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Classification of viral strains is essential in monitoring and managing the COVID‑19 pandemic, but 
patient privacy and data security concerns often limit the extent of the open sharing of full viral 
genome sequencing data. We propose a framework called CoVnita, that supports private training of a 
classification model and secure inference with the same model. Using genomic sequences from eight 
common SARS‑CoV‑2 strains, we simulated scenarios where the data was distributed across multiple 
data providers. Our framework produces a private federated model, over 8 parties, with a classification 
AUROC of 0.99, given a privacy budget of ε = 1 . The roundtrip time, from encryption to decryption, 
took a total of 0.298 s, with an amortized time of 74.5 ms per sample.

The pathogenic virus known as SARS-CoV-2 emerged quietly in the final months of the year 2019 in Wuhan, in 
the Hubei province of China. The virus caused severe respiratory symptoms in patients and was highly trans-
missible, spreading across the globe within weeks. By 31st January 2020, the World Health Organization had 
declared a public health emergency on COVID-19, the disease caused by SARS-CoV-2. As the third pandemic 
of the 21st century, COVID-19 placed significant stress not just on the global healthcare infrastructure, but also 
on the global supply chain networks. Although significant discoveries in COVID-19 vaccines and anti-viral 
treatment options have helped restore a semblance of normality in several developed countries, COVID-19 
remains a threat globally two years into the pandemic. Part of the difficulty in stemming the tide, or eradicating 
the virus, is due to the high mutation rate of the virus. The pandemic has been marked by waves of new infec-
tions and reinfections caused by the rise of newer strains of the virus: first the alpha and beta strains at the end 
of 2020, which were then displaced by the more transmissible delta strain, and eventually the current dominant 
strain, omicron. Given the speed at which novel coronavirus variants develop in different geographical pockets 
around the world, there is a pressing need for the development of infrastructure to perform global surveillance 
and outbreak prediction. To this end, initiatives such as the Global Initiative on Sharing Avian Influenza Data 
(GISAID) have played an important role in monitoring the pandemic.

Yet, privacy concerns have been raised regarding the sharing of viral sequencing data, as such data can be 
used in tandem with other contextual clues to establish patient identity. As the virus spreads mainly by close 
contact, the circulation of a new viral strain within groups of individuals may indicate that they have engaged 
in social activities together. This can lead to ostracization or discrimination, especially if there is a social stigma 
associated with the disease within the community. For instance, one of the COVID-19 clusters in South Korea had 
been linked to members of a religious  cult1, while one of the largest COVID-19 waves in Singapore was linked to 
socializing between karaoke patrons and sex  workers2. In both cases, the patients were accused of not following 
public health guidance in place at that time, and for acting irresponsibly and selfishly. Although they were not the 
only patients who had contracted COVID-19 during that period, they could be identified because of the strains 
they were carrying. To assuage the privacy and security concerns of institutions and individuals regarding such 
crucial information, care must be taken to ensure that the confidentiality of the data is not compromised during 
any downstream analysis which is achieved with our proposed framework, CoVnita, by obfuscating samples and 
the classification outcome with HE, preventing unintended negative consequences.

The Integrating Data for Analysis, Anonymization and SHaring (iDASH) centre organizes the annual Secure 
Genome Analysis Competition to bring together bioinformaticians and cybersecurity experts to address problem 
statements regarding privacy concerns arising from data sharing in bioinformatics research. In 2021, Track II 
of the competition posed the pertinent challenge statement: to detect and track viral strains, SARS-CoV-2 viral 
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samples have to be classified as one of many known strains. However, the sample data cannot be shared due to 
policies put in place to protect patient privacy.

In this paper, we present a framework to first enable the private training of a model and then secure clas-
sification using the said model. Note that the secure classification technique described here was the winning 
solution submitted by our team (A*FHE-2) to Track II of the iDASH 2021  competition3,4. Beyond demonstrat-
ing the analysis of genomic data privately and securely, we have also performed additional analysis to assess 
the eroding effect of differential privacy and data variability on model performance. Our proposed framework 
achieves the following:

• Enables different organizations to jointly train a model securely end to end, preserving the privacy and 
confidentiality of patients’ data from training to inference.

• Provides quick and accurate classification of COVID-19 strains to improve triage of patients based on the 
predicted outcomes of the classified strains, thereby alleviating the burden on hospital infrastructure.

Results
CoVnita, Fig. 1, provides an end-to-end workflow that trains a model across multiple parties securely with 
Federated Learning (FL), further reinforced by injecting Differential Privacy (DP), and classifies new samples 
privately with Homomorphic Encryption (HE). An honest-but-curious threat model is assumed in this work. 
This means that the parties in the protocol will adhere to the protocol, but are curious about another party’s 
private information. All communication channels between parties are assumed to be secure.

Privacy‑preserving model training. We demonstrate our framework on eight COVID-19 variants that 
had gained prominence at various time points during the pandemic, including four that were provided in the 
iDASH 2021  competition4. We characterize the quality of the genomic data from these sequences in Table 1.

The sequences were reduced to a more compact set of hashed features using a technique called Dashing (see 
“Methods”). For more efficient training and inference, we perform a round of federated feature selection using 
Fed-χ25 to approximate the top 15 informative features. Then, we apply FL to enable data contributors to jointly 
build the virus strain classification model without revealing their data. DP was applied to further enhance the 
privacy of the dataset by releasing differentially-private local models

Two setups, a balanced and imbalanced data split, were used to evaluate the model training framework. 
The first setup involved balanced combinations where the data is split evenly over 8 parties in various degrees, 
ranging from 1 up to 8 variants per party. There are multiple permutations for each scenario where each party 
hold either 1, 2, 4 or 8 variants, with the same number of samples per party (2000). One possible combination 
is described in Supplementary Tables S1 to S4. This results in differing local models that aggregate into distinct 
global models. A total of 301 possible configurations were tested, 100 for each of the scenarios with 1-, 2- or 
4-variants and 1 for the 8-variant case. These were generated randomly and the average performance for the dif-
ferent variant scenarios was recorded. The second setup considered two different types of imbalanced data splits 
that may be more applicable to real-world scenarios. The first imbalanced data split focuses on the 4 variants, 
B.1.617.2 (Delta), C.37 (Lambda), B.1.621 (Mu), B.1.1.529 (Omicron), obtained from the GISAID database, based 
on their preponderance in different geographical continents, which we described in Supplementary Table S5. In 

Figure 1.  Outline of CoVnita. The training phase begins with the data providers each locally training a 
differentially private local model. A federated feature selection is first performed to reduce the size of the data 
while maintaining its quality. Next, they share and compute a global average of their local models. This process 
of local updates and joint averaging then repeats for a fixed number of epochs. Throughout this process, a joint 
global model, that does not require data providers to share their genomic samples, is trained. To ensure the 
robustness of the model against membership inference attacks, differentially private noise is injected during the 
training process. The classification process is performed in its entirety with the samples encrypted with HE, a 
special type of encryption that supports computation on encrypted data. This means that new samples can be 
evaluated in their encrypted form, ensuring that the data stays private. An efficient HE packing method was 
used, allowing many samples to be simultaneously classified.
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the second imbalance data split, described in Supplementary Table S6, the data was randomly assigned amongst 
the 8 parties via sampling from a uniform distribution.

To demonstrate the effectiveness of our framework, we also trained a model with the entire dataset to use as 
the baseline for comparisons with models trained without DP. We present the performance of our models trained 
with a total of 16,000 samples, 2000 samples per variant. The models were tested with an unseen test set of 4000 
samples—500 samples per variant. These results are summarized in Table 2 and their statistical distribution is 
given in Supplementary Tables S7 to S9. Performance (based on AUROC) between models trained in centralized 
and federated settings was largely similar.

The models were then subsequently enhanced with DP and tested with the same samples. Increasing the 
amount of noise introduced during the DP-SGD training process leads to a lower privacy budget. Table 3 
describes the federated model performance over four different privacy budgets ε = 0.1, 1.0, 3,∞ , in decreasing 
order of privacy.

The geographical split scenario produced models with the lowest model accuracy (0.338, Table 3) due to the 
asymmetrical split of the data, and a stronger privacy guarantee in this scenario resulted in larger distortion on 
an already sparse data split. However, the AUC metric remains relatively high (0.710, Table 3), indicating that 
the classification of certain variants remains fairly accurate.

Overall, our results suggest that FL with DP is a feasible approach to enable privacy-preserving collaborative 
machine learning in real-world settings.

Homomorphic classification. We used the SEAL library (version 3.2.2)6 for HE instantiation with the fol-
lowing parameters: logN = 13 , log p = 30 , logQ = 90 . This gives us a security level of at least 128-bits accord-
ing to the estimator  by7. This particular setting allows a ciphertext to support up to 4096 samples. The same test 
set of 4000 samples that were used to evaluate the federated models was encrypted and used for the Homomor-
phic Classification.

We report the ROC curves for the baseline model with and without HE in Fig. 2. The various time taken for 
different processes during the encrypted inference is reported in Table 4 and the amount of storage used during 
the encrypted classification is reported in Table 5. The short run-time and low storage indicate that there are 
little to no trade-offs to switching to a HE-based model.

Table 1.  Distribution of nucleotide bases. The percentage of uncertain bases (N and Others) in the sequences 
ranges from 0.5 to 2.5%, with the Gamma and Mu variants having the highest and lowest quality sequences 
respectively.

PANGO 
lineage Variant A T C G N Others

B.1.617.2 Delta 17,350,073 18,673,551 10,640,782 11,396,199 1,435,543 1618

C.37 Lambda 17,678,438 19,008,782 10,830,235 11,585,368 404,444 1522

B.1.621 Mu 17,324,855 18,658,329 10,624,188 11,385,289 1,439,488 1168

B.1.1.529 Omicron 17,359,295 18,659,613 10,643,562 11,405,345 1,426,693 551

B.1.429 Epsilon 17,658,000 18,978,000 10,838,000 11,596,000 494,000 0

B.1.1.7 Alpha 17,698,533 19,045,276 10,868,253 11,617,247 404,750 542

P.1 Gamma 17,740,786 19,086,620 10,892,220 11,648,508 300,750 417

B.1.526 Iota 17,699,086 19,043,095 10,867,848 11,618,684 421,301 326

Table 2.  Model performance for centralized and federated settings. (⋆) refers to a split configuration based 
on geographical locations across 6 parties and (#) denotes a random split of samples across 8 parties. In the 
federated setting, there is an increase in average model performance with greater variability of variants that 
each party holds.

Setting Distribution of samples # Variants per party Average accuracy
Average 
AUROC

Centralized − − 0.986 0.992

Federated

Balanced

1 0.873 0.978

2 0.946 0.995

4 0.980 0.999

8 0.984 0.998

Imbalanced
2–4⋆ 0.944 0.999

7–8# 0.975 0.998
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Discussion
In this work, we have demonstrated how a machine learning model can be trained jointly and securely from 
several data sources with federated learning and differential privacy, and how inference on new samples can 
be achieved in a privacy-preserving manner via homomorphic encryption techniques. Data from each owner 
stays locally on-premise and is never exposed to other owners in the system throughout the whole process from 
model training to inference. Each data owner will not be able to learn anything about the data from other own-
ers, beyond what can be inferred via the global model. Choosing an appropriate machine learning algorithm for 
the global model, for instance, logistic regression, will then restrict the sharing of information and prevent the 
exposure of individual data values. In contrast, machine learning models such as K-nearest neighbour are inap-
propriate as they will expose all the individual data values. We base our discussion here on a logistic regression 

Table 3.  Model performance for federated models with varying ε. (⋆) refers to a split configuration based on 
geographical locations across 6 parties and (#) denotes a random split of samples across 8 parties. We observe 
that model performance generally decreases with the addition of differential privacy and that lowering the 
privacy budget leads to models with poor performance. Nonetheless, at a reasonable privacy level of ε = 1 , 
there is little to no degradation of the model.

# Variants
per Party

ε = 0.1 ε = 1.0 ε = 3.0 ε = ∞ (no DP)

Average 
accuracy

Average 
AUROC

Average 
accuracy

Average 
AUROC

Average 
accuracy

Average 
AUROC

Average 
accuracy

Average 
AUROC

1 0.716 0.934 0.876 0.985 0.878 0.986 0.873 0.978

2 0.776 0.951 0.943 0.996 0.950 0.996 0.946 0.995

4 0.827 0.966 0.971 0.998 0.972 0.999 0.980 0.999

8 0.691 0.920 0.952 0.994 0.952 0.995 0.984 0.998

2–4⋆ 0.338 0.710 0.938 0.985 0.982 0.997 0.994 0.999

7–8† 0.802 0.958 0.959 0.997 0.963 0.997 0.975 0.998

(a) ROC Curves for baseline model (b) ROC Curves for HE Evaluation

Figure 2.  ROC curves for centralized model evaluation with and without HE. There is small to no loss in 
accuracy when evaluating the model homomorphically.

Table 4.  Time taken for homomorphic inference.

Process Time taken (s)

Encoding model 0.128

Encrypting 4000 samples 0.044

Homomorphic inference 0.103

Decryption and decoding 0.023

Total time taken 0.298
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model. We note that our model can perform inference tasks directly on encrypted inputs, for instance, on new 
samples to be classified.

Comparisons to related work. Several recent developments in the cybersecurity domain have focused on 
training a model securely with technologies such as homomorphic encryption (HE)8–10 and multi-party com-
putation (MPC)11–13. Two recent works that presented frameworks using a combination of at least two privacy-
preserving technologies have been published by Kaissis et al.14 and Carpov et al.15.

Specifically, Kaissis et al. introduced a framework called PriMIA (Privacy-preserving Medical Image Analysis), 
which allows data owners to collaborate and train a medical image classification model securely via FL, utilizing 
DP which provides an additional layer of privacy. The evaluation of the model is then executed via a 2-party 
 protocol16 based on a type of MPC known as Function Secret Sharing, split between 2 servers. This means that, 
from a security aspect, there is a need to protect the 2 servers from malicious clients. CoVnita, on the other hand, 
only requires standard cryptographic key management, which is simpler to protect. In addition, the replacing of 
MPC with HE means that the evaluation phase of our solution does not require a pool of correlated randomness 
for effective use, and also can be extended to use 2-key HE with techniques described in Chen et al.17.

Carpov et al. argue that MPC is a better alternative to FL, as the latter may lead to possible leakage of informa-
tion about the model during gradient updates. Their proposed framework (GenoPPML) utilizes both MPC and 
HE, where a logistic regression model is trained with MPC over 2 servers with a differentially private mechanism. 
New samples to be evaluated are then encrypted with HE before being classified by the model. In our work, we 
mitigate the information leakage concerns of Carpov et al. regarding federated learning by utilizing differential 
privacy, thus avoiding the hefty overheads of using MPC for more than 3 parties.

Enabling privacy‑preserving technologies via domain‑aware data preprocessing. Despite 
rapid developments in the cybersecurity space, many of the tools are not optimized to handle “-omics” data, 
which have far higher dimensionality than data from traditional fields such as image classification. Although 
 GenoPPML15 demonstrated feasibility on gene expression data, we note that the largest processed feature space 
in that work was 25,128. In comparison, the genomic sequence length of the SARS-CoV-2 viral strain here is 
approximately 30 kB, which would result in more than 90,000 processed features under a standard one-hot 
encoding schema, assuming the simplest case of limiting encoding to the four nucleotide bases.

It is useful to leverage domain knowledge to make such “-omics”-problems more tractable for privacy-pre-
serving technologies. Good data preprocessing step can help reduce the dimensionality of raw data significantly 
while retaining important information relevant to the classification task. For instance, our work here has utilized 
Dashing, a hashing technique commonly used in genome classification, to provide a layer of abstraction from the 
raw sequence data. Further, we leverage biological knowledge that mutations in the S gene (which encodes the 
spike protein that influences infectivity), are key drivers of biological differences between the  strains18 to reduce 
the initial size of the raw data. Specifically, we truncated the first 20 kB of the genome sequence (the regions 
preceding the S gene) before Dashing and encryption. This allowed us to achieve faster data preprocessing and 
model training speeds and was used in our submission to the iDASH 2021  competition4 that won first place.

Limitations and future work. While an honest-but-curious threat model is usually sufficient in most situ-
ations, we acknowledge that our framework is unable to defend against truly malicious adversaries. A malicious 
data provider could for instance contribute substandard data that would affect the quality of the trained model. 
We emphasize that while our current setup does not prevent such acts of vandalism that lead to the degradation 
of overall model performance, the privacy of data from each owner in the system will not be compromised by 
this.

Our proposed framework also does not provide proof to an end user that the computation had been per-
formed correctly. For instance, issues arising during deployment may lead to a malfunctioning classifier, but 
an end user who submits a new sample will be none-the-wiser about this. This is a limitation in HE setups, as 
visibility on the ’proof-of-computation’ is low or non-existent to the end user.

Although we have simulated a distributed set of data owners in this work, we note that thee also exist central-
ized resources for SARS-CoV-2, such as GISAID’s EpiCoV platform, that serve as a trusted platform for research-
ers to share information. Our future work will consider how our technology can add value to such systems that 

Table 5.  Storage consumption of homomorphic evaluation. There is a total of 128 Plaintext objects and 15 
Ciphertext objects. See “Methods” for details on deriving the number of Plaintext and Ciphertext objects.

Object Storage per object (kB) Total storage (MB)

Secret key 385 0.385

Public key 193 0.193

Evaluation key 1200 1.2

Ciphertext 385 5.7

Plaintext 193 25

Total storage 32.5
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are based on a trusted central platform. Another future work would be to extend this framework to support 
other models or statistics (e.g. Kaplan–Meier survival analysis) and other forms of medical data (e.g. images).

Methods
A figure outlining the whole process from data processing to encrypted inference is described in Fig. 3. Here, 
we provide preliminaries for the key technologies used in our framework and details of each component in the 
workflow above.

Federated learning. Federated learning (FL) is a technique in machine learning that allows multiple nodes 
to train models without exchanging data directly. It was originally developed by Google to train a global model 
across mobile devices using a central  server19. Each node possesses a dataset on which they will locally process 
and provide an update to the global model. More precisely, each node train a local model w, over n samples, with 
the following objective function min 1

n

∑n
i=1 fi(w) , where fi(w) is usually set to be the loss between the predic-

tion of the i-th sample and its actual value. Each node k locally computes gk = ∇fi(w) . The central server then 
computes the aggregate of gk and updates the model, for some fixed learning rate η , with wt+1 ← wt + η

∑
k gk . 

In this manner, the raw data is not shared between the nodes or the central server.
Based on the distribution of the data attributes and sample spaces, FL can be categorized into two broad 

categories—horizontal FL and vertical FL. Horizontal FL refers to each node having similar data attributes, but 
different sample spaces, while the nodes in vertical FL have different (and often unique) data attributes of the 
same set of samples. Horizontal FL can be further subdivided into two categories based on the number of data 
points each node possesses. If all nodes have an identical number of data points, then it is labelled as an inde-
pendent, identically distributed (IID) distribution and otherwise, a non-IID distribution.

Homomorphic encryption. Homomorphic encryption (HE) is a special type of encryption scheme that 
allows computation to be performed on encrypted data. It was first proposed  by20, with the first construction 
achieved  by21. HE schemes are “noisy” in general, where noise is applied to a message as part of the encryp-
tion process to mask its value. A noise budget is set when the encryption scheme is initialized and computa-
tion (called homomorphic operations) on encrypted data consumes it. Once the noise budget is fully depleted, 
decrypting the ciphertext would result in an incorrect result.

In this work, we use the CKKS  scheme22 which supports homomorphic operations on encrypted approximate 
numbers. Each number is encrypted with an initial precision and computation gradually reduces it. Thus, the 
decrypted message is an approximation of the true computation result.

Crucial to practical performance, HE schemes can store and simultaneously operate on more data in a single 
ciphertext by leveraging the decomposition of the plaintext space R = Z[x]/�xN + 1�23. The CKKS scheme sup-
ports the encoding of N2  complex numbers into a degree N − 1 polynomial via the canonical map φ : CN/2 → R . 
This process is described by the following functions:

• m(x) = Encode(z0, z1, . . . , zN/2−1) = φ(z0, z1, . . . , zN/2−1).
• (z0, z1, . . . , zN/2−1) = Decode(m(x)) = φ−1(m(x)).

Each number is encoded into a slot of the ciphertext (N/2 many in each). This reduces the number of ciphertexts 
required in applications and each homomorphic operation is done on all slots in parallel, i.e. adding and mul-
tiplying ciphertexts result in the same operation applied to all slots respectively. There is also an inter-slot data 
movement mechanism that will return a ciphertext whose slots are rotations of those in its input.

Differentially private stochastic gradient descent. Differential privacy (DP) is a privacy mechanism 
that protects an individual’s data when it is used in a database. A formal definition proposed  by24 states that 

Discard first 20kB

Dashing

Federated Feature Selection

Differentially Private Federated Model Training

Homomorphic Inference

Figure 3.  CoVnita workflow. The first 20 kB is first discarded to reduce the size of the data. A tool called 
Dashing is used to transform the truncated genomic sequence into 512 features, each a 64-bit hash value. The 
parties perform a federated feature selection to further reduce the number of features to 15. A model is then 
trained in jointly with FL and DP. The test samples are encrypted and evaluated with HE.
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for two datasets D and D′ differing in at most one record, given an algorithm M  , we say that M  is (ε, δ)-dif-
ferentially private if IP[M (D) = x] ≤ exp(ε) · IP[M (D′) = x] + δ. The parameter ε can be thought of as the 
privacy budget or the largest distance between the outputs of M  on the datasets. If ε = 0 , it is equivalent to 
having different datasets giving the same output. The parameter δ on the other hand represents the probability 
of the individual’s data leaking. Differentially private mechanisms have an interesting property of being robust 
to post-processing. This means that any function applied to the output of any differentially private mechanism 
is also differentially private.

Stochastic gradient descent (SGD) is an iterative method commonly used in machine learning algorithms. It 
is used as a low-cost alternative to other second-order methods for finding the local minimum of the objective 
function, at the expense of a lower convergence rate.

In machine learning, the de facto standard would be to add DP during the model training, specifically to sto-
chastic gradient descent (SGD). This allows the model to be distributed subsequently while ensuring the privacy 
of the data used for training. Abadi et al.25 proposed the following method of applying DP to SGD; First, compute 
the gradients of the loss function (for each feature). Next, clip the gradients such that the gradient vector has a 
norm less than some predetermined threshold. Finally, add a suitable amount of Gaussian noise.

Data and preprocessing. We selected eight COVID-19 strains namely B.1.1.7 (Alpha), B.1.429 (Epsilon), 
P.1 (Gamma), B.1.526 (Iota), B.1.617.2 (Delta), C.37 (Lambda), B.1.621 (Mu) and B.1.1.529 (Omicron). For each 
strain, we obtained 2500 sequences, of which 500 were set aside as a held-out test set for evaluating model per-
formance. The samples for the B.1.1.7 (Alpha), B.1.429 (Epsilon), P.1 (Gamma) and B.1.526 (Iota) strains were 
the same ones provided in the iDASH 2021  competition4. The remaining samples for the B.1.617.2 (Delta), C.37 
(Lambda), B.1.621 (Mu) and B.1.1.529 (Omicron) strains were obtained from the Global Initiative on Sharing 
Avian Influenza Data (GISAID)  database26–28 (accessed on 31 Dec 2021).

As viral strains are typically defined based on their phenotypic characteristics rather than simple sequence 
 similarity29,30, alignment-free  methods31,32 are better suited to perform the classification. These methods trans-
form raw genomic sequences into feature vectors that are then used to train machine learning models.

Dashing33 is a tool used to estimate the similarities of two genomic sequences. For each genomic sequence, 
we truncate the first 20 kB and then split the remaining into k-mers, where we chose k = 31 , as tested  in33. Each 
k-mer is then converted into a 64-bit hash. The similarities of the genomic sequences (or equivalently, approxi-
mate distance) can then be computed by checking if a hash value of one of the sequences appeared in the other. 
The HyperLogLog  sketch34 is used to estimate the cardinality of the resulting hash sets. More precisely, the hash 
values are sorted into buckets via a predetermined prefix and the sketch value is given as the maximum lead-
ing zero count. We chose to set the length of the prefix to be 9, giving us a total of 512 buckets, or equivalently, 
features representing each genomic sequence.

Although Dashing can provide some form of privacy as it transforms raw genomic sequences into an abstract 
hash value, the process is not irreversible and thus not privacy-preserving.

Differentially private federated model training. Due to a large amount of genomic data, we must 
select a sufficiently small subset of features that contains the most genomic information, to make the model 
training process tractable. Differential privacy is deployed during the training of local models before these mod-
els are combined into a global model.

Federated feature selection. The χ2-test is a popular correlation test used to test the correlation between a fea-
ture and the response. A larger χ2 value indicates that the feature and the response suggest a higher correlation 
and should be selected for the training of the model. In a traditional machine learning setting, feature selection 
is performed with the expectation that all the required data reside in the same machine. However, in this work, 
the data is split across several parties and cannot be directly shared, or pooled amongst the parties for feature 
selection. Thus a federated version of feature selection is necessary. We implemented a federated version of the 
χ2-test proposed by Wang et al.  in5. They proposed that in the federated setting, the χ2-test can be approximated 
by its 2nd frequency moments. Based on our empirical testing, we find that a selection of 15 features is optimal.

Differentially private federated learning. We represented the sketch from Dashing as a one-hot vector and 
trained a logistic regression model using a differentially private SGD provided by Opacus.  Opacus35 is a library 
that supports DP with  PyTorch36. We used the cross entropy loss function with a learning rate of 0.01 and a 
default 60 training epochs. The value of ε was varied and δ was set to 1D , where D is the total number of samples 
used to train the model.

Homomorphic inference. The evaluation of the logistic regression model can be viewed as applying the 
sigmoid function on the inner product between the model weights and the features of the evaluating sample. 
As the sigmoid function serves to map the inner product output to probabilistic outcomes, we omit to evaluate 
the sigmoid function in the encrypted domain and instead determine the predicted class by choosing the largest 
value. We leverage the ability to store and operate on multiple data within a HE ciphertext to evaluate multiple 
samples simultaneously. The packing method we use in this implementation is based  on37,38. The main idea 
would be to pack one feature from each sample into a single ciphertext. One plaintext–ciphertext multiplication 
is then performed and the resulting ciphertext is summed together to obtain the evaluation of the model on the 
new samples.
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More precisely, the homomorphic inference first begins by Dashing the new samples, converting each sample 
into 64-bit hashes and the 15 chosen features are selected. The encryption process is shown in Fig. 4. The model, 
on the other hand, is encoded as depicted in Fig. 5. The homomorphic classification based on such an encoding 
method require Plaintext–Ciphertext multiplications and Ciphertext additions, described in Fig. 6.

1 2 · · · 15

Sample 1

1 2 · · · 15

Sample 2 · · ·

1 2 · · · 15

Sample 4000

⇓

Ciphertext 1 1 1 · · · 1
Ciphertext 2 2 2 · · · 2

...

Ciphertext 15 15 15 · · · 15

Figure 4.  Encrypting samples. The same feature from all samples is encrypted into a single ciphertext. Since 
there are 15 features, a total of 15 ciphertext is used.

Class 1 0 1 · · · 15
Class 2 0 1 · · · 15

...

Class 8 0 1 · · · 15

=⇒

Plaintext 1 0 0 · · · 0
Plaintext 2 1 1 · · · 1

...

Plaintext 17 0 0 · · · 0
...

Plaintext 128 15 15 · · · 15

Figure 5.  Encoding the model. Each feature is encoded multiple times in a single Plaintext object. A total of 
8× 16 = 128 Plaintext objects (15 features and 1 bias) is used.

Plaintext 1 0 0 · · · 0
+

Ciphertext 1 1 1 · · · 1 × Plaintext 2 1 1 · · · 1 = 1 1 · · · 1
+

Ciphertext 2 2 2 · · · 2 × Plaintext 3 2 2 · · · 2 = 2 2 · · · 2
...

... +

Ciphertext 15 15 15 · · · 15 × Plaintext 16 15 15 · · · 15 = 15 15 · · · 15

Figure 6.  Homomorphic inference for a class. To evaluate if a sample belongs to a class, 15 plaintext–ciphertext 
multiplications are performed, followed by 15 summations of the resultant ciphertext and the bias Plaintext 
object. This allows all 4000 samples to be evaluated for a class simultaneously.



9

Vol.:(0123456789)

Scientific Reports |         (2023) 13:7461  | https://doi.org/10.1038/s41598-023-34535-8

www.nature.com/scientificreports/

Data availibility
The data for the following strains-B.1.1.7 (Alpha), B.1.429 (Epsilon), P.1 (Gamma) and B.1.526 (Iota) are available 
from the organizers of the iDASH’2021 competition at http:// www. human genom epriv acy. org/ 2021/ conta ct. html, 
which were used under license for the current study, and so are not publicly available. Data are however available 
from the corresponding author, Jun Jie Sim, upon reasonable request and with permission of the organizers of 
the iDASH’2021 competition. The data for the remaining strains - B.1.617.2 (Delta), C.37 (Lambda), B.1.621 
(Mu) and B.1.1.529 (Omicron) are available in the GISAID repository, with Episet ID: EPI_SET_220924cw 
at https:// doi. org/ 10. 55876/ gis8. 22092 4cw.
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