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A Deep Q‑Network based hand 
gesture recognition system 
for control of robotic platforms
Patricio J. Cruz 1,2,4*, Juan Pablo Vásconez 3,4*, Ricardo Romero 2,4, Alex Chico 2,4, 
Marco E. Benalcázar 1,4, Robin Álvarez 1,2,4, Lorena Isabel Barona López 1,4 & 
Ángel Leonardo Valdivieso Caraguay 1,4

Hand gesture recognition (HGR) based on electromyography signals (EMGs) and inertial measurement 
unit signals (IMUs) has been investigated for human‑machine applications in the last few years. The 
information obtained from the HGR systems has the potential to be helpful to control machines such 
as video games, vehicles, and even robots. Therefore, the key idea of the HGR system is to identify the 
moment in which a hand gesture was performed and it’s class. Several human‑machine state‑of‑the‑
art approaches use supervised machine learning (ML) techniques for the HGR system. However, the 
use of reinforcement learning (RL) approaches to build HGR systems for human‑machine interfaces 
is still an open problem. This work presents a reinforcement learning (RL) approach to classify EMG‑
IMU signals obtained using a Myo Armband sensor. For this, we create an agent based on the Deep 
Q‑learning algorithm (DQN) to learn a policy from online experiences to classify EMG‑IMU signals. 
The HGR proposed system accuracy reaches up to 97.45± 1.02% and 88.05± 3.10% for classification 
and recognition respectively, with an average inference time per window observation of 20 ms. and 
we also demonstrate that our method outperforms other approaches in the literature. Then, we test 
the HGR system to control two different robotic platforms. The first is a three‑degrees‑of‑freedom 
(DOF) tandem helicopter test bench, and the second is a virtual six‑degree‑of‑freedom (DOF) UR5 
robot. We employ the designed hand gesture recognition (HGR) system and the inertial measurement 
unit (IMU) integrated into the Myo sensor to command and control the motion of both platforms. The 
movement of the helicopter test bench and the UR5 robot is controlled under a PID controller scheme. 
Experimental results show the effectiveness of using the proposed HGR system based on DQN for 
controlling both platforms with a fast and accurate response.

Conventional human-machine interfaces (HMIs) have been proposed to control robotic platforms by using dif-
ferent devices such as keyboards, joysticks, inertial measurement units (IMUs)1, vision-based  systems2,3, haptic 
 devices4, and speech recognition  systems5. However, in the last years, the use of non-verbal communication 
techniques has been demonstrated to be useful when creating human-machine interfaces (HMIs). In particular, 
hand gesture recognition (HGR) systems have been used in applications such as sign language recognition, 
muscle rehabilitation systems, prostheses, robotics, augmented reality, and image manipulation, among  others6. 
However, the control of robotic platforms that uses HGR systems is still an open research  problem1,7. These HGR 
systems can be divided into vision-based and sensor-based depending on the sensor that is used. Several HGR 
systems use vision-based methods, such as the  Kinect8 and the Leap Motion  Sensor9. However, its functional-
ity can be affected by occlusion problems and the distance between the sensor and the hand. On the contrary, 
sensor-based HGR systems use gloves with inertial measurement  units10,11, as well as surface electromyography 
(EMG) non-invasive methods for detection of arm muscle activity such as G-Force and Myo Armband  sensors12. 
In general, no matter what type of sensor is used, designing HGR systems that are able to determine the moment 
in which a certain hand gesture was executed is challenging. This is in part due to the variability of the signals 
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of each gesture between different users, as well as the similarities that are present between different gestures 
for the same  user7. However, the design of HGR systems is important as these systems can help to increase the 
performance, accuracy, and versatility of teleoperation tasks to control robotic platforms.

Several applications have previously used HGR systems to control robotic platforms. Most of these works 
developed HMIs to control different kinds of robots by using EMG and IMU measures, as well as vision sensors. 
For example, the authors  in13 designed a HMI to control an underwater robot by using EMG signals, a gyro-
scope, and a camera. They used a fuzzy-PID algorithm to command the underwater robot postures. Other work 
designed an architecture that used upper limb motion estimation based on EMG signals and a Kinect sensor to 
control a humanoid robotic  arm14. Another work proposed a HMI that used the orientation and muscle force 
of the forearm, as well as dynamic hand motions to control the position and configurations of a six degrees of 
freedom (DoF) robotic manipulator with one DoF  gripper15. The proposed system was able to recognize dynamic 
hand motions by using EMG and IMU sensors to control the robot in real-time.  In1, the authors propose an 
EMG-based HGR system based on two Myo Armband devices to track the movement of both arms of a user to 
command a three DoF commercial manipulator. For this, a non-linear robust control was proposed to tackle 
the tracking problem. The use of EMG-based HGR systems has been also studied to control unmanned aerial 
vehicles (UAVs). For example,  in16,17, the authors propose an EMG-based HGR system to control drones through 
hand gestures in a natural and intuitive manner without the need for a joystick or other interface. Another work 
presents an architecture based on Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) 
to design an EMG-based HGR system that uses the Myo Armband sensor to command a virtual quadcopter 
with  Dronekit18. Finally, a multi-modal UAV control was proposed  in17, which uses an EMG-IMU-based HGR 
system for controlling quadcopters with an 81.5% gesture recognition accuracy. The proposed HGR system was 
based on a CNN that was used to learn hand gestures and movement patterns.

As we presented in the previous paragraph, several methods have been developed based on EMG and/or 
IMU to command the movement and operation modes of various robotic platforms. However, it is important to 
mention that each robotic platform could present a different behavior and requirements. In addition, each user 
can have a different response to the HGR sensors and can behave differently when using the robotic platforms. 
Therefore, it is important to investigate different HGR models to evaluate them on different robotic platforms. In 
general, machine learning (ML) and deep learning (DL) techniques have been previously used to develop EMG 
or EMG-IMU-based HGR  systems19,20. In particular, supervised methods such as decision trees, support vector 
machines (SVM), artificial neural networks (ANN), convolutional neural networks (CNN), and recurrent neural 
networks (RNNs) have shown high accuracy for HGR  systems19,21. However, conventional ML and DL models 
still require a fully labeled dataset with all the user’s features and labels to be trained, which makes it difficult 
to learn from the online experience. This makes online learning difficult, making it not viable when the HGR 
system needs to be trained while the user is interacting with the HGR system. On the other hand, reinforcement 
learning (RL) approaches can be used to build models that learn from experience online. It is in this context 
where the concept of adaptability comes into play since an HGR system based on EMG-IMU signals should 
be able to present certain adaptability to users over time. There have been a few attempts to use RL methods to 
develop HGR systems. For example,  in22, the authors used the UCI dataset where six subjects realized different 
hand movements. To learn a classification policy, a dueling deep Q-learning technique was used. This approach 
learns to classify between 6 hand gestures.  In23, a reinforcement learning-based classifier for arm and finger 
movement was presented, where a 26TSystem was used to obtain EMG signals from 10 subjects. A Q-learning 
based on a feed-forward neural network classifier was used to infer six classes of elbow positions and 4 finger 
movement classes. The authors indicate that the proposed method based on Q-learning outperforms supervised 
methods for their dataset distribution. Finally, we have developed architectures that work with reinforcement 
learning algorithms such as Q-learning to develop HGR systems using only EMGs to recognize 6 hand  gestures24. 
The proposed model required a large amount of data and training time, as well as a very sensitive and extensive 
calibration of their hyper-parameters to obtain promising  results24. As explained in these works, the use of RL 
algorithms can be used to obtain high-performance EMG-based HGR systems. However, although the results 
obtained when using EMG and reinforcement learning to recognize hand gestures were encouraging, it is still 
necessary to explore other types of algorithms and sensor information, such as the combination of EMG-IMU 
signals with agents based on convolutional neural networks (CNN). Furthermore, the use of these methods in 
simulated and real robotic platforms also needs to be rigorously evaluated.

Based on this information, related to reinforcement learning algorithms for hand gesture recognition for 
robotic platforms control, we can say the following. First, the databases that have been used to date have been 
proposed by each author, and data is not always available online. Moreover, the combination of EMG-IMU signals 
for the development of HGR systems based on reinforcement learning is still an open research topic. Finally, 
to date, we have not found a work that uses HGR systems based on RL methods to compare control systems 
for both a built robotic platform and a robot in a simulator, which is one of the main motivations of this work.

In this context, we propose the use of a reinforcement learning algorithm that uses EMG-IMU signals to 
address the problem of HGR systems to control different robotic platforms.

The main contributions of this work are summarized as follows:

• We successfully developed an EMG-IMU-based HGR system that uses a reinforcement learning approach 
based on a Deep Q-network (DQN) to recognize 6 different hand gestures (5 gestures and 1 no gesture). The 
algorithm was trained and tested by using a dataset composed of 32 users (16 for training and 16 for testing).

• We assess the effectiveness of the EMG-IMU-based HGR system and the IMU signals to control a 3-DOF 
tandem helicopter test-bench. For this, a position controller based on a cascade PID structure has been tested 
to control this platform.
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• We assess the effectiveness of the EMG-IMU-based HGR system and the IMU signals to control a 6-DOF 
UR5 virtual manipulator in a virtual environment. For this, a minimum norm PID controller has been tested 
to control this platform.

Materials and methods
In this section, we present the proposed architecture based on a HGR system to control both a 3-DOF tandem 
helicopter test-bench and a 6-DOF UR5 virtual manipulator, which is illustrated in Fig. 1. As can be observed, 
the proposed architecture is conformed by the HGR system, the 3-DOF tandem helicopter test-bench, and the 
6-DOF UR5 virtual manipulator. We explain in detail each stage of the proposed architecture as follows.

Hand gesture recognition system (HGR). In this subsection, we present the proposed HGR system 
based on EMG-IMU signals and DQN as a RL-based method, which is illustrated in Fig. 2. As can be observed, 
the proposed architecture is conformed by data acquisition, pre-processing, feature extraction, classification, 
and post-processing stages. We explain in detail each stage of the HGR system as follows.

Data acquisition. We use EMG-IMU data of 5 different hand gestures—wave in, wave out, fist, open, pinch—
and the no gesture or relax gesture—6 gestures in total—, which was collected by using the Myo armband 
device—8 channels at 200 Hz. The dataset has been made publicly available in the following  link27. The dataset 

Figure 1.  Proposed architecture based on a HGR system to control both a 3-DOF tandem helicopter test-bench 
and a 6-DOF UR5 virtual  manipulator25,26.

Figure 2.  Hand gesture recognition (HGR) architecture based on EMG-IMU signals and DQN.
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distribution is presented in Table 1. In this work, we trained and evaluated user-specific models, which means 
that each user information is trained with a single model.

Pre‑processing. For each EMG-IMU sample, we first perform a segmentation procedure that split the EMG-
IMU signal into multiple windows to analyze one by one. For this, we use a sliding window approach to slide 
over the entire EMG-IMU  signal7,19,20. To perform the segmentation procedure, we split a EMG-IMU signal 
sample of 5 seconds (1000 points) into multiple windows by using a sliding window of width W = 300 points 
and a stride = 40 (separation between windows). We select the window and stride values experimentally as a 
designer criterion since it helps us to reach high-accuracy results. For a given instant of time, we obtain measures 
from the Myo Armband sensor, where each component of such measure represents the EMG-IMU information 
for each channel i = 1, 2, . . . , 12 respectively (8 channels for EMG and 4 for IMU signals).

Then, we perform a rectification procedure on the EMG-IMU signal by applying the absolute value calcula-
tion to avoid the mean in each channel being zero. In addition, we apply a low-pass Butterworth filter to the 
EMG-IMU signal to reduce noise. The filter has an order of 4 and a cut-off frequency of 15Hz to obtain a balance 
between the number of spectrograms and their dimensions.

To obtain relevant features from the EMG-IMU signals, we use the time-frequency domain, since more useful 
information can be obtained using this approach than by using only the time or frequency  domains12,28. For this, 
once we obtained the filtered and rectified signal, we use the Short-time Fourier transform (STFT) by using an 
internal sliding window—width = 24 points and stride = 12 points—on each window observation. Finally, the 
spectrogram is calculated as the squared magnitude of the real and imaginary components of the STFT. It is to 
be noticed that the spectrogram is calculated for each of the 12 channels of the sensor, which includes EMG and 
IMU information. Finally, we concatenate the spectrogram of each channel to build a tensor which will be the 
input of the feature extraction stage.

Feature extraction. In this work, we use feature extraction methods to obtain relevant and non-redundant 
information from the EMG-IMU signal. For this, we used the spectrograms of the EMG-IMU signals (time-
frequency domain features) to feed a CNN, which is known as a high-efficiency automatic feature extraction 
method. The proposed feature extraction stage uses residual blocks as can be observed presented in Fig. 3a, 
which helps to avoid the vanishing or exploding gradients problems and accelerates the training  procedure29. 
The proposed feature extraction stage is composed of parallel convolution layers, which are built on several 
blocks of convolutions and max-pooling layers distributed in parallel, that are inspired by the Inception mod-
ules as illustrated in Fig. 3b30. The internal blocks of the parallel convolution layer allow the network to extract 
features with different convolution filter sizes, which makes possible the extraction of a wide number of features 
that help to achieve high classification performances. We used in total 6 parallel convolution layer structures and 
2 residual blocks to build the feature extraction stage illustrated in Fig. 3a.

Classification. The classification stage is used to infer the hand gesture category from the feature extraction 
stage information. For this, we define the EMG-IMU signals classification problem that uses the sliding win-
dow as a sequential decision problem, in which the prediction of the hand gestures represents the actions of an 
agent, and the EMG-IMU signals extracted features for each sliding window represents the  observations24,31. 
Within this scheme, an optimal policy can be calculated from the optimal values by choosing the highest-valued 
action at each observation. In this work, we learn the estimates for the optimal action values by using the Deep 
Q-network (DQN) off-policy algorithm as illustrated in Fig. 4. As can be observed, our agent is composed of 
CNN as the policy representation, as well as the DQN algorithm to learn a policy that maximizes the total sum 
of rewards.

The proposed CNN-based agent learns to classify the labels of sliding windows that provide observations from 
the EMG-IMU signals. It is worth mentioning that we used the DQN algorithm since the EMG-IMU spectrogram 
tensors represent a continuous observation space, and an artificial neural network-based policy representation is 
recommended to build the  agent32. Moreover, we use a critic agent representation since it usually obtains high-
performance results for discrete action spaces, which in our case is represented by the 6 gesture  categories32. Our 
critic agent infers the expected value of the long-term reward for a particular observation and  action32. Hence, 
after taking action At in the observation Ot and earning the reward Rt+1 in Ot+1 , the DQN algorithm adjusts the 
neural network parameters θt , as detailed in the following expression:

Where θt+1 represents the updated learned parameters, and θt represents the previous learned parameters respec-
tively. The value of α represents the learning rate.

(1)θt+1 = θt + α

(

Y
DQN
t − Q(Ot ,At; θt)

)

· ∇θt Q(Ot ,At; θt)

Table 1.  Data set distribution to evaluate user-specific models (one model for each of the 32 users).

User-specific model

Models Training Validation Test

Training set 16 models 150 samples per user 150 samples per user –

Testing set 16 models 150 samples per user – 150 samples per user
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The DQN algorithm returns a set of action values for a certain observation Ot , where Q(Ot , ·; θ) denotes the 
parameters of the CNN as explained  in23,31,32. The DQN algorithm uses a target network YDQN

t  from Eq. (2), 
which is defined as follows.

(2)Y
DQN
t ≡ Rt+1 + γ ·max

a

[

Q
(

Ot+1, a, θ
−
t

)]

Figure 3.  Feature extraction stage. (a) Feature extraction layer structure composed of residual blocks and 
parallel convolution layers. (b) Parallel convolution layer structure.
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where Rt+1 represents the reward earned when going from the observation Ot to the observation Ot+1 by taking 
the action At . The optimal future Q value that is estimated is represented by the expression max

a
[Q(Ot+1, a)] , 

and the discount factor is denoted by γ.
The target network YDQN

t  from Eq. (2) contains parameters θ− that are updated regularly every τ steps 
from the online network in Eq. (1) which has the parameters θt . Therefore, the parameters θ− are fixed for the 
remainder of the period until the subsequent update after τ steps. By doing this, correlations with the target are 
 reduced31,33. Finally, we use experience replay to shuffle the data at random in order to eliminate correlations in 
the observation sequences, which helps to improve the accuracy of the DQN  algorithm31,33.

Next, we explain in detail each element of the proposed scheme shown in Fig. 4 for the EMG-IMU sequential 
classification problem solved by DQN to learn an optimal policy:

• Agent it is composed of a CNN policy representation that can take action at any observation of the environ-
ment, and it is meant to learn a policy that maximizes the total sum of rewards by using the DQN algorithm. 
The proposed agent learns to classify the labels of the sliding windows from the observations of the EMG-
IMU signals.

• Observation An observation is composed of part of the information of the real state of the environment with 
which the agent interacts. We define the observation Ot as the tensor resulting from the feature extraction 
stage for each EMG-IMU sliding window respectively.

• Action The agent performs an action At when is in the current observation Ot to reach the observation Ot+1 
and then receive the reward Rt+1 . We define an agent action as one of the possible class gestures (wave in, 
wave out, fist, open, pinch, and no gesture).

• Environment We define the environment as the sliding window information—feature vectors and labels– 
extracted from the ground-truth of each EMG-IMU signal.

• Reward The agent receives a positive or negative reward from its interaction with the environment. We define 
two different rewards to learn the classification and recognition procedure (see Fig. 4). The agent can receive 
a positive reward Rt = +1 or a negative reward Rt = −1 depending if it predicts a window label correctly or 
incorrectly respectively. On the other hand, once an episode is over, the ground truth is compared with the 
predicted labels, and if the overlapping factor of the predicted gestures is more than 70%, then the recogni-
tion is considered successful and receives a positive reward Rt = +10.

Post‑processing. We use a post-processing stage to eliminate erroneous labels from the predictions in the EMG-
IMU signals. We calculate the mode on the predicted vector of classes that are different from the no-gesture 
 label24. Then, all the labels in such vectors that are different from the mode gesture are replaced with such gesture 
for that EMG-IMU sample. This stage is important to improve recognition performance.

3‑DOF tandem helicopter test‑bench. The 3-DOF tandem helicopter test-bench is a simplified experi-
mental platform for validating the effectiveness of different control systems for unmanned aerial vehicles. In 
this work, we used the 3-DOF helicopter designed by using low-cost materials, 3D printing, and laser cutting 
presented  in34. This test-bench receives its name from its 3 motion angles, which are called travel, elevation and 
pitch. The hand gesture recognition system (HGR) described in previous sections is used to generate setpoint 
values that are then transmitted to the helicopter. Internally, the 3-DOF helicopter has a position controller 
which is responsible for the motion along the three axes. The proposed architecture for controlling the test-
bench is presented in Fig. 5. As it is shown in this figure, the system is composed of two main components which 
are the PC and the helicopter itself. We explain in detail each stage of the HGR system as follows.

Figure 5.  Architecture of the 3-DOF Helicopter controlled with the HGR  system25,26.
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• PC all the signals acquired from the Myo Armband sensor are interpreted, and a set point command is 
generated according to the gesture performed by the user. The PC is also used as an interface for the user to 
visualize and interact with the variables of the helicopter.

• 3‑DOF Helicopter The prototype has an embedded PID control system inside a Pyboard microcontroller 
which receives the set point value from the PC through an XBee module. The feedback controller is imple-
mented using three incremental encoders as measurement devices (one for each angle of motion: ET ,EE ,EP 
for the variables travel, elevation and pitch, respectively). The control laws are calculated (based on the control 
diagram shown in Fig. 6 and Eqs. (8)–(10)) and then transformed into a Pulse Width Modulation signal 
(PWM) which is then sent to the brushless DC motors (BLDC, represented by MF and MB for the front and 
back motors in Fig. 5) that generate all the motion of the helicopter. The prototype is powered by a 12V/30A 
supply whose power is transmitted through a slip ring, which is needed to avoid cables from tangling by the 
rotation of the helicopter about the travel axis.

Helicopter model. The main structure of the 3-DOF helicopter is made of aluminum profiles and the support-
ing structures for each rotation axis and encoders were 3D printed. A more detailed explanation of the physical 
construction of the Helicopter test-bench is given  by34.

To obtain a mathematical model of the motion of the 3-DOF helicopter it is important to analyze its dynam-
ics, which are mainly given by its geometry. The masses of the different components, and the two input forces, 
which correspond to the thrust generated by each propeller, are called Fb , Ff  for the back and front motors, 
respectively. These two forces are the ones that make the helicopter move along its three axes of motion: travel 
� , elevation ǫ , and pitch ρ . These 3 variables are the outputs of the system and can be related to the input forces 
as follows: when the two forces, Fb and Ff  are equal to each other and different from zero, a total thrust force 
Fsum = Fb + Ff  will appear in the direction of motion of the elevation, ǫ axis. Similarly, when the two forces are 
different from each other, the difference Fdif = Ff − Fb will accelerate the helicopter body in the direction of 
the pitch ρ axis. Since these compound forces Fsum and Fdif  can describe the motion of the helicopter in a better 
way, they are used for the derivation of the mathematical model. In order to implement a control law that uses 
these new forces, it is important to consider the transformation between each propeller force ( Fb and Ff  ) into 
Fsum and Fdif  , which is shown in Eq. (3).

Lastly, the motion of the prototype about the travel � axis is dependent on the angle ρ . When a positive pitch 
appears, the force Fsum pushes the helicopter in the positive direction of the � axis, and the opposite is also true. 
Therefore, it can be noted that the pitch motion and the travel motion are strongly coupled and dependent on 
each other. From this analysis and the measurements of the different lengths and masses of the system, a set 
of mathematical equations that describe the motion of the 3-DOF helicopter can be derived as shown in the 
Eqs. (4)–(6)35.

where I� , Iǫ , and Iρ are the moments of inertia about the travel, elevation and pitch axes respectively. LM is the 
distance from the travel axis to the helicopter body, LH is the length measured from the pitch axis to each motor, 
and LW is the distance from the travel axis to the counterweight, whose mass is represented by mW . The body 
of the helicopter has a total mass of mH , and the mass of each motor-propeller assembly is represented by mh.

(3)Ff =
Fsum + Fdif

2
and Fb =

Fsum − Fdif

2

(4)ρ̈Iρ = LHFdif

(5)ǫ̈Iǫ = LM cos (ρ)Fsum − (LMmH − LWmW ) cos (ǫ)

(6)�̈I� = LM cos (ǫ) sin (ρ)Fsum

Figure 6.  PID controller scheme implemented for orientation control of the 3-DOF Helicopter.
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Helicopter control system. From the equations of motion for the 3-DOF helicopter described above, we can 
design a control system for regulating the outputs of the system. For this 3-DOF helicopter, a PID controller was 
designed for each variable. The implemented control scheme is shown in Fig. 6. The relations between variables 
and design considerations for each controller are explained as follows:

• Pitch as it was explained earlier, when the propeller forces Fb and Ff  are different from each other, the value 
of Fdif  will have a value other than 0, and a torque will appear around the pitch axis. The PID controller for 
this variable measures the value of ρ and generates a corresponding PWM signal for the motors, which in 
turn produces a Fdif  force to reach the set point ρref .

• Elevation similar to the pitch axis, when the two propellers are moving, a net thrust Fsum will appear, which 
will accelerate the helicopter in the ǫ direction. In this case, the PID controller has the error of the elevation 
axis as input and the output is a PWM value that generates the thrust along the elevation axis.

• Travel as it was explained in previous paragraphs, when the pitch angle is different than 0, a component of 
the net thrust appears in the travel direction and is equal to Fsum sin (ρ) which is why for this variable the 
input is considered to be the angle ρ . This behavior creates a cascade control loop that has a travel controller 
on the outside and the pitch controller becomes the inner loop. Therefore, in this case, the PID controller 
generates a setpoint value for the ρ angle.

In addition to these features, the performance of the travel controller was improved by adding a reset on the 
integral action and a cascade PD-PID structure. This feature is used to accomplish two important improvements 
to the travel motion:

• Reduced overshoot the reset is applied when the error is less than 3◦ . This threshold was implemented con-
sidering that the span of the travel motion is much larger. Also, the surrounding air produces a disturbance 
due to turbulence, whose effect lies within the range of ±3◦ . With this condition, the overshoot of the travel 
motion is effectively reduced because the integral action is reset every time the error e� is in that range.

• Anti‑windup the second reset condition is applied when the error is greater than 20◦ , outside of that range only 
a PD controller is applied. This is used to counteract the effect of excessive integral windup, which happens 
when a large change in the set point value is sent to the helicopter. The 20◦ was determined empirically after 
several tests in which it was observed that the PD controller alone was capable of achieving an error below 
17◦.

This dual PD-PID characteristic was implemented as an interval of travel error in which the integral action is 
applied. This interval is represented by �e� and is defined in Eq. (7).

The full control scheme with the additional features mentioned above is shown in Fig. 6. As it can be noticed, 
when the error e� lies within the specified range given by �e� , the controller switches from a PID structure to 
PD or vice-versa.

Additionally, the control actions for each variable are represented by Eqs. (8)–(10). Here it is easier to see the 
relationship between the travel variable, � and the pitch variable ρ . The output of the � controller is the refer-
ence input (or setpoint) for the ρ control loop, as it was previously explained. In these equations, Kp,Ki and Kd 
represent the proportional, integral and derivative gains for the PID controller for each variable. Each gain also 
has a subscript for each variable. All of these gains were obtained through empirical methods as it is discussed 
 in34. It can also be observed in Eqs. (8)–(10) that the elevation variable is related to the sum of the motor thrust 
forces or Fsum and the pitch variable changes accordingly with the difference of thrusts, Fdif

HGR for the 3‑DOF helicopter. The HGR system was integrated with the 3-DOF helicopter test-bench so that 
each gesture produces a different flight command. An additional feature that has been implemented to the 
motion controller of the helicopter is the ability to control with two modes: a hand gesture mode and an arm 
motion (IMU) mode, which are explained below. Each of the five gestures (wave out, wave in, fist, open, and 
pinch) corresponds to a different action that the helicopter can perform as it is specified in Fig. 7.

• Gesture mode in this mode, each of the four gestures Wave Out, Wave In, Open and Pinch generate a com-
mand that changes the position of the helicopter. In this case the cascade loop controller is activated and the 
controlled variables are � and ǫ . The PID for travel generates the set point value for ρ.

(7)�e� = e�(t) ≥| 3◦ | ∧ e�(t) <| 20◦ |

(8)ρref (t) =

{

Kp�e�(t)+ Ki�
∫

e�(t)dt + Kd�
de�(t)
dt if e�(t) ∈ �e�

Kp�e�(t)+ Kd�
de�(t)
dt if e�(t) /∈ �e�

(9)Fdif (t) = Kpρeρ(t)+ Kiρ
∫

eρ(t)dt + Kdρ
deρ (t)
dt , eρ(t) = ρref (t)− ρ(t)

(10)Fsum(t) = Kpǫeǫ(t)+ Kiǫ

∫

eǫ(t)dt + Kdǫ
deǫ(t)

dt
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• IMU mode this mode is accessed by performing the Fist gesture. In this case the horizontal and vertical 
motion of the test-bench are tied to the motions of the forearm of the user, for which the data of the inertial 
measurement unit (IMU) of the Myo Armband is acquired. In this mode, the cascade control loop is discon-
nected and the controlled variables become ρ and ǫ , and the set point value for pitch is directly sent from the 
PC.

6‑DOF UR5 virtual manipulator. The UR5 robotic manipulator is a 6-DOF collaborative robot whose 
main characteristic is its agility due to its light weight, speed, and  safety36. In this subsection, we describe each 
stage of the architecture proposed to control a virtual model of the UR5 robot, which is illustrated in Fig. 8. As 
can be observed, the proposed architecture is mainly conformed by a tracking controller, the UR5 kinematic 
model and its virtual model. We explain in detail each stage of the UR5 virtual manipulator control as follows.

• Virtual Manipulator A virtual environment was designed in CoppeliaSim robotics simulator, which is mainly 
focused on a virtual UR5 robotic manipulator that carries out painting tasks on a set of surfaces with strategic 
locations in order to demonstrate the usefulness of the HGR system and the tracking controller.

• Tracking Controller A PID control technique is used in order to achieve the main control objective which 
consists in the position and trajectory tracking of a UR5 virtual robot based on a desired position and ori-
entation input reference.

• Kinematic Model The UR5 kinematic model describes the motion of the robotic manipulator regardless of 
forces and torques that originates it. The model used was obtained by the Denavit-Hartenberg (DH) stand-
ard method. Then, direct differentiation was applied in order to obtain the current state of the robot and 
contribute to the calculation process of the control actions by the tracking controller.

Figure 7.  Different flight commands for the 3-DOF Helicopter according to each gesture. The fist gesture is 
used to switch between gesture and IMU modes.

Figure 8.  Architecture of the 6-DOF UR5 virtual manipulator controlled with the HGR system.
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UR5 manipulator model. The UR5 robot manipulator movement can be defined by its kinematic and dynamic 
model. However, its dynamic model requires the study of forces and torques that originate its movement which 
is far harder to obtain in comparison with its kinematic model. Moreover, the dynamic model depends strongly 
on the mechanical structure of the robot, which by using a virtual robot, complicates the development of a 
control system. For that reason, our control system is designed taking into consideration mainly the kinematic 
model, which allowed us to obtain acceptable results at low speeds and smooth trajectory  changes37. In order to 
obtain its kinematic model, it is necessary to obtain first its forward kinematic model obtained by the Denavit-
Hartenberg (DH) standard method, which only uses the geometric properties of its structure, as  in38. The for-
ward kinematic model allows us to obtain the final end-effector position and orientation referenced to the robot’s 
base frame. Hence, the resulting coordinate transformation obtained by post-multiplication from the base frame 
to the end-effector of a 6-DoF robot manipulator is defined in Eq. (11) as follows:

The transformation matrix showed depends mainly on each joint configuration of the robotic manipulator where 
q = [q1, q2, q3, q4, q5, q6]

T and each joint position qi can have a value in the range from −2π to +2π (rad).
Once the forward kinematic model is obtained, then the Jacobian matrix of a robotic manipulator is calcu-

lated by direct differentiation. The resultant matrix is a function of the joint coordinates which allows us to find 
the speed of the end effector knowing the speed of each of its  joints39. On the other hand, its inverse matrix is 
useful to find the speed that each joint requires in order to reach a specific speed for the end-effector39. Hence, 
the kinematic model of the UR5 is defined in Eq. (12) as follows:

where Ja is the analytical Jacobian matrix, ẋe(t) = [ẋ(t), ẏ(t), ż(t)]T contains the end-effector linear velocities, 
φ̇(t) = [θ̇r(t), θ̇p(t), θ̇y(t)]

T contains the time derivative of the Euler angles that has been chosen to define the 
end-effector orientation, and the variable q̇(t) in Eq. (13) is the input vector of the system that contains the joints 
velocities.

UR5 manipulator control system. In this subsection, we present the feedback control system to control a virtual 
UR5 robot, which is illustrated in Fig. 9. As can be observed, the proposal is conformed by the UR5 forward kin-
ematic model and its Jacobian matrix. Futhermore, it also includes a minimum norm PID controller designed 
to control the UR5 virtual robot in CoppeliaSim, which is mainly based on its kinematic model. In addition, a 
Remote Application Programming Interface (API) was used in order to communicate both applications, Matlab 
and CoppeliaSim.

The control system proposed is divided into two main blocks, the first one is implemented in Matlab, and the 
second one in CoppeliaSim. In Matlab, the UR5 forward kinematic model is implemented in order to obtain its 
current state. This includes position and orientation of its end-effector, and subsequently, it allows us to obtain 
both, position and orientation error depending on the reference profile used as input of the control  system38. In 
the same block, the inverse of the Jacobian matrix is also implemented since it constitutes a fundamental part 
of the proposal which enables the PID controller to compute the control  actions38. On the other hand, in the 
CoppeliaSim block, we have the communication interface (API) and the virtual environment which includes 
the UR5 robot.

A minimum norm PID controller tries to minimize the control effort by finding an optimal solution through 
least squares approximations to achieve the control  objective40. The controller is proposed in Eq. (14) as follows:

(11)T6
0 (q) = T1

0T
2
1T

3
2T

4
3T

5
4T

6
5

(12)ḣ(t) =

[

ẋe(t)
φ̇(t)

]

= Ja(q)q̇(t)

(13)q̇(t) = [q̇1(t), q̇2(t), q̇3(t), q̇4(t), q̇5(t), q̇6(t)]
T

Figure 9.  Control system proposed for a 6-DOF UR5 virtual manipulator.
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where J−1 is the analytical Jacobian inverse matrix of the robotic manipulator, ep and eo denote respectively the 
position and orientation errors, ẋd and φ̇d are the time derivative of the end-effector desired position and orienta-
tion, respectively. Kp and Ko are positive definite matrices which contains the controller’s gain constants. These 
gain constants were obtained in order to minimize the Integrated Absolute Error (IAE) performance criterion, 
and as a result error is maintained close to zero.

The position error is given by ep = pd − p , where pd and p denote respectively the desired and actual end-
effector position. The orientation error eo definition depends on the orientation parameterization used, and it 
is defined in terms of the algebra of the rotation group and not of the vector  algebra41. For that reason, we used 
an error definition which uses rotation matrices as follows: let us consider that Re , Rd describe the current and 
desired orientation of the UR5 end-effector with respect to the base frame, respectively. Therefore, the orienta-
tion matrix error is defined in Eq. (15) by expressing the relative orientation from Re to Rd with respect to the 
base frame as  follows42.

However, the use of this matrix in orientation control tasks is very limited due to the difficulty of handling its 
nine elements into the differential kinematics-based controller proposed in this work that uses a 6× 6 Jacobian 
matrix. For that reason, it’s better to use an orientation 3× 1 error vector, in terms of R̃ . Therefore, in this paper, 
we use the following definition expressed in Eq. (16) which is proposed  in43:

where r̃ij the ij-th element of R̃ . Notice that eo(R̃) = 0 whenever Re = Rd.
It is worth noticing that the PID controller uses the analytical Jacobian instead of the geometric Jacobian J 

since it operates on error variables that are defined in the operational space of the robot which allows to describe 
the position and orientation to represent an end-effector  task42. Both Jacobians are matrices that relate joint 
velocities with linear and angular velocities whose results are identical for linear velocities, but it’s different for 
angular velocities. The analytical Jacobian gives us the time derivative of the Euler angles that we chose to rep-
resent the orientation of the end effector. On the contrary, the geometric Jacobian gives us the angular velocities 
around x, y and z axes referenced to the robot base frame.

HGR for the 6‑DOF UR5 manipulator. In order to show the HGR system effectiveness and fulfill the applica-
tion control objectives, five different hand gestures are used. Selection commands are generated through hand 
gestures executions. On the other hand, Myo Armband’s IMU Data is used in order to adjust the position refer-
ence for the UR5 end-effector in the space as movement commands, as can be observed in Fig. 10. We explain 
in detail each command as follows.

• Selection commands Selection commands were selected for the UR5 robot in order for it to perform a specific 
action. They are generated once a hand gesture is executed and properly recognized by the HGR system, as 
can be observed in Fig. 11. We explain in detail the mapping between the hand gestures and selection com-

(14)qc(t) = J−1
a

[

ẋd + Kpep
φ̇d + Koeo

]

(15)R̃ = RdRe
T

(16)eo(R̃) =
1

2

[

r̃32 − r̃23
r̃13 − r̃31
r̃21 − r̃12

]

Figure 10.  Movement and selection commands generated by the HGR system to manage the 6-DOF UR5 
virtual  manipulator25,26.
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mands as follows. A Fist gesture triggers the activation and deactivation of the paint gun attached to the UR5 
end-effector. Wave in and Wave out gestures are used as commands to select a new orientation reference for 
the control system from a set of three different orientation matrices, which are predefined in accordance with 
the location of the surfaces established in the virtual environment. However, a new orientation reference is 
not set into the control system as the current orientation reference Rd until we execute the Pinch gesture and 
gets recognized.

• Movement commands The UR5 can reach different locations as long as it is within its workspace. For that 
reason, the position reference in the space is established through motion commands generated by the Euler 
angles provided by the Myo Armband sensor. This movement commands change the position reference of 
the UR5’s end-effector, which are generated by setting an upper and lower limit to each Euler angle, as can be 
observed in Fig. 10. Therefore, the pitch angle allows moving the end-effector along the z-axis of the robot’s 
base frame whereas the yaw and roll angles allow changing the reference in its x and y axes, respectively. 
Basically, if any angle reaches its upper limit, the position reference will change causing the end-effector’s 
movement by the control system action in one direction, but if it reaches its lower limit, the end-effector will 
move in the opposite direction. If any upper or lower limit is not reached, the end-effector will remain immo-
bile which also indicates a null position error. The movement along the axes once is generated, is uniform 
and it has a constant linear speed of 0.01 m/s. Finally, as an additional selection command, if we execute an 
open gesture and it is recognized by the HGR system the UR5 end-effector movement speed will increase 
from 0.01 m/s to 0.02 m/s or otherwise.

Results
HGR system results. In this subsection, we present the results EMG-IMU-based HGR system for the user-
specific model trained. We first perform the validation procedure by finding the best possible hyper-parameters 
by evaluating data from 16 users. Then, we present the final testing results for 16 different users with the best 
hyper-parameters found during the validation procedure. The results of the validation and testing are explained 
as follows.

Validation results. For the validation results, we trained and tested different models, which are based on 
the DQN algorithm that we present in previous sections. The best hyper-parameters found during the validation 
procedure are presented in Table 2. The validation results for the DQN-based model with the best hyper-parame-
ters that we found were 95.7± 3.34% and 86.2± 10.27% for classification and recognition accuracy respectively.

Testing results. Based on the best hyper-parameters previously found during the validation procedure, 
we used the test-set composed of 16 different users to evaluate such user-specific models and obtain the testing 
results. This is useful to evaluate the best-found model with different data to analyze over-fitting. The test accu-
racy results for 16 users of the testing set were 97.45± 1.02% and 88.05± 3.10% for classification and recogni-
tion respectively. As can be noticed, there is barely a difference between the validation and the testing accuracy 
results, although the results are of different users. Thus, we can infer that our models are robust against over-
fitting for the proposed data-set. Finally, we also present the confusion matrix that represents the classification 
results on the test set in Fig. 12, which allows us to observe in detail the results for each hand gesture. It is worth 
mentioning that the processing time of each window observation is on average 20 ms.

Figure 11.  Mapping between hand gestures and selection commands for the 6-DOF UR5 Virtual 
 Manipulator25,26.
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Comparison with other works. In this subsection, we make a comparison between our proposed HGR 
method with other works of literature that use the six hand gestures used in this work and the Myo Armband 
sensor. This comparison is illustrated in Table 3, where it can be seen that our HGR method based on an RL 
algorithm that uses DQN and CNN-based agent representation is the one that obtains the best results.

Table 2.  Best Hyper-parameters found during the validation procedure for the DQN algorithm.

Hyper-parameter name Hyper-parameter values

Activation function between layers Relu

Target Smooth Factor 0.5e
−3

Experience buffer length 60

Learn rate ( α) 0.07e
−3

Epsilon initial value 0.99

Epsilon greedy epsilon decay 1.5e
−4

Discount factor 0.99

Mini batch size 64

Optimizer Adam

Gradient decay factor 0.85

L2 regularization factor 0.0003

Figure 12.  Confusion matrix with classification results for 16 user-specific HGR models of test set.

Table 3.  Obtained accuracy results of the proposed HGR model compared with other works.

Approach Signal Classification accuracy (%)

DQN and CNN-based agent (our RL method) EMG-IMU 97.45± 1.02

Q-learning and ANN (RL)24 EMG 90.78

SMV classifier with orientation correction (ML)44 EMG 92.4

SMV classifier with orientation correction (ML)7 EMG 94.9

SMV classifier (ML)7 EMG 81.2

K-NN with dynamic warping (ML)20 EMG 89.5

K-NN classifier (ML)12 EMG 86
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3‑DOF tandem helicopter test‑bench control results. In this subsection, we present the results of 
the HGR system applied to control the 3-DOF tandem helicopter test-bench. In this test, the five different hand 
gestures were performed, and the behavior of the helicopter was recorded. As mentioned in previous sections, 
each gesture corresponds to a different command in which a reference value (or setpoint) is generated, and the 
variables of the helicopter test-bench must respond accordingly. In Fig. 13 the time response of the helicopter 
behavior is plotted. In Fig. 13a, the response of each variable is shown with the instants in which each gesture 
is performed (marked with different colored arrows). As it can be noted, each time the user makes a different 
gesture the setpoint value changes instantaneously, and the PID controller moves the helicopter in the corre-
sponding direction. The PID controller can achieve a settling time of under 7 s and an overshoot of under 30% 
for the travel variable. The other variables have faster dynamics and therefore can achieve even lower settling 
times and overshoots.

In Fig. 13b, we show the error of the helicopter variables. To calculate this variable, the euclidean norm was 
used with the formula e =

√

eρ2 + eǫ2 + e�2 , where eρ , eǫ , and e� correspond to the error of each of the three 
variables of the helicopter: pitch, elevation, and travel, respectively. As it can be seen, every time a gesture is 
performed, the error graph presents a peak and then the embedded PID controller on the 3-DOF helicopter 
regulates the error and rapidly approaches 0. It can also be noted that during IMU mode, the error remains in 
a low value, which is because in this operation mode the travel set point is equal to the measured output so that 
the pitch controller can act independently. This in turn generates an error in the travel variable, e� = 0 , and the 
total error e is also decreased.

From the error shown in Fig. 13b the mean squared error (MSE) was calculated to analyze the performance 
of the PID controller. In the case of the 3-DOF tandem helicopter, during the evaluation test, the mean squared 
error obtained was MSE = 0.3438 . The formula shown in Eq. (17) was used to determine this value.

Figure 13.  Response of the 3-DOF tandem helicopter test-bench used with the HGR system. (a) Time response 
graph for the three variables of the helicopter: pitch, elevation and travel. (b) Time response graph of the error. 
(c) Picture of the implemented prototype.
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where N is the number of data points acquired during the test and ei is the value of the error during each discrete-
time instant, i.

Finally, we can see in Fig. 13c a picture of the implemented prototype during the experiments, in which the 
HGR system was used to control the 3-DOF tandem helicopter test-bench. Additionally, a video demonstration 
of the helicopter in action is included  in45.

6‑DOF UR5 virtual manipulator control results. In this subsection, we present the results of the HGR 
system applied to control the 6-DOF UR5 virtual manipulator. For this, we perform a tracking and painting task 
in order to draw a square path through the selection and movement commands. The square path reference is 
located in the Y–Z plane in the virtual environment designed in CoppeliaSim. In Fig. 14, we present the position 
error ep evolution through its euclidean norm for the square path painting task highlighting by colored shades 
each period of time in which a hand gesture is performed.

First, we performed a wave in gesture followed by a pinch gesture in order to aim the end-effector to the Y–Z 
plane by selecting a new orientation reference (or setpoint) from the available options. Subsequently, the end-
effector is moved by movement commands from its starting point to a more adequate position close enough to 
the plane which allowed us to initiate the square path painting task by a fist gesture execution. As can be observed 
in Fig. 14, the position error remains close to zero in all axes, which means that the robot followed the square 
reference along its entire extension. Overall, the minimum norm PID controller presents acceptable robustness 
tracking the square path since it presents slightly abrupt reference changes in its corners, which cause small 
overshoots in the 6-DOF UR5 manipulator response that are way lower than 1%. Although the steady state error 
is null, the UR5 robot presents slight errors during the path tracking itself whose final impact on the painting 
task application is practically insignificant. In addition, in Fig. 15, we present the orientation error eo evolution 
for a square path tracking task and the complete system response in the Y–Z plane.

In Fig. 15a, we present the orientation error eo evolution which presents an abrupt change caused by the 
orientation reference transition generated by selection commands. As can be observed, the PID controller main-
tained the orientation error close to zero and achieved a settling time of under 5 (s) after the reference change.

We also tested the minimum norm PID controller within the control system structure through the mean 
squared error (MSE) performance criterion. Therefore, during the system evaluation, the mean squared error, 
obtained by Eq. (17) was MSE = 0.0119 . A video of the system tests is available  in46.

Discussion
During the development of this work, a number of lessons were learned:

• The HGR classification and recognition obtained results indicate that using the DQN reinforcement learning 
algorithm to solve the sequential window classification problem of an EMG-IMU signal is possible. Addition-
ally, the use of rewards for the successful classification of each sliding window, and the use of a reward for the 
recognition of an EMG-IMU sample, were successfully applied so that the agent-based on a CNN can work 
in the stage of classification of the HGR system.

(17)MSE =
1

N

N
∑

i=1

ei
2

Figure 14.  Position error evolution of the 6-DOF UR5 virtual manipulator used with the HGR system in order 
to achieve a square path tracking task during a painting task.
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• The validation procedure to find the best possible hyper-parameters for the development of the EMG-IMU-
based HGR system was key to achieving high classification and recognition results. This procedure made 
it possible to increase the classification results up to 95% for validation, which also helped to increase the 
recognition results. This, in turn, allowed obtaining up to 97% classification for the testing procedure. Addi-
tionally, obtaining the testing and validation results with the best-obtained model helped us to compare 
their performance and evaluate over-fitting. This showed that the model’s performance in classification and 
recognition was similar for both data distributions by using the proposed dataset, which tells us that the 
model is robust to over-fitting.

• We demonstrated that both, the cascade PID and the minimum norm PID controllers, were able to reach 
acceptable robustness when controlling the 3-DOF tandem helicopter test-bench and the 6-DOF UR5 virtual 
manipulator respectively. This is because both controllers were able to reduce the error between the setpoint 
generated by the HGR system and the current position of the robot during the tracking tasks. Moreover, there 
were only slightly abrupt reference changes which cause small overshoots both methods present acceptable 
values of settling time and overshoot during the reference changes.

• Using the criterion of the mean square error (MSE) it was possible to compare the performance of the 
cascade and the minimum norm PID controllers applied to the 3-DOF tandem helicopter and the 6-DOF 
robot manipulator, respectively. From the obtained values it can be seen that the MSE calculated for the 
robot manipulator is considerably lower than that of the 3-DOF tandem helicopter test bench. This is due 
to the fact that in the case of the helicopter the results are acquired in a physical environment with an actual 
prototype and the error also reflects the effect of air turbulence, temperature, humidity, and other conditions. 
On the other hand, in the case of the 6-DOF UR5 manipulator, the proposed architecture was evaluated in a 
virtual environment through simulation. Additionally, the robot manipulator is a more stable platform than 
an aerial vehicle, in this case, represented by the 3-DOF tandem helicopter.

• The proposed integration of the EMG-IMU-based HGR system to control both a 3-DOF tandem helicopter 
test bench and a 6-DOF UR5 virtual manipulator through different sorts of commands obtained satisfactory 
results. The proposed method showed clear advantages for commanding the operation of different robotic 
platforms using hand gestures and arm movements for the generation of reference trajectories for the control 
system. In general, the system presented a low complexity and adaptability in terms of the requirements that 
each user needs to learn to use the proposed HGR interfaces to control both robotic platforms. However, 
although the learning process can be simple, its success and efficiency to achieve an objective depend largely 
on the user’s skills and experience, as well as the difficulty related to the application to be performed.

Conclusions
In this work, we developed an EMG-IMU-based HGR system based on the DQN reinforcement learning algo-
rithm for recognizing 6 different hand gestures. Then, we tested the effectiveness of the EMG-IMU-based HGR 
system and the IMU signals to control two different robotic platforms, a 3-DOF tandem helicopter test-bench, 
and a 6-DOF UR5 virtual manipulator. The results of 97.45± 1.02% and 88.05± 3.10% for classification and 
recognition respectively demonstrated to be sufficient to command the robotic platform’s operational modes. 
We also demonstrate the EMG and the IMU signals can be used to control the position and orientation of both 
robotic platforms, reaching low MSE values for both robotic platforms and acceptable values of settling time 
and overshoot. This work demonstrated that is possible to design a human-machine interface based on an EMG-
IMU-based HGR system and IMU signals to successfully control the position, orientation, and operational modes 
of real and virtual robotic platforms. Future work will include different classification algorithms for delivering 

Figure 15.  Square path tracking results (a) Evolution of the end-effector orientation error (b) 6-DOF UR5 
virtual manipulator response in the Y–Z plane during the tracking task.
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higher accuracy in the recognition of hand gestures, as well as different control strategies for the robotic platforms 
which might increase the system’s performance even further.

Data availability
The datasets generated and/or analysed during the current study are available in the EMG-IMU-EPN-100+ 
repository, https:// labor atorio- ia. epn. edu. ec/ en/ resou rces/ datas et/ emg- imu- epn- 10027.
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