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Construction of deep 
learning‑based disease detection 
model in plants
Minah Jung 1,2,9, Jong Seob Song 2,9, Ah‑Young Shin 3,4,9, Beomjo Choi 3,5,9, Sangjin Go 3, 
Suk‑Yoon Kwon 3,6, Juhan Park 2, Sung Goo Park 1,7* & Yong‑Min Kim 3,4,8*

Accurately detecting disease occurrences of crops in early stage is essential for quality and yield 
of crops through the decision of an appropriate treatments. However, detection of disease needs 
specialized knowledge and long‑term experiences in plant pathology. Thus, an automated system for 
disease detecting in crops will play an important role in agriculture by constructing early detection 
system of disease. To develop this system, construction of a stepwise disease detection model using 
images of diseased‑healthy plant pairs and a CNN algorithm consisting of five pre‑trained models. 
The disease detection model consists of three step classification models, crop classification, disease 
detection, and disease classification. The ‘unknown’ is added into categories to generalize the 
model for wide application. In the validation test, the disease detection model classified crops and 
disease types with high accuracy (97.09%). The low accuracy of non‑model crops was improved by 
adding these crops to the training dataset implicating expendability of the model. Our model has 
the potential to apply to smart farming of Solanaceae crops and will be widely used by adding more 
various crops as training dataset.

Crop disease management is important in agriculture to increase yield and quality by reducing the economic and 
aesthetic damage caused by plant diseases. Although research into the causes and effective treatments for crop 
diseases is actively underway, monitoring plant health and early detection of pathogens are critical to reduce 
disease spread and facilitate effective  management1. Detecting and protecting crops from pathogens is labor-
intensive and time-consuming, making it virtually impossible for humans to analyze each  plant2. Therefore, 
research on combining and applying new technologies to efficiently detect diseases has been conducted, and 
recently, research on detecting plant diseases in leaves using artificial intelligence (AI) is in  progress3. Continued 
development of improved classification models, such as disease detection, or plant health monitoring, may enable 
AI-supported decision-making systems for smart  agriculture4. Various studies have been carried out to apply 
deep learning algorithms more precisely to disease detection, such as applying newly developed  architectures5,6, 
automatically detecting and classifying lesions in plant  images7, or conducting research on preprocessing methods 
for incomplete  images8 for practical use.

Artificial Neural Network (ANN) is an AI technology with an analytic system inspired by the nerve system 
of the human brain that mimics the way the brain processes  information9. ANN contains a three component 
processing unit consisting of input, hidden, and output  layers10. Nodes of individual layers are connected to 
nodes of adjacent layers. Convolutional Neural Network (CNN) is a specialized method to recognize or assign 
images and consists of fully connected layers, numerous convolution layers, and pooling  layers11. Three types of 
layers are arranged and connected differently depending on the model architectures and model performance is 
affected by this  architecture12.  AlexNet13,  VGG1914,  GoogLeNet15,  ResNet16, and  EfficientNet17 are pre-trained 
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CNN models created by changing the number, composition, arrangement, or calculation method of three types 
of layers, and ranked high in competition, the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)18. 
These are pre-trained CNN models whose performance has been confirmed. CNN architecture development has 
focused on improving accuracy or efficiency. However, each architecture has its own unique characteristics and 
appropriate architectures are required for individual  datasets19,20. Recently, these CNN algorithms have been used 
to develop various tools or programs for the detection or assignment of objectives in various  fields21. In particular, 
detecting disease of plants using CNN algorithms were preferred rather than other deep learning  algorithms22.

Recently, CNN-based research have been carried out in  plants23 and CNN analysis showed high performance 
in phenotypic  analysis24. Thus, CNN-based phenotypic analyses have been reported in various crops such as 
classification of plant species, and detection of plant diseases in single or multiple species. To classify 44 species 
of the ILSVRC2012 dataset were classified using a pre-trained  model18 proposed by ImageNet, and accuracy was 
shown as 97.7%25. In addition, about 94 percent accuracy was shown from VGG and AlexNet analysis with 42 
species of image data from the IHLD dataset using  Flavia26,27. Further analysis with disease data, 21 classes of 5 
species were classified with MobileNetv2 with an accuracy of 90.38%28. Other study for classification of diseases 
for Bell pepper, an accuracy of 99.75% was shown using LBP + VGG-16 fused  features29, Potato leaf were used 
for classification of diseases using a VGG16 and VGG19 architecture, and accuracy was shown 91%30. In tomato, 
ResNet50 showed a 97% accuracy in classification of six prevalent diseases in tomato  leaf31.

Here, a disease detection model for plants was constructed using images of diseased-healthy plant pairs and 
AI algorithms. To develop the disease detection model, 24,101 image pairs from nine crops were used with a 
CNN algorithm consisting of five pre-trained models. The detection model was consistent with three step clas-
sification models. When constructing the detection model, the most accurate pre-trained model was selected 
as the final classification model from five different pre-trained CNN models. In addition to disease detection, 
the applicability to smart agriculture was confirmed by performing verification on crops not used in disease 
detection model training. Additionally, to investigate the pattern of symptoms and lesions of disease using our 
disease detection model, images of crop disease lesions were tested.

This study has the following key contributions: First, a stepwise disease detection model was developed, and 
each step had specific purpose. To improve the accuracy, an optimal pre-trained CNN model was selected for 
each step. Second, the stepwise model was able to provide flexibility and efficiency to users by selecting individual 
steps according to their purpose. Efficient analysis might be possible when this model will be applied to the 
industrial field. Third, various types of validation tests were carried out to apply the industrial filed. To confirm 
the ability to disease detection, validation tests were carried out using lesion or whole leaf. To investigate effect of 
training data quality, and processed data and filed data were also tested. Then, to provide an ‘unknown’ detecting 
function, ’unknown’ was defined to increase accuracy.

Results
Crop detection and classification using leaf images. A three step detection model for plant diseases 
was constructed using healthy and disease leaf images of bell pepper, potato and tomato (Fig. 1). In total, six sub-
models based on CNN were developed for each step of the classification model after data augmentation (Fig. 2). 
Five different pre-trained models such as ResNet50, AlexNet, GoogLeNet, VGG19, and EfficientNet were tested 
for each crop to develop the model (Supplementary Table S1). Each pre-trained model was optimized by tun-
ing hyperparameters, such as batch size, epoch size, optimizer, activation function, learning rate, early stopping 
function, and loss function (Supplementary Table S2).

In step 1, the crop classification model was constructed using diseased and healthy leaf images of 1911 bell 
pepper, 1448 potato, and 3150 tomato. Species of crops were recognized by submodel and assigned to one of three 
categories, bell pepper, potato, or tomato. After model training and validation, of the five different pre-trained 
CNN models, the model showing the highest accuracy using the separated test set was selected as the final model 
for step 1. As a result, it showed high accuracy in the order of EfficientNet, GoogLeNet, VGG19, AlexNet, and 
ResNet50 (Table 1). The classification model of EfficientNet architecture showed the highest accuracy of 99.33% 
and was selected as the final model for further analysis (Table 1). In addition to accuracy, measurement methods 
of were applied to measure the performance of the classification model. The precision, recall, and F1-score were 
also shown as high rate (Supplementary Table S3).

Disease detection for individual crops. After accurate crop recognition, detection models were used to 
determine disease occurrence for individual crops by detecting the presence or absence of disease symptoms or 
patterns of symptoms in step 2 (Fig. 3). Three individual models were developed to detect disease for bell pepper, 
potato, and tomato. As the bell pepper disease detection model, 1,165 healthy images and 746 diseased images 
were used for model training and validation, and GoogLeNet showed the highest accuracy in test. The accuracy 
of EfficientNet, VGG19, AlexNet, and ResNet50 were followed (Table 1). GoogLeNet, which showed the highest 
accuracy, was selected as the final model. In test, it showed an accuracy of 100.00%, and precision, recall, and 
F1-score were all 100.00% (Supplementary Table S3).

For potato disease detection model used 118 healthy images and 1,330 diseased images for model training and 
validation, and VGG19 showed the highest accuracy in test. The accuracy of EfficientNet, GoogLeNet, ResNet50, 
and AlexNet were follows. The tests performed on the VGG19 showed the highest accuracy with 100.00%, and 
precision, recall, and F1-score were all 100.00% (Supplementary Table S3).

As for the tomato disease detection model, 974 healthy images and 2,176 diseased images were used, and 
ResNet50 showed the highest accuracy in test. The other four models, GoogLeNet, VGG19, AlexNet, and Effi-
cientNet showed less than the final model. The test performed on the ResNet50 showed the highest accuracy 
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with 99.75%, and precision, recall, and F1-score were 99.75%, 99.75%, and 99.75%, respectively (Supplementary 
Table S3).

Classification of diseases on leaves. If a disease was detected in step 2, it was necessary to determine 
the type of disease. In step 3, a disease classification model was created for potato and tomato (Supplementary 
Table S4). Two or more types of disease data were obtained for both potato and tomato. For potato, disease 
data (1662 images) was divided into two diseases: early blight (929 images) and late blight (733 images). For 
tomato, disease data (2,177 images) was divided into four diseases: bacterial spot (1,670 images), early blight 
(302 images), late blight (467 images), and tomato mosaic virus (281 images). To distinguish the two potato 
diseases, five different models were created using pre-trained CNN models. The highest test accuracy was shown 
in order of VGG19, EfficientNet, AlexNet, and GoogLeNet and ResNet50 (98.80%) was shown slightly low accu-
racy (Table 1). The final model test results showed that the accuracy, precision, recall, and F1-score were 99.40%, 
100.00%, 98.64%, and 99.32%, respectively (Supplementary Table S3).

In the case of tomato, models were created and tested to distinguish the four diseases. EfficientNet had the 
highest test accuracy with 97.09%, and GoogLeNet, AlexNet, VGG19 showed accuracy of over 95% (Table 1). 
However, ResNet50 (87.80%) showed relatively low accuracy compared to the other four models. As the result 
of the final model, precision, recall, and F1-score were 97.19%, 97.09%, and 97.12%, respectively (Supplemen-
tary Table S3). The result of both disease classification model tests confirmed the test set data were classified 
with high accuracy (> 97%). Because other performance measures, such as precision, recall, and F1-score, also 
showed high scores, the models were able to classify early and late blight, without bias. These results confirmed 
the stability of the classification model.

Validation of the classification model using other crops. To generalize developed the classification 
model to other field such as model for classification of plant species or determining medicinal plants as well as 
smart farming, validation of other crops not used for model construction is required. To that end, the classifica-
tion model was validated using leaf images of six crops: apple, cherry, corn, grape, peach, and strawberry. Since 
crops not used in model construction could not be identified using the disease detection model, these crops 
(non-model crops) were correctly classified as ‘unknown’. In case of corn and peach data, 92.06% and 91.66%, 
respectively, were classified as ‘unknown’, showing high accuracy in step 1. Apple (76.92%), strawberry (56.72%), 
cherry (45.67%), and grape (34.94%) data were less accurate. Apple in step 2 and grape in step 3 were classified as 
’unknown’ with 87.30% and 90.64% frequency, respectively. Cherry and strawberry were classified as ’unknown’ 
less frequently, 60.07% and 64.04%, respectively (Fig. 4a and Supplementary Table S5). Large differences were 
found in evaluating performance according to crop characteristics with non-model crops, whereas model crops 
were correctly classified in each step (Fig. 4b and Supplementary Table S6).

Figure 1.  Overview of the dataset for disease detection models. Examples of image data from Solanaceae 
including bell pepper, potato, and tomato.
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Because the evaluation of strawberry data showed relatively low accuracy, an additional model (model 1 
with strawberry) that included strawberry was constructed to compare with the previously established step 1 
model (model 1 without strawberry) (Supplementary Fig. S1a). Further validation was performed using diseased 
strawberry images taken in the field from ’The Open AI Dataset Project (AI-hub (https:// aihub. or. kr/ aidata/ 
30729), Republic of Korea)’ (Supplementary Fig. S1b). The accuracy of the strawberry detection was 56.72% 
in the model 1 without strawberry and 96.94% in the model 1 with strawberry (Supplementary Fig. S1c). The 
accuracy was increased by adding strawberry data during model construction by more than 30%. The results of 
validation using data from field indicated that 63.64% (70 of 110) of images were classified correctly in the model 
1 without strawberry and 74.55% of (82 of 110) images were classified correctly in the model 1 with strawberry 

Figure 2.  Workflow of the disease detection model. (a) Phenotypic data preprocessing after resizing the 
original image data and data augmentation through rotation. (b) Stepwise disease detection model of Solanaceae 
through a deep-learning algorithm.

https://aihub.or.kr/aidata/30729
https://aihub.or.kr/aidata/30729
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(Supplementary Fig. S1c). Of the 110 AI-hub data images, 58 images were correctly classified in both the model 
1 without strawberry and the model 1 with strawberry, and 12 and 24 images, respectively, had different results 
depending on the classification model. Taken together, these results indicate that the model 1 with strawberry 
was able to classify strawberry more accurately.

Evaluation of the classification model using lesion cropped images. Evaluation of the classifica-
tion models was conducted using entire leaf images and lesion cropped images to investigate the effect of appar-

Table 1.  Result of validation and test using five pre-trained CNN models.

Step Crop Pre-trained model

Accuracy

Validation Test

I Crop classification All

ResNet50 92.34% 91.84%

AlexNet 97.62% 96.87%

GoogleNet 98.16% 99.08%

VGG19 96.86% 98.71%

EfficientNet 98.54% 99.33%

II Disease detection

Bell Pepper

ResNet50 100.00% 98.32%

AlexNet 98.96% 99.16%

GoogleNet 100.00% 100.00%

VGG19 99.74% 99.58%

EfficientNet 99.48% 99.58%

Potato

ResNet50 100.00% 99.45%

AlexNet 99.31% 98.90%

GoogleNet 99.66% 99.45%

VGG19 100.00% 100.00%

EfficientNet 100.00% 99.45%

Tomato

ResNet50 99.68% 99.75%

AlexNet 99.53% 99.45%

GoogleNet 99.62% 99.62%

VGG19 99.12% 99.62%

EfficientNet 99.62% 98.23%

III Disease classification

Potato

ResNet50 99.25% 98.80%

AlexNet 98.88% 99.40%

GoogleNet 99.63% 99.40%

VGG19 99.63% 99.40%

EfficientNet 97.75% 99.40%

Tomato

ResNet50 92.92% 87.80%

AlexNet 92.47% 95.45%

GoogleNet 94.29% 95.81%

VGG19 95.66% 95.08%

EfficientNet 96.35% 97.09%

Figure 3.  Diagram of disease detection model using CNN model.
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ent symptoms on the model (Fig. 5). First, crop classification models were created using entire leaf and lesion 
cropped images of early blight and late blight disease present in both potato and tomato (Fig. 5a,b). All test 
sets of entire leaf images were correctly classified. The highest accuracy was shown in GoogLeNet pre-trained 
model, which classified early blight with 100.00% accuracy. For late blight, the accuracy was 97.51% (Table 2 and 
Fig. 5c). The accuracy of the classification models was reduced when analyzing lesion cropped images in both 
early blight and late blight (Table 2 and Fig. 5c). GoogLeNet pre-trained model had the highest accuracy predict-
ing early blight, which was 95.56%. For late blight, VGG19 pre-trained model showed the highest accuracy with 
70.62%. The accuracy was significantly different between early blight and late blight, especially when using lesion 
cropped images (p = 0.021, Wilcoxon rank sum test). Higher accuracy was shown in predicting early blight in 

Figure 4.  Evaluation of the results of the stepwise detection model for plant diseases. (a) Correct evaluation 
results for each step using six other crops, which were not used to construct the model. (b) Correct evaluation 
results for each step using the three crops used to construct the model.
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both entire leaf and lesion cropped images. In addition, the prediction performance of the classification model 
using lesion cropped images were lower than that of entire leaf images. These results might be caused by the low 

Figure 5.  The effect of image resolution in construction of the classification model. Entire or cropped lesion 
images of (a) early blight and (b) late blight images. Potato and tomato leaf images are shown in the upper and 
lower panel, respectively. (c) Detection performance from the cross validation set, the upper plot is for early 
blight and the other one is for late blight. (d) Distribution of diagonal resolution for cropped lesion images was 
shown with the original image’s resolution (red line).
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resolution (20 × 20 pixels) of lesion cropped images. Therefore, the effect of resolution was investigated in both 
early blight and late blight (Fig. 5d), which indicated that image resolution did not affect the performance of clas-
sification models in either disease. One of the major differences between both diseased images was the features 
of the symptoms (Fig. 5a,b). For early blight, the color of the lesion is dark and clear, whereas the boundary of the 
lesion is vague and spread with lighter color in late blight (Supplementary Table S4). These data suggest the clas-
sification model using CNN may reliably recognize the different symptoms between early blight and late blight.

Discussion
Crop monitoring, especially smart farming, plays an important role in agriculture to increase crop yield or qual-
ity. Smart farming has become a crucial factor that has added indispensable value to agriculture and can help 
maintain high quality crops. Thus, development of AI-based disease monitoring programs will be an essential 
application of basic science to agriculture. In present study, a deep learning-based disease detection model was 
constructed to mimic disease recognition by humans in three major crops (Fig. 2). Although many studies have 
been conducted to classify diseases of bell pepper, potato, and tomato using CNN  models32–35, most of them a 
disease of a specific crop as one category and classify them all at once. However, our model differs in analyzing 
several stages because it assumes actual agricultural use. It can sequentially provide information about ’which 
crop’ is ‘diseased’ and ‘what the disease is’. The disease detection model was designed to recognize crops, detect 
disease, and determine the type of disease (Fig. 2).

Although the high-accuracy pre-trained CNN model was different for each step, validation using model 
crops indicated that the accuracies of the classification models were high enough for use in agriculture. In step 
1, EfficientNet (99.30%) showed the highest accuracy among five pre-trained CNN models (Table 1). The model 
with the highest accuracy in step 2 was different for each crop. In step 3, EfficientNet was shown the highest 
accuracies in potato (99.40%) and tomato (97.09%). For tomato disease classification, ResNet50 has the highest 
accuracy (99.75%) in step 2, but is more than 5% less accurate than other pre-trained CNN models in step 1 
(91.84%) and step 3 (87.80%). In step 1, bell pepper and potato are similar, and in step 3, the bacterial spot and 
early blight at tomato symptoms are similar, so the accuracy seems to be low. Collectively, ResNet50 seems to be 
less accurate when classifying images with high similarity, which is the same as the results of the previous study. 
According to previous studies, the CNN algorithm is considered suitable for disease detection of plants compared 
to  others22. Among CNN pre-trained models, EfficientNet is shown the highest accuracy in recent  studies36–38. In 
this study, EfficientNet showed good detection performance in several plant phenotypic data. However, detection 
performances depended on the morphological features or disease symptoms and the best performance might be 
shown in other pre-trained models. Thus, multiple pre-trained models need to be tested during the training step 
and determined optimal pre-model based on the accuracy of disease detection from evaluation data.

Especially, to analyze data not used in the model, an ‘unknown’ category was defined and a test was con-
ducted. To generalize the detection model, non-model crops must be distinguished and assigned them to the 
‘unknown’ category. The classification model was further evaluated using six non-model crops, revealing rela-
tively low accuracies compared to model crop (Fig. 4a). The ’unknown’ was defined as the probability of correct 
assignment to its own category. Corn and peach, which show phenotypic differences in leaf shape, were mainly 
assigned to the ‘unknown’ category in step 1, and most were filtered out during step 1 (crop classification). Due 
to a similar phenotype, apple was classified as potato in step 1, and most of the misassigned images were classified 
as ’unknown’ in step 2 (disease detection). Apple leaf lesions have a specific characteristic that is distinguished 
from the model construction data. Similarly, most grape images were classified as tomato in steps 1 and 2, due to 
similar phenotype, but were classified as ’unknown’ in step 3. These results might be due to crop-specific lesion 
phenotypes of grapes. Cherry and strawberry, which have round-shaped leaves, were frequently misclassified 
as bell pepper and potato, respectively. However, these lower accuracies were improved by adding non-model 
crops to training datasets for model construction (Supplementary Fig. S1). In addition, classification models 
constructed with high quality preprocessed image data showed relatively higher performance compared to 
classification models constructed using field data (Supplementary Fig. S1c). Collectively, these data suggest 
the accuracy of the classification model depended on the depth, quality, and variety of image data for training 
during model construction.

To further investigate the accuracy of disease detection, the ability of the classification model to accurately 
detect the same disease from different crops was examined (Fig. 5). The results indicated that the accuracy of 
predicting early blight was higher than that of late blight. These differences might be caused by patterns or fea-
tures of symptoms in diseased leaves that differ between early blight and late blight (Fig. 5a,b). To confirm this 
hypothesis, lesions of diseased leaves were cropped, and a classification model was constructed using the cropped 
images of these lesions. These data indicated that the accuracy of models developed using lesion cropped images 

Table 2.  Performance measurement of the model for validation using cross-species.

Validation Disease Pre-trained model

Performance

Accuracy Precision Recall F1-score

Crop cross
Early blight GoogLeNet 100.00% 100.00% 100.00% 100.00%

Late blight GoogLeNet 97.51% 97.55% 97.51% 97.50%

Cropped image
Early blight GoogLeNet 95.56% 95.99% 95.56% 95.65%

Late blight VGG19 70.62% 80.15% 70.62% 64.53%
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were decreased in both diseases compared to models developed using an entire leaf and significantly decreased 
in early blight (Fig. 5c). It is possible that use of low resolution images (20 × 20 pixels) might affect the accuracy 
of classification model. To address this, a correlation analysis between accuracy and image resolution was car-
ried out (Fig. 5d). In spite of the low resolution images, the crop lesion characteristics appear to be an important 
factor for classification as they are classified with more than 70.62% accuracy.

To construct a generalized disease detection model, various situations in various field such as management 
system in smart farming and phenotypic analysis of disease had to be assumed and tested. Various data such as 
non-model crop images, crop images in field, and cropped images were used for the construction of the model. 
Especially, the ’unknown’ category was newly defined when the probability is less than a predetermined threshold 
based on the classification probability. The disease detection model can be generalized by unknown category 
based on this classification probability. Thus, the disease detection model can be applicable to phenotypic research 
such as verification of seed purity, detection disordered crops or improved crop varieties.

CNN analysis is widely used for classifying or detecting objects using their images. In the field of plant 
research and agriculture, major phenotypic analysis studies mainly focus on classifying species, detecting tissues 
or organs, and detecting diseases or stress responses. Thus, CNN analysis can be widely applied to plant pheno-
typic analysis or smart farming to monitor crops. In agriculture, CNN-based classification analysis is actively 
used in commercial crops, such as  tomatoes39,  corn40, and  bananas41. These smart farming studies will help to 
automatically collect data, recognize events, and post-processing that could replace manpower in the near future. 
Similar to the human disease recognition process, plant disease was detected with sequential steps. This classifica-
tion model provides a chance to identify crop species, disease occurrence, and disease type using a single image.

A deep learning-based stepwise disease detection model was built and evaluated under various conditions 
for actual applications. A new category, ‘unknown’, was defined according to the probability of classification, and 
a cropped image or a field image was also used. But above all, to make the classification model more elaborate, 
more high quality images of various crops will be required for model construction, as well as an approach for 
developing a platform to apply this model to applications such as smart farming and studies of plant pathology.

Conclusion
In current study, a deep learning model was developed to detect multiple crop diseases. The disease detection 
model is composed of three steps to recognize crops (step 1), to determine disease occurrence (step 2), and to 
determine disease types (step 3). In each step, the optimal pre-trained CNN model that could be suitable for 
the data and purpose was selected and configured. To apply this model to the industrial filed, determination of 
unknown crops using images of crops that have not been used in model construction were added and ’unknown’ 
was defined to prevent false positives. Further studies should add a variety data of crops with and without diseases 
to create a generally usable disease classification model.

Materials and methods
Dataset description. Diseased and healthy plant leaves for the study were obtained from an open-source 
database,  PlantVillage42. A total of 8121 healthy leaf images of bell pepper, potato, and tomato were obtained 
from nine crops. For the detection of disease, a total of 31,061 diseased leaf images were obtained, including 
bacterial spot of bell pepper, early blight caused by Alternaria tomatophila and Alternaria solani, and late blight 
caused by Phytophthora infestans of potato or tomato, and bacterial spot, and tomato mosaic virus of tomato 
(Supplementary Table S7). In the case of tomato, four diseases out of nine diseases were selected. It was selected 
to accurately detect diseases common to other crops and to identify diseases that threaten farms. Before con-
structing the disease detection model, low quality images were filtered by horticultural experta (Supplementary 
Fig. S2). After image filtering, 18,445 and 6481 images of diseased and healthy leaves remained for subsequent 
analysis. To elaborate stepwise detection model for plant disease was constructed using Solanaceae correspond-
ing to bell pepper, potato, and tomato of nine crops. Removing background of the image was selected instead of 
annotation using polygon for training set to develop models using shape of leaf or lesion of images (Fig. 1 and 
Supplementary Table S4).

Data preprocessing. To construct and test the stepwise detection model, the test data were separated from 
the entire dataset prior to model construction, to evaluate the performance of the final model. The whole dataset 
was divided 80:20 using stratified random sampling, with 80% of dataset serving as a training set and the remain-
ing 20% of dataset used as a test set. Model construction and validation were performed using the training set. 
Five pre-trained CNN models were constructed and trained by sampling 80% of the training set and perform-
ing validation using the remaining 20% of the training set. To improve accuracy and reduce time consumption, 
hyperparameters including batch size, epoch size, optimizer, activation function, learning rate, early stopping 
function, and loss function were  tuned43. After that, of the five pre-trained CNN models, the model with the 
highest accuracy was selected from each pre-trained model. If the accuracy of the models were same, the model 
with the least loss is selected. Subsequently, the model with the highest test accuracy among the five pre-trained 
models was selected as the final model.

To improve the performance of the disease detection model, it was necessary to use more data. Therefore, 
data augmentation was carried out to obtain more image data by manipulating the existing training dataset. The 
collected data has a large image size and leaf midrib directions are all different, images were resizing original 
images to 224 pixels and rotated to construct a classification model regardless of the angle of the picture and 
generate a more elaborate model (Fig. 2a). Brightness or color shifts were not chosen as data augmentation 
methods because they likely interfere with the features of crop or diseased lesions. In the case of step 1, because 
all data were used, the amount was considerable. Therefore, the image data was rotated 20 degrees and amplified 
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18 times to be used as analysis data for computing power. For step 2 and 3, each image was rotated 10 degrees 
to augment the data 36 times.

Stepwise detection model for plant diseases. The stepwise detection model was constructed with 
consecutive submodels to determine crops (step 1), disease occurrence (step 2), and disease types (step 3) by 
mimicking human detection (Fig. 2b). This model was constructed using the CNN analysis method optimized for 
image analysis among deep learning analysis techniques (Algorithm 1). Each submodel was developed by fine-
tuning using five different pre-trained CNN models: AlexNet, ResNet50, GoogLeNet, and VGG19 which ranked 
first or second in  ILSVRC44,45, and EfficientNet which showed good performance in plant  classification36–38. In 
step 1, a model to determine and classify cultivars was developed using images of an entire leaf, regardless of 
presence or absence of disease, in three Solanaceae family crops using five pre-trained CNN models (Fig. 3). In 
step 2, disease occurrence was determined by dividing healthy and diseased leaves into two groups by submod-
els. In step 3, disease types were determined by classification models for individual crop diseases using images of 
diseased leaves classified from step 2. For the bell pepper, only images from a single type of disease were obtained 
and the classification model could not be developed to distinguish multiple intraspecies diseases (Fig. 2b).

Algorithm 1. Stepwise Disease Detection Model 

Input: Healthy and diseased leaves of bell pepper, potato, and tomato

Output: Classified images as species and disease types of leaf 

START:

1. Resize the image to 224 pixels

2. Split the data into 80% training set and 20% test set

3. 18 times data augmentation by rotating 20 degrees of training data

#Step1 : Crop Classification

4. Start training of five pre-trained CNN models using 80% of training set

5. Perform validation and tune hyperparameter

6. Classification kinds of sample through an activation function, Softmax

7. Determine optimal model with high validation accuracy

8. Test with data not used to train the model

9. #Step2 : Disease Detection

10. Start training of five pre-trained CNN models using 80% of each crop's training set

11. Perform validation and tune hyperparameter

12. Determine sample as healthy or diseased through an activation function, Softmax

13. Determine optimal model with high validation accuracy

14. Test with data not used to train the model

#Step3 : Disease Classification

15.
Start training of five pre-trained CNN models using 80% of training set 

of each crop's disease images

16. Perform validation and tune hyperparameter

17. Classification kinds of disease through an activation function, Softmax

18. Determine optimal model with high validation accuracy

19. Test with data not used to train the model

END

Evaluation stepwise detection model for plant diseases using diseased image data from other 
crops. To develop the detection model to a level that can be used for smart farming, apple, cherry, corn, grape, 
peach, and strawberry were used for evaluation. The six crops that were not used for model construction were 
defined as ’unknown’ because it was impossible to discriminate with our model. Therefore, the probability when 
determining one of the three crops, bell pepper, potato, and tomato is lower than a threshold value, it is predicted 
as ’unknown’. The prediction of the ’unknown’ is determined in step 1, step 2, and step 3. First, if ’unknown’ is 
determined in step 1, the analysis is finished. Even if it is incorrectly determined that it is not ’unknown’ in step 1, 
it can be determined as ’unknown’ through step 2 or step 3. The indicate function was used to classify ’unknown’ 
for each step. The indicate function determines ’unknown’ or the crops, ’unknown’ or disease existence, and 
’unknown’ or disease types based on the probabilities of the disease detection model. The indicate function is 
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used separately as I1 , I2 , and I3 in each step of step1, step2, and step 3. First, indicator function I1 of step1, for 
non-model crop evaluation sample l  ( l = 1, · · · , L, L = the total number of evaluation samples),

ĉ1 is the crop with the highest probability among bell peppers, potatoes, and tomatoes in step 1, Th1 is the average 
of the probability of true positive test samples in step 1.

N e x t ,  i n d i c a t o r  f u n c t i o n  I2  o f  s t e p 2 ,  f o r  e v a l u a t i o n  s a m p l e  m 
( m = 1, · · · ,M,M = the number of evaluation samples not classified as

′

unknown
′

in step1)

ĉ2 is the presence or absence of disease predicted in step 2 of the correctly predicted in step 1, Th2 is the average 
of the probability of true positive test samples in step 2.

F i n a l l y ,  i n d i c a t o r  f u n c t i o n  I3  o f  s t e p 3 ,  f o r  e v a l u a t i o n  s a m p l e  n 
( n = 1, · · · ,N ,N = the number of evaluation samples not classified as

′

unknown
′

in step1 and 2)

ĉ3 is a disease type if it is a result that there is a disease in potato or tomato through steps 1 and 2, Th3 is the aver-
age of the probability of true positive test samples in step 3.

Two groups of image data were used to evaluate the performance of this model. The first was crop images used 
for model construction (model crops), and the second was crop images that were not used for model construc-
tion (non-model crops). Then, the results were distinguished by involvement of crops for model construction. 
In the case of detecting disease using non-model crops, ‘unknown’ was defined as correct, and assigned to model 
crops was defined as incorrect. In case of model crops, correct was accurate detection of disease, and incorrect 
was inaccurate detection of disease.

Validation using lesion cropped image. A disease classification model was developed using cropped 
images of disease lesions. To investigate the performance of the disease classification model, whether it can be 
classified even with part of lesion images, the same diseased images from different crops were selected for valida-
tion. Thus, disease lesion images of early blight and late blight in potato and tomato were cropped and used to 
develop the classification model.

Measurement of model performance. Accuracy, precision, recall, and F1-score were calculated to 
evaluate the performance of the classification model. They were calculated based on the confusion matrix. After 
creating a confusion matrix by comparing the model test result with the actual condition, true positive (TP), 
true negative (TN), false positive (FP), and false negative (FN) values are obtained. ‘True’ means the actual test 
sample was accurately predicted. Conversely, ‘false’ indicates a case of erroneous prediction. TP is when a test 
sample that is actually positive is accurately predicted as positive, and TN means that a negative test sample is 
accurately predicted as a negative sample. FP is a case in which the prediction result is positive when the sample 
is actually negative. FN refers to the number of cases in which the prediction result is negative, but the sample is 
actually positive. Accuracy refers to the percentage of correct predictions among all test results. Precision refers 
to the ratio of the actual positives among those predicted as positives. Conversely, recall refers to the percentage 
of actual positive samples predicted to be positive as a result of the test. The F1-score is the harmonic mean of 
precision and recall and is a corrected value to prevent misjudgment due to sample bias.

Data availability
Data used in the article are available in their original source. The PlantVillage dataset is available at https:// github. 
com/ spMoh anty/ Plant Villa ge- Datas et and the AI-hub dataset at https:// aihub. or. kr/ aihub data/ data/ view. do? 
currM enu= 115& topMe nu= 100& aihub DataSe= realm & dataS etSn= 237.

Received: 8 August 2022; Accepted: 3 May 2023

References
 1. Martinelli, F. et al. Advanced methods of plant disease detection. A review. Agron. Sustain. Dev. 35, 1–25 (2015).
 2. Sankaran, S., Mishra, A., Ehsani, R. & Davis, C. A review of advanced techniques for detecting plant diseases. Comput. Electron. 

Agric. 72, 1–13 (2010).
 3. Hasan, R. I., Yusuf, S. M. & Alzubaidi, L. Review of the state of the art of deep learning for plant diseases: A broad analysis and 

discussion. Plants 9, 1302 (2020).
 4. Zhu, N. et al. Deep learning for smart agriculture: Concepts, tools, applications, and opportunities. Int. J. Agric. Biol. Eng. 11, 32–44 

(2018).
 5. Shah, D., Trivedi, V., Sheth, V., Shah, A. & Chauhan, U. ResTS: Residual deep interpretable architecture for plant disease detection. 

Inf. Process. Agric. 9, 212–223 (2022).
 6. Mahum, R. et al. A novel framework for potato leaf disease detection using an efficient deep learning model. Hum. Ecol. Risk Assess. 

Int. J. 1–24 (2022).

I1l =

{
unknown if pl < Th1
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ĉ2 if pm ≥ Th2,

I3n =

{
unknown if pn < Th3
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