the source evidence information 
to eliminate the counterintuitive combination result. When the belief of some propositions is 0, there is often high 

mt({θ1} → {θ1, θ2}) =
m∗({θ1})

(2n − 1) · |{θ1, θ2}|
=

p1
(

23 − 1
)

× 2

mt({θ1} → {θ1, θ3}) =
m∗({θ1})

(2n − 1) · |{θ1, θ3}|
=

p1
(

23 − 1
)

× 2

mt({θ1} → {θ1, θ2, θ3}) =
m∗({θ1})

(2n − 1) · |{θ1, θ2, θ3}|
=

p1
(

23 − 1
)

× 3

m∗∗({θ2}) = m∗({θ2})−mt({θ2} → {θ1, θ2})−mt({θ2} → {θ2, θ3})−mt({θ2} → {θ1, θ2, θ3})

m∗∗({θ3}) = m∗({θ3})−mt({θ3} → {θ1, θ3})−mt({θ3} → {θ2, θ3})−mt({θ3} → {θ1, θ2, θ3})

m∗∗({θ1, θ3}) = mt({θ1} → {θ1, θ3})+mt({θ3} → {θ1, θ3})

m∗∗({θ2, θ3}) = mt({θ2} → {θ2, θ3})+mt({θ3} → {θ2, θ3})

m∗∗({θ1, θ2, θ3}) = mt({θ1} → {θ1, θ2, θ3})+mt({θ2} → {θ1, θ2, θ3})+mt({θ3} → {θ1, θ2, θ3})

Figure 2.   Correlation belief transfer (only m∗({θ1}) and its transferred belief value are marked in the figure, 
m∗({θ2}) and m∗({θ3}) are similar to m∗({θ1})).
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conflict between the evidence, and the correlation belief function can address this issue well. If one of the data’s 
attributes has a value of 0 due to the fault, this method can transfer the related attribute value to it. If the value 
of its related attribute is also equal to 0, it is rational to believe that the sensors do not receive the signal about 
this attribute, and the collected data is reliable and effective. The proposed method is consistent with people’s 
intuition and greatly enhances the robustness of Dempster’s combination rule. In brief, even if the data collected 
are not accurate enough in a complex environment, it will not have a decisive impact on the final combination 
result, especially while processing a large amount of data.

Numerical examples.  Start with conflicting evidence fusion based on Dempster’s combination rule.

Example 1  Define that the FOD is � = {θ1, θ2, θ3} and two BBAS are as follows:

If using Dempster’s combination rule to fuse the two BBAS directly, the result will be counterintuitive:

Based on the proposed method in Eqs. (7)–(11), the modified BBAS are calculated as follows.
Step 1: Belief gathering:

Step 2: Correlation belief transfer:

m2 is calculated in the same way. The modified BBAS are given in Table 1.
The combination result compared with Dempster’s method is shown in Table 2.
From Table 2, it can be seen that the result of the proposed method is more reasonable than using Dempster’s 

combination rule directly.

m1({θ1}) = 0.99, m1({θ2}) = 0.01

m2({θ2}) = 0.01, m2({θ3}) = 0.99

m({θ1}) = 0, m({θ2}) = 1, m({θ3}) = 0

m1∗({θ1}) = BetPm1({θ1}) = 0.9950

m1∗({θ2}) = BetPm1({θ2}) = 0.0050

m1∗({θ3}) = BetPm1({θ3}) = 0

m1∗({θ1, θ2}) = m1∗({θ2, θ3}) = m1∗({θ1, θ3}) = m1∗({θ1, θ2, θ3}) = 0

m1∗∗({θ1, θ2}) =
m1∗({θ1})

(

23 − 1
)

· |{θ1, θ2}|
+

m1∗({θ2})
(

23 − 1
)

· |{θ1, θ2}|
= 0.0714

m1∗∗({θ2, θ3}) =
m1∗({θ2})

(

23 − 1
)

· |{{θ2, θ3}|
+

m1∗({θ3})
(

23 − 1
)

· |{θ2, θ3}|
= 0.0004

m1∗∗({θ1, θ3}) =
m1∗({θ1})

(

23 − 1
)

· |{θ1, θ3}|
+

m1∗({θ3})
(

23 − 1
)

· |{θ1, θ3}|
= 0.0711

m1∗∗({θ1, θ2, θ3}) =
m1∗({θ1})

(

23 − 1
)

·|{θ1, θ2, θ3}|
+

m1∗({θ2})
(

23 − 1
)

· |{θ1, θ2, θ3}|
+

m1∗({θ3})
(

23 − 1
)

· |{θ1, θ2, θ3}|
= 0.0476

m1∗∗({θ1}) = m1∗({θ1})−
m1∗({θ1})

(

23 − 1
)

· |{θ1, θ2}|
−

m1∗({θ1})
(

23 − 1
)

· |{θ1, θ3}|
−

m1∗({θ1})
(

23 − 1
)

· |{θ1, θ2, θ3}|
= 0.8054

m1∗∗({θ2}) = m1∗({θ2})−
m1∗({θ2})

(

23 − 1
)

· |{θ1, θ2}|
−

m1∗({θ2})
(

23 − 1
)

· |{θ2, θ3}|
−

m1∗({θ2})
(

23 − 1
)

· |{θ1, θ2, θ3}|
= 0.0041

m1∗∗({θ3}) = m1∗({θ3})−
m1∗({θ3})

(

23 − 1
)

· |{θ1, θ3}|
−

m1∗({θ3})
(

23 − 1
)

· |{θ2, θ3}|
−

m1∗({θ3})
(

23 − 1
)

· |{θ1, θ2, θ3}|
= 0

Table 1.   The modified BBA in Example 1 by the proposed method.

{θ1} {θ2} {θ3} {θ1, θ2} {θ2, θ3} {θ1, θ3} {θ1, θ2, θ3}

m1∗∗ 0.8054 0.0041 0 0.0714 0.0004 0.0711 0.0476

m2∗∗ 0 0.0081 0.8015 0.0007 0.0714 0.0707 0.0476

Table 2.   Results of two method.

m({θ1}) m({θ2}) m({θ3}) m({θ1, θ2}) m({θ2, θ3}) m({θ1, θ3}) m({θ1, θ2, θ3})

Dempster’s method 0 1 0 0 0 0 0

Proposed method 0.4409 0.0288 0.4388 0.0152 0.0150 0.0514 0.0099
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As can be seen from the first piece of original evidence, m1({θ1}) is 0.99, which means that proposition {θ1} 
has a very high probability of happening. But when the first piece of evidence is combined with the other one, 
the result shows that m(θ1) is 0, which means proposition {θ1} is never going to happen. In other words, the 
first piece of evidence about proposition {θ1} is completely denied by the other one, thus losing its support on 
proposition {θ1} . The main reason for this unreasonable result is that in the other piece of evidece, all proposi-
tions involving {θ1} have a belief of 0 ( m2({θ1}) = m2({θ1, θ2}) = m2({θ1, θ3}) = m2({θ1, θ2, θ3}) = 0 ). If we 
modify the original evidence like:

the fusion result is quite different:

Therefore, the proposed method, which transfers the belief from single subset propositions to correlated multi-
subset propositions and maintains the support of the original belief as much as possible, is effective and reliable.

Example 2  Suppose that the FOD is � = {θ1, θ2} , two BBAS are given as follows:

Use the proposed method to modify the original BBAS , and get the result by using Dempster’s combination 
rule:

In this example, two pieces of evidence are completely conflicting and the classical Dempster’s combination rule 
cannot address this problem. However, by using the correlation belief function to modify the original BBAS , the 
result is satisfactory: proposition {θ1} and proposition {θ2} have equal belief, and proposition {θ1, θ2} is also given 
a tiny amount of belief. This example also embodies another crucial advantage of the correlation belief function 
that it can deal with completely conflicting evidence.

Example 3  Suppose that the FOD is � = {θ1, θ2, θ3} , the BBAs are given as follows:

From this example, it can be seen that although the first piece of evidence believes that proposition {θ3} can 
never happen, the latter two pieces of evidence have high belief in proposition {θ3} . Thus, it’s reasonable to believe 
that the proposition {θ3} is still possible. However, the result with classical Dempster’s combination rule shows 
that m({θ3}) = 0 , which is illogical and counterintuitive. After modifying the BBA by the proposed method, the 
fusion result is:

This result indicates that the belief of proposition {θ3} is higher than that of proposition {θ1} and proposition 
{θ2} , which is in line with real situation. Although the belief value of multi-subset propositions is increased, it is 
very small and the effect on decision-making is slight.

Example 4  Suppose that the FOD is � = {θ1, θ2, θ3} , the first piece of evidence and i-th piece of evidence are as 
follows19:

The combination result of m1 and mi is always consistent with m1 . Since Dempster’s combination rule satisfies 
association law, no matter how much evidence is added, the result is still consistent with m1 , which means the 
subsequent evidence is invalid and the result is illogical. The correlation belief function can solve this problem 
effectively and the result is shown in Figs. 3 and 4.

Example 5  Suppose that the FOD is � = {θ1, θ2} , two BBAs are given as follows:

According to the proposed method, the modified BBAs are as follows:

m1({θ1}) = 0.989, m1({θ1, θ2}) = 0.01, m1({θ1, θ3}) = 0.001

m2({θ2}) = 0.01, m2({θ3}) = 0.989, m2({θ1, θ3}) = 0.001

m({θ1}) = 0.477, m({θ2}) = 0.048, m({θ3}) = 0.475

m({θ1, θ2}) = 0, m({θ2, θ3}) = 0, m({θ1, θ3}) = 0, m({θ1, θ2, θ3}) = 0

m1({θ1}) = 1,m1({θ2}) = 0,m1({θ1, θ2}) = 0

m2({θ1}) = 0,m2({θ2}) = 1,m2({θ1, θ2}) = 0

m({θ1}) = m({θ2}) = 0.455,m({θ1, θ2}) = 0.09

m1({θ1}) = 0.9, m1({θ2}) = 0.1, m1({θ3}) = 0

m2({θ1}) = 0.1, m2({θ2}) = 0.1, m2({θ3}) = 0.8

m3({θ1}) = 0.1, m3({θ2}) = 0.1, m3({θ3}) = 0.8

m({θ1}) = 0.296, m({θ2}) = 0.062, m({θ3}) = 0.624

m({θ1, θ2}) = 0.003, m({θ2, θ3}) = 0.005, m({θ1, θ3}) = 0.010, m({θ1, θ2, θ3}) = 0.001

m1({θ1}) = 0.35, m1({θ1, θ2}) = 0.65

mi({θ3}) = 0.8, mi({θ1, θ2, θ3}) = 0.2, i = 2, 3, . . . , n

m1({θ1}) = 1, m1({θ2}) = 0, m1({θ1, θ2}) = 0

m2({θ1}) = 1, m2({θ2}) = 0, m2({θ1, θ2}) = 0
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As can be seen that the proposed method does not increase the belief of proposition {θ2} because the belief of 
proposition {θ2} in the original evidence is 0, instead, the belief of proposition {θ1, θ2} is increased to 0.167, which 
is more reasonable. The result by using Dempster’s combination rule is as follows:

The result shows that proposition {θ1} has a very high degree of belief. The proposition {θ1, θ2} is given a small 
degree of belief, and there is no belief in the proposition {θ2} . Compared with fusion result without evidence 
modification, the proposed method loses some belief in proposition {θ1} , but the value of the belief is tiny and 
it can avoid counterintuitive fusion result in conflict data fusion.

m1∗∗({θ1}) = m2∗∗({θ1}) = 0.833, m1∗∗({θ2}) = m2∗∗({θ2}) = 0

m1∗∗({θ1, θ2}) = m2∗∗({θ1, θ2}) = 0.167

m({θ1}) = 0.972, m({θ2}) = 0, m({θ1, θ2}) = 0.028.

Figure 3.   The belief of single subset propositions in Example 419.

Figure 4.   The belief of multi subset propositions in Example 419.

Table 3.   Results of two combination rules.

m({θ1}) m({θ2}) m({θ3}) m({θ1, θ2}) m({θ2, θ3}) m({θ1, θ3}) m({θ1, θ2, θ3})

Dempster’s method 0.3448 0.0345 0.6207 0 0 0 0

Murphy’s method74 0.5190 0.0059 0.4703 0 0 0 0.0048

Abellán’s method75 0.4697 0.0254 0.4569 0 0 0 0.0480

Proposed method 0.4696 0.0485 0.4080 0.0142 0.0131 0.0387 0.0078
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Example 6  Suppose that the FOD is � = {θ1, θ2, θ3} , two BBAs are as follows:

The results of Dempster’s rule and proposed method are shown in Table 3.
The first piece of evidence strongly suggests that proposition {θ1} has a high belief of 0.9, and the prop-

osition {θ1, θ2, θ3} also gives {theta1} a small belief value. The second piece of evidence argues that prop-
osition {θ3} has high belief of 0.9, but there is no other proposition supporting proposition {θ3} (i.e., 
{θ1, θ3} = {θ2, θ3} = {θ1, θ2, θ3} = 0 ). Therefore, in the final combination result, the belief of proposition {θ1} is 
slightly higher than that of proposition {θ3} , which is opposite to the classical Dempster’s method. In addition, 
the results of Murphy’s method74 and Abellán75 method are similar to the proposed method, which further 
demonstrating the effectiveness of the new method.

Application in classification
In this section, the classification experiments with real data sets are performed to evaluate the effectiveness of 
the proposed method. The real data sets are from UCI Machine Learning Repository. The classification process 
is as follows. Firstly, 80% of the dataset is selected as the training set to generate triangular fuzzy number models. 
Secondly, the triangular fuzzy number models are used to generate BBA for the remaining 20% data. Then, the 
proposed correlation belief function, which is composed of belief gathering and correlation belief transfer, is 
used to modify the evidence, and the Dempster’s combination rule is used to fuse the modified BBAs. Finally, 
the fused BBA is transformed as belief of single set based on pignistic probability transformation, and the sin-
gle subset proposition with the highest belief is the classification category. Figure 5 shows the flowchart of the 
proposed method in classification.

Iris data set classification.  In the data set of Iris, there are three species (Setosa(θ1 ), Versicolor(θ2 ), Vir-
ginica(θ3 )) with 50 examples of each species. Each sample contains 4 attributes named sepal length (SL), sepal 
width (SW), petal length (PL), and petal width (PW) which can be treated as the information source to build 
BBA. 40 samples in each category are randomly selected as training set to generate triangular fuzzy numbers and 
the result is shown in Table 4. The remaining 10 samples are considered as the test set to verify the effectiveness 
of the proposed method. In the following contents, a sample is used to illustrate the process of data fusion and 
the complete classification result of the Iris data set will be shown in Table 7.

Firstly, one test sample from Setosa(θ1 ) is randomly selected and its BBA generated from triangular fuzzy 
number model is shown in Table 5. Next, the BBA is modified by correlation belief function and the result is 
shown in Table 6. Finally, the complete classification result of the test set is shown in Table 7.

Table 5 exhibits that the BBA entail certain conflict information. Specifically, in the evidence derived from 
the SL and SW attributes, the belief value is distributed evenly across propositions {θ1} , {θ2} , and {θ3} , rendering 
it arduous for the decision maker to reach a cogent judgment based on these two pieces of evidence. Conversely, 
in the evidence generated by the PL and PW attributes, the proposition {θ1} has a higher level of belief degree, 
while the proposition {θ3} is deemed entirely untrustworthy, creating a contradiction with the SL and SW evi-
dence. Consequently, an optimal combination outcome ought to facilitate the decision maker’s discernment while 
preserving the original conflict information, thereby aiding future policy formulation.

As can be seen from Table 6, all results believe that the sample belongs to class θ1 , which is in line with the 
actual situation. Although Dempster’s combination rule has the highest belief for proposition {θ1} , it’s illogical 
that it has the belief value of 0 for the proposition {θ3} . Yager’s method has no big belief value and is not condu-
cive to decision-making, because the result indicates that there may be other proposition besides propositions 
{θ1} , {θ2} and {θ3} . This method has betrayed its original purpose for indicating the degree of belief in certain 
propositions. Wang et al’s method has a right result in conflict management. However, the most disadvantage is 
that the unimportant propositions are also given a big belief value. The proposed method has a more satisfactory 
result. The proposition {θ3} is still considered possible. Although the belief value on m({θ3}) is low, the sense is 
significant that conflict information should not be ignored directly. Compared with the Wang et al.’s method, the 
proposed method maintains a higher degree of indicating the potential and right target.

The advantage of the proposed method can also be seen from Table 7. Only two samples are not classified 
correctly, and the total classification accuracy can reach 93.33%. Besides, in most cases of correctly classified, 
the maximum value of BBA is significantly higher than the other two classes. For example, in classification of 
Setosa(θ1 ), the value of m∗∗({θ1}) is much larger than m∗∗({θ2}) and m∗∗({θ3}) . Above all, the correlation belief 
function addresses the issue of conflicting data fusion rightly and properly.

Wine data set classification.  In this experiment, Wine data set is used to further verify the effectiveness 
of the proposed method. The Wine data set contains 3 different varieties of wine and each has 13 attributes. In 
Wine data set, there are 59 samples in class θ1 , 71 samples in class θ2 , and 48 samples in class θ3.

As with the Iris experiments, a test sample is chosen to demonstrate the effectiveness of the proposed method. 
Besides, to further test the performance of the proposed method on classification problem, the cross-validation 
method in machine learning is introduced to divide the dataset. For the Wine dataset, 10-times-5-fold cross-
validation method is adopted and the its process is as follows. 

1.	 Randomly shuffle the dataset. Divide the Wine data set D into five mutually exclusive subsets 
( Di , i = 1, 2, . . . , 5 ) of the same size. In brief, D =

⋃5
i=1 Di , 

⋂5
i=1 Di = ∅ and |Di| =

D
5 , i = 1, 2, . . . , 5.

m1({θ1}) = 0.9, m1({θ1, θ2, θ3}) = 0.1

m2({θ1}) = 0.05, m2({θ2}) = 0.05, m2({θ3}) = 0.9



10

Vol:.(1234567890)

Scientific Reports |         (2023) 13:7609  | https://doi.org/10.1038/s41598-023-34577-y

www.nature.com/scientificreports/

Source 1

Data collection from information sources

Generation of BBAs

Source 2 Source 3 Source n

Gather the belief into single subset propositions in 

BBAs

Transfer the beliefs to correlated 

multi-subset propositions

Fused modified BBAs by Dempster's combination 

rule and the result is subjected to Pignistic 

Probability Transformation

Chose the single subset proposition with the 

highest belief as the classification category

Figure 5.   The flowchart of correlation belief function-based classification method.

Table 4.   Triangular fuzzy numbers of four attributes.

Class SL SW PL PW

θ1 (4.300, 4.960, 5.800) (2.900, 3.354, 4.400) (1.100, 1.406, 1.500) (0.100, 0.204, 0.400)

θ2 (4.900, 6.050, 7.000) (2.200, 2.828, 3.400) (3.300, 4.370, 4.900) (1.000, 1.370, 1.800)

θ3 (4.900, 6.506, 7.700) (2.200, 2.874, 3.600) (4.500, 5.602, 6.700) (1.500, 2.030, 2.500)
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Table 5.   Generated BBA by triangular fuzzy numbers.

m({θ1}) m({θ2}) m({θ3}) m({θ1, θ2}) m({θ2, θ3}) m({θ1, θ3}) m({θ1, θ2, θ3})

SL 0.3337 0.3165 0.2816 0.0307 0.0272 0.0052 0.0052

SW 0.3164 0.2501 0.2732 0.0304 0.0515 0.0481 0.0304

PL 0.6699 0.3258 0 0 0.0043 0 0

PW 0.6996 0.2778 0 0 0.0226 0 0

Table 6.   Results of different methods in the Iris data set classification.

m({θ1}) m({θ2}) m({θ3}) m({θ1, θ2}) m({θ2, θ3}) m({θ1, θ3}) m({θ1, θ2, θ3}) m(∅)

Dempster’s method34 0.8457 0.1543 0 0 0 0 0 0

Yager’s method76 0.5337 0.1484 0 0 0 0 0 0.3180

Wang et al.’s method77 0.6232 0.2671 0.1083 0 0 0 0 0

Proposed method 0.7834 0.1961 0.0186 0.0010 0.0002 0.0006 0 0

Table 7.   Classification result of the Iris data set. Significant values are in [bold].

Actual class Classification result Right or wrong m∗∗({θ1}) m∗∗({θ2}) m∗∗({θ3}) Accuracy

θ1 θ1 � 0.7834 0.1961 0.0186

100.00%

θ1 θ1 � 0.9878 0.0056 0.0056

θ1 θ1 � 0.9938 0.0029 0.0020

θ1 θ1 � 0.9419 0.0216 0.0347

θ1 θ1 � 0.9927 0.0017 0.0048

θ1 θ1 � 0.9838 0.0081 0.0072

θ1 θ1 � 0.9535 0.0173 0.0277

θ1 θ1 � 0.9919 0.0026 0.0047

θ1 θ1 � 0.9624 0.0139 0.0223

θ1 θ1 � 0.8314 0.1354 0.0316

θ2 θ2 � 0.1401 0.6975 0.1599

90.00%

θ2 θ2 � 0.0272 0.7740 0.1963

θ2 θ2 � 0.0224 0.7792 0.1948

θ2 θ2 � 0.0145 0.9331 0.0507

θ2 θ2 � 0.0257 0.9369 0.0359

θ2 θ2 � 0.0155 0.9489 0.0338

θ2 θ2 � 0.0088 0.9702 0.0197

θ2 θ3 0.0601 0.3780 0.5586

θ2 θ2 � 0.0053 0.9814 0.0121

θ2 θ2 � 0.0989 0.4997 0.3974

θ3 θ3 � 0.0592 0.2166 0.7212

90.00%

θ3 θ3 � 0.0058 0.0043 0.9890

θ3 θ3 � 0.0405 0.1837 0.7730

θ3 θ3 � 0.0211 0.2291 0.7474

θ3 θ3 � 0.0046 0.0098 0.9846

θ3 θ3 � 0.0101 0.0291 0.9595

θ3 θ3 � 0.0316 0.0440 0.9227

θ3 θ2 0.0164 0.5381 0.4416

θ3 θ3 � 0.0748 0.0244 0.8982

θ3 θ3 � 0.1265 0.0892 0.7817

Total – – – – – 93.33%
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2.	 Take one of the subsets ( Di , i = 1, . . . , 5 ) as the test set and the other four subsets as the training set, and 
then calculate the classification accuracy. Repeat this step five times, each time with a different test set. In 
other words, D1 is selected as the test set for the first time, D2 − D5 are selected as the training set. For the 
second time, D2 is selected as the test set, D1 , D3 − D5 are selected as the training set · · · D5 is selected as the 
test set for the fifth time, D1 − D4 are selected as the training set.

3.	 Repeat the previous step ten times to obtain the average classification accuracy number.

The purpose of K-fold cross-validation is to make full use of the available data, avoid errors caused by random-
ness, and make the evaluation results as close as possible to the generalization ability of the model.

Firstly, the original BBAs generated by triangular fuzzy number are shown in Table 8 and they are visually 
displayed in Fig. 6. Next, the result modified by the proposed method is compared with other methods and shown 
in Table 9. Finally, the classification accuracy resulting from 10-times-5-fold cross-validation is shown in Table 10.

Similarly, analogous to the BBAs in the Iris experiment, diverse pieces of evidence in the real-world often 
have disparate classification perspectives, thus, significantly compromising the accuracy of individuals’ sample 
category judgments. For instance, as illustrated in Table 8, the evidence produced by the Hue and Proline attrib-
utes neglects the notion and the sample should be assigned to category θ1 , while the Malic acid and Alkalinity of 
ash features hold a different viewpoint, that is, proposition {θ1} has a higher belief value. In addition, although 
all evidence provides belief for proposition {θ2} , there are also significant differences in its values. To remedy 
these conflicts, the proposed methodology provides a plausible elucidation for the conflicting evidence while 
preserving the conflicting information of the original evidence.

As shown in Table 9, the result given by only using Dempster’s combination rule is too absolute and hard. 
It believes that the proposition {θ2} has 100% belief degree, while the belief of other propositions is 0, which 
is illogical because Fig. 6 indicates that proposition {θ1} also has certain belief value. In addition, Dempster’s 
method is less robust since if one piece of evidence is wrong, the conflict coefficient is likely to be 1, and the 
process of data fusion cannot be carried out. Yager’s method also has the disadvantage of Dempster’s method 
that it only reduces the belief value proportionally. And due to the multiple combinations, the belief of some 
propositions is too tiny to provide useful information, which means that most information is lost in the fusion 
process. Deng et al.’s method works well in this experiment. However, the main problem is that it assigns a large 

Table 8.   BBA generated by using Wine data set.

m({θ1}) m({θ2}) m({θ3}) m({θ1, θ2}) m({θ2, θ3}) m({θ1, θ3}) m({θ1, θ2, θ3})

Alcohol 0.1304 0.1160 0.2752 0.1160 0.1304 0.1160 0.1160

Malic acid 0.3082 0.1681 0.0889 0.1681 0.0889 0.0889 0.0889

Ash 0.1413 0.1994 0.1295 0.1413 0.1295 0.1295 0.1295

Alkalinity of ash 0.3966 0.3017 0 0.3017 0 0 0

Magnesium 0.2252 0.2372 0.0781 0.2252 0.0781 0.0781 0.0781

Total phenols 0.2599 0.2642 0.0540 0.2599 0.0540 0.0540 0.0540

Flavanoids 0.2885 0.4230 0 0.2885 0 0 0

Nonflavanoid phenols 0.1840 0.1776 0.1152 0.1776 0.1152 0.1152 0.1152

Proanthocyanidins 0.1301 0.2030 0.1383 0.1301 0.1301 0.1383 0.1301

Color intensity 0.2123 0.2849 0.0727 0.2123 0.0726 0.0726 0.0726

Hue 0 0.2921 0.4158 0 0 0.2921 0

OD280/OD315 of diluted wines 0.3314 0.3372 0 0.3314 0 0 0

Proline 0 0.3106 0.3788 0 0 0.3106 0

Table 9.   Results of different methods.

m({θ1}) m({θ2}) m({θ3}) m({θ1, θ2}) m({θ2, θ3}) m({θ1, θ3}) m({θ1, θ2, θ3}) m(∅)

Dempster’s method34 0 1 0 0 0 0 0 0

Yager’s method76 0 0.0013 0 0 0 0 0 0.9987

Deng et al.’s method77,78 0.1914 0.7820 0.0010 0 0 0 0 0

Proposed method 0.1352 0.8516 0.0132 0 0 0 0 0

Table 10.   Classification result of Wine data set with 10-times-5-fold cross-validation method.

No. 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th Average accuracy

Accuracy 86.00% 86.54% 85.90% 85.38% 87.11% 85.95% 85.94% 86.51% 85.98% 87.14% 86.25%
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amount of belief to unimportant propositions, which reduces the belief value of important propositions and is 
unfavorable in decision-making.

When the data collected from a few sensors are in conflict, it is more likely that some sensors are not accurate. 
However, if many sensors indicate that there is conflict in data, it’s reasonable to believe that some unusual condi-
tions do exist. The proposed method solves this issue well. Firstly, it does not lose information in representing 
the main propositions, and the information is expressed through the single subset propositions as much as pos-
sible for an easier decision-making process. Secondly, when dealing with conflicting information, this method 
also takes it into consideration and expresses it in the combination result. The most important thing is that this 
method uses all the information when fusing data, and it is in line with people’s cognition. The combination 
result in Table 8 shows the superiority of the proposed method. Compared with the other methods, the proposed 
method gives certain belief to the proposition {θ1} and {θ3} respectively to avoid conflict information. Meanwhile, 
it does not reduce the belief degree of the proposition {θ2} significantly, which is of great help in decision-making. 
Furthermore, it can be seen from Table 10 that the average accuracy of classification can reach 86.25%, and the 
accuracy fluctuates up and down at 86% in each case, with the lowest of 85.38% and the highest of 87.14%. The 
result indicates the effectiveness and stability of the proposed method.

Metrics of classification results.  To further evaluate the performance of the proposed method in the 
classification problem, different metrics in machine learning are adopted to measure the classification results.

The metrics are listed as follows.

–	 Precision: The ability of a classification model to identify only the relevant data points. 

–	 Recall: The ability of a model to find all the relevant cases within a data set. 

–	 Accuracy: Proportion of data correctly judged by the model in the total data. 

–	 F1-score: The harmonic mean of precision and recall. 

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Accuracy =
TP + TN

TP + TN + FP + FN

F1 = 2×
Precision× Recall
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Figure 6.   Distribution of BBA in Wine data set.



14

Vol:.(1234567890)

Scientific Reports |         (2023) 13:7609  | https://doi.org/10.1038/s41598-023-34577-y

www.nature.com/scientificreports/

True positive (TP) means that the prediction is correct and the real value is positive. False positive (FP) means 
that the prediction is incorrect and the real value is negative. True negative (TN) means that the prediction is 
correct and the real value is negative. False negative (FN) means that the prediction is incorrect and the real 
value is positive. Based on the aforementioned metrics, the Macro-averaging (Macro-avg, the arithmetic aver-
age) parameters ( Macro_P , Macro_R , Macro_F1 ) and Weighted-averaging (Weighted-avg, the weighted average) 
parameters ( Weighted_P , Weighted_R , Weighted_F1 ) for indicators of each category are denoted as follows.

where Precisioni , Recalli and F1i are the Precision, Recall and F1 of the i-th category respectively, 
Wi =

number of the i-th category
total number of data .

The results for these metrics on the Iris data set and Wine data set are shown in Tables 11 and 12.
Table 11 reports the results of the proposed method for different classification metrics on the Iris data set. It 

shows that the proposed method is good in all metrics of class θ1 , and the recall rate is equal to the precision rate 
and reaches 93.33% for both macro-averaging metrics and weighted-averaging metrics. Therefore, for samples 
with balanced data and clear classification boundaries like the Iris data set, the proposed method can utilize the 
information and address the uncertainty well.

The proposed method also has unique advantages for samples with many attributes and imbalance data such 
as the Wine data set. As shown in Table 12, the accuracy rate increases as the number of samples in a category 
increases. The precision rate is also slightly higher than the recall rate in terms of the weighted-averaging metric, 
which means that the proposed method is more adaptable in scenarios where false negative samples should be 
avoided, such as spam blocking systems.

Discussion
Robustness of the proposed method in classification problem.  In this section, the robustness of 
the proposed method in classification problems is discussed. If an algorithm performs well in the classification 
accuracy of the test set regardless of the large proportion of the training set or the small proportion of the train-
ing set, it indicates that the algorithm has strong robustness.

The Iris data set is selected to obtain the classification accuracy of the test set under different proportions of 
the training set by performing 10 times randomized leave-out method, and the result is shown in Table 13. Each 
column of the table represents the result of the n-th leave-out method, and each row of the table represents the 
result of the training set with different proportions. For a more visual presentation of the result, Fig. 7 visualizes 
Table 13, where the higher the accuracy, the higher the column and the more the color of the column is skewed 

Macro_P =
1

n

n
∑

i=1

Precisioni , Macro_R =
1

n

n
∑

i=1

Recalli , Macro_F1 =
1

n

n
∑

i=1

F1i

Weighted_P =

n
∑

i=1

WiPrecisioni , Weighted_R =

n
∑

i=1

WiRecalli ,

Weighted_F1 =

n
∑

i=1

WiF1i

Table 11.   Results of different metrics for classification of the Iris data set.

Precision Recall F1-score Number of samples

class θ1 1.0000 1.0000 1.0000 10

class θ2 0.9000 0.9000 0.9000 10

class θ3 0.9000 0.9000 0.9000 10

Accuracy \ \ 0.9333 30

Macro-avg 0.9333 0.9333 0.9333 30

Weighted-avg 0.9333 0.9333 0.9333 30

Table 12.   Results of different metrics for classification of Wine data set.

Precision Recall F1-score Number of samples

Class θ1 0.8000 1.0000 0.8889 8

Class θ2 0.8333 0.9091 0.8696 11

Class θ3 0.9333 0.7778 0.8485 18

Accuracy \ \ 0.8649 37

Macro-avg 0.8556 0.8956 0.8690 37

Weighted-avg 0.8748 0.8649 0.8635 37
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Table 13.   Classification accuracy of different proportions of the training set under 10 times randomized leave-
out experiment.

Training part 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

10% 75.56% 71.11% 80.00% 88.15% 81.48% 87.41% 71.85% 80.74% 72.59% 80.00%

20% 89.17% 83.33% 88.33% 80.83% 90.00% 89.17% 85.83% 90.00% 88.33% 80.00%

30% 89.52% 84.76% 88.57% 87.62% 87.62% 85.71% 91.43% 91.43% 88.57% 91.43%

40% 90.00% 90.00% 92.22% 92.22% 93.33% 91.11% 93.33% 85.56% 86.67% 90.00%

50% 90.67% 96.00% 86.67% 94.67% 88.00% 90.67% 90.67% 85.33% 90.67% 92.00%

60% 90.00% 95.00% 91.67% 96.67% 90.00% 93.33% 86.67% 85.00% 95.00% 88.33%

70% 88.89% 93.33% 91.11% 93.33% 91.11% 91.11% 91.11% 91.11% 91.11% 88.89%

72% 88.10% 92.86% 95.24% 88.10% 90.48% 95.24% 90.48% 92.86% 95.24% 90.48%

74% 94.87% 87.18% 97.44% 94.87% 94.87% 94.87% 92.31% 87.18% 87.18% 84.62%

76% 88.89% 88.89% 97.22% 86.11% 88.89% 91.67% 97.22% 97.22% 88.89% 91.67%

78% 87.88% 96.97% 87.88% 90.91% 90.91% 96.97% 87.88% 90.91% 87.88% 100.00%

80% 93.33% 93.33% 90.00% 93.33% 93.33% 93.33% 90.00% 90.00% 93.33% 93.33%

82% 92.59% 92.59% 88.89% 96.30% 92.59% 92.59% 92.59% 88.89% 92.59% 92.59%

84% 95.83% 83.33% 95.83% 87.50% 95.83% 95.83% 100.00% 95.83% 83.33% 91.67%

86% 95.24% 95.24% 90.48% 95.24% 90.48% 90.48% 90.48% 85.71% 95.24% 90.48%

88% 100.00% 100.00% 88.89% 94.44% 94.44% 94.44% 88.89% 88.89% 94.44% 88.89%

90% 93.33% 100.00% 100.00% 80.00% 86.67% 93.33% 100.00% 93.33% 86.67% 86.67%

92% 100.00% 83.33% 100.00% 91.67% 91.67% 100.00% 100.00% 83.33% 91.67% 83.33%

94% 100.00% 100.00% 88.89% 88.89% 88.89% 88.89% 100.00% 100.00% 88.89% 100.00%

96% 100.00% 100.00% 100.00% 100.00% 100.00% 83.33% 83.33% 100.00% 100.00% 83.33%

98% 100.00% 66.67% 100.00% 100.00% 66.67% 100.00% 100.00% 100.00% 100.00% 100.00%

Figure 7.   The classification accuracy of different proportions of the training set.
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towards yellow. The overall trend in Fig. 7 shows that the classification accuracy increases as the proportion of 
the training set becomes larger, and the accuracy is mostly above 90%, which illustrates the strong robustness 
of the proposed method.

To further illustrate the effectiveness of the proposed method, the average classification accuracy for each 
proportion of the training set is calculated. The result compared with Wang’s base belief function77 is shown in 
Fig. 8. It can be seen that in most cases, the red solid line (the proposed method) is above the blue dotted line 
(Wang’s method), which means that the proposed method has a better performance in classification problem. 
In addition, the trend of polyline indicates that the larger the proportion of the training set, the higher the clas-
sification accuracy. When the proportion exceeds 40%, the classification accuracy of the proposed method can 
reach 90.44%. However, when the proportion exceeds 80%, the classification accuracy is difficult to be greatly 
improved. The results of this experiment accord with the practical application.

Comparative analysis in classification problem.  In this section, the proposed method will be com-
pared with Abellán’s method75, Jing and Tang’s method79, Wang’s method77, Murphy’s method74, Yager’s method76 
and Dempster’s method34 to further demonstrate the superiority of this method in classification problems. In the 
experiments, four datasets are adopted, namely the Iris data set, the Wine data set, the Seed data set and the Pen-
guins dataset. The Iris and Wine data sets have been introduced in sections “Iris data set classification” and “Wine 
data set classification”. For the Seeds data set, it comes from UCI Machine Learning Repository and consists of 
three classes: θ1 , θ2 , θ3 , and each class contains 70 samples with 7 attributes. The Penguins data set is from Palmer 
Station Antarctica LTER and it also consists of three classes: θ1 , θ2 , θ3 , while class θ1 contains 151 samples, class 
θ2 contains 123 samples and class θ3 contains 68 samples. Each sample has 2 attributes.

For each data set, stratified sampling is adopted, 80% of the data is used as the training set, and the remaining 
20% of the data is used as the test set. Results of the comparative experiment in each data set are show in Figs. 9, 

Figure 8.   The average accuracy of the different proportions of the training set and the comparison of different 
methods.

Figure 9.   Comparison of different methods accuracy on the Iris data set.
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10, 11 and 12 respectively. Each color of the histogram represents a category, the length of the column represents 
its classification accuracy, and the value to the right of the dotted line marks the classification accuracy of the 
most effective method.

As can be seen from Figs. 9, 10, 11 and 12, the proposed method can achieve the highest classification accu-
racy in all datasets. Although the proposed method does not necessarily achieve the highest accuracy in classify-
ing samples of a certain class of a dataset, it still achieve the highest classification accuracy in a complete data set. 
For example, both Abellán’s method and Yager’s method outperform the proposed method in classifying class θ1 of 
the Wine dataset, but for the complete Wine dataset classification, the proposed method can achieves the highest 
accuracy. The comparative analysis further demonstrate the superiority and stability of the proposed method.

The experimental results and comparative study show that different methods have their own advantages and 
disadvantages in conflict management. Yager’s method76 is unique and it modifies the combination rule and 
maintains the original excellent mathematical properties. However, it is still unreasonable to simply put the 
belief of the conflict into the unknown part, and from Tables 6 and 9 and the classification results, the result of 
this method is not very prominent. Murphy’s method74 averages the belief of all evidence and then fused them. 
Averaging is an effective method to solve the normalization problem in combination, but different pieces of 
evidence often have different weights and simply performing arithmetic averaging will lose the specificity of the 
evidence. Abellán et al.’s method75 proposed a hybrid rule to calculate the maximum conflict between two sets 
of evidence and then combine it with averaging. Although it appears to perform well, the method must assume 
that the data source is completely reliable, which is often not guaranteed in real world. Wang et al.’s method77 
adds the base belief to all propositions so that the belief of each proposition is not zero when evidence is fused. 

Figure 10.   Comparison of different methods accuracy on Wine data set.

Figure 11.   Comparison of different methods accuracy on seeds data set.

Figure 12.   Comparison of different methods accuracy on penguins data set.
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It solves the conflicting data fusion problem. However, since each proposition has the base belief value, it often 
introduces more uncertainty. Jing and Tang79 modifies this method to some extent by adding base belief for only 
the single subset propositions and combining it with Bayesian probability, but still suffers from the same problem 
of77. The proposed method can effectively solve the conflicting data fusion problem and has a good performance 
in classification applications. Nevertheless, the method is still not completely confident in delineating clear 
classification boundaries in the classification of samples with multiple attributes and large data volumes, which 
is worth of further study. The correlation belief function can integrate propositions with a large probability of 
occurrence and provide decisions in complex and uncertain environment.

Conclusions
When conflicting evidence is fused by using the classical Dempster’s combination rule, a counterintuitive result 
may be produced. To solve this problem, a new correlation belief function is proposed for conflict management in 
this paper. It first gathers all the belief in the single subset propositions, and then transfers the belief of the single 
subset propositions to the related multi-subset propositions. The proposed method has two main advantages. 
Firstly, it can fully utilize the acquired information and avoid obtaining counterintuitive results generated by the 
information loss; secondly, compared with other methods, the proposed method can better address the conflict-
ing information among data in the fusion result. A series of numerical examples validate the effectiveness of the 
proposed method in conflict management problems. The correlation belief function-based classification method 
has a good performance in classification applications. In the robustness test, the method can obtain high accuracy 
even with a small number of sample of training set. For example, the classification accuracy can reach 84.67% 
even if the proportion of the training set is only 20%. In addition, different data sets are tested and the results 
showed that the proposed classification method has a higher classification accuracy compared to other methods.

The following work can focus on addressing the following open issues. First, the time complexity of the 
classical Dempster’s combination rule is not satisfaction, which leads to a similar problem in the proposed 
method59. Second, this method can only be applied to the closed world assumption and the incomplete frame of 
discernment can be taken into consideration in the future42. Third, there is a broad research scope to apply the 
proposed correlation function to model uncertainty in other applications such as expert system53. Finally, the 
proposed method should be adopted to address more complex classification problems.

Data availability
All data are included in the manuscript.
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