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Machine learning‑based 
causal models for predicting 
the response of individual patients 
to dexamethasone treatment 
as prophylactic antiemetic
Taisuke Mizuguchi * & Shigehito Sawamura 

Risk‑based strategies are widely used for decision making in the prophylaxis of postoperative 
nausea and vomiting (PONV), a major complication of general anesthesia. However, whether risk 
is associated with individual treatment effect remains uncertain. Here, we used machine learning‑
based algorithms for estimating the conditional average treatment effect (CATE) (double machine 
learning [DML], doubly robust [DR] learner, forest DML, and generalized random forest) to predict the 
treatment response heterogeneity of dexamethasone, the first choice for prophylactic antiemetics. 
Electronic health record data of 2026 adult patients who underwent general anesthesia from January 
to June 2020 were analyzed. The results indicated that only a small subset of patients respond to 
dexamethasone treatment, and many patients may be non‑responders. Estimated CATE did not 
correlate with predicted risk, suggesting that risk may not be associated with individual treatment 
responses. The current study suggests that predicting treatment responders by CATE models may be 
more appropriate for clinical decision making than conventional risk‑based strategy.

Postoperative nausea and vomiting (PONV) are major complications of general anesthesia, leading to significant 
patient  discomfort1, increased health care  costs2, and unanticipated side  effects3,4. Although interventions such 
as antiemetic treatment and avoidance of risk factors are suggested for PONV  prophylaxis5,6, the evidence is 
derived from the average treatment effect of the population. In practice, treatment effects can be heterogeneous, 
and interventions may be ineffective or even harmful in a subset of patients. Identifying individuals who respond 
to treatment is essential to avoid unnecessary interventions that increase the risk of adverse events.

The individual treatment effect measures the difference in outcomes for the same individual in alternative 
futures, with or without  treatment7. Because such observation is impossible, predicted risk has been a popular 
surrogate index for treatment decision making in clinical practice. Many clinical guidelines, including those for 
PONV management, recommend risk-tailored  prophylaxis5,8 which is determined by a risk score or a prediction 
 model9,10. Most of the existing research on treatment decision has focused on developing accurate prediction 
 models11,12 and optimizing risk-tailored prophylaxis  strategy13–15. However, conventional risk-based strategies 
still cannot avoid unnecessary intervention, because the predicted risk may not be associated with the hetero-
geneity of treatment response.

Recent advancements in methodologies have provided tools to directly estimate individual treatment 
 effects16–21, but there are still limited reports on their clinical  application22–26. In this study, we predicted the treat-
ment effect heterogeneity of dexamethasone, the first choice of prophylactic  antiemetics5, by applying machine 
learning-based causal models for observational  data16–20. These models estimate the conditional average treat-
ment effect (CATE) in a subpopulation of patients characterized by a combination of covariates. Furthermore, we 
evaluated the factors associated with treatment response heterogeneity by applying Shapley additive explanations 
(SHAP)  method27–29 to CATE models. The main contribution of this research is the proposal of a framework for 
the prediction of the treatment response heterogeneity of dexamethasone for PONV prophylaxis, which may 
improve the quality of PONV management.
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Results
Population. Of the 2026 patient data used for analysis, 756 (37.3%) were treated with dexamethasone. In 
the training/validation set (n = 1219; 60.2%; January–March 2020), the median (standard deviation [SD]) age 
was 58.5 (19.1) years, 581 (47.7%) were female, 438 (35.9%) were treated with dexamethasone, and 290 (23.8%) 
experienced PONV. In the test set (n = 807; 39.8%; April–June 2020), the median (SD) age was 59.7 (18.2) years, 
398 (49.3%) were female, 318 (39.4%) were treated with dexamethasone, and 290 (23.8%) experienced PONV. 
The baseline characteristics of the two datasets were broadly similar, except for the decreased number of surger-
ies (training/validation set, 1219; test set, 807; 33.8% decrease) and intensive care unit (ICU) admissions (train-
ing/validation set, 310; test set, 141; 54.5% decrease) in the test set due to coronavirus pandemic (Table 1). The 
category distribution of PONV is presented in Supplementary Table 1.

Conditional average treatment effect models. We predicted the individualized treatment response to 
dexamethasone for PONV prophylaxis using multiple CATE estimation algorithms (double machine learning 
 [DML]16, doubly robust [DR]  learner17,18, generalized random forests  [GRF]19, and forest  DML20). The distribu-
tions of the estimated CATE, which reflects the treatment response, were skewed to negative values (Fig. 1), 
consistent with PONV risk reduction by  dexamethasone6. In all models, CATE distribution had a peak near 
zero, corresponding to the non-responders. The estimated CATE values showed a strong correlation among the 
different models, suggesting the reproducibility of the estimates in different algorithms (Fig. 2).

For comparison, we also created two machine learning-based risk prediction models: (1) a model with covari-
ates selected by stepwise selection (optimized risk model) and (2) a model with previously reported risk factors 
as covariates (base risk model). In terms of risk prediction, the performance of the optimized risk model (area 
under the receiver operating characteristic curve [AUROC] 0.714; 95% CI 0.683–0.746) was among the best 
of previously reported  models9 and outperformed the base risk model using previously reported risk factors as 
covariates (AUROC 0.635; 95% CI 0.602–0.668). The performance indicators of the risk prediction models are 

Table 1.  Baseline patient characteristics of overall dataset, training/validation set, and test  seta. PONV 
postoperative nausea and vomiting, COPD chronic obstructive pulmonary disease, PCI percutaneous coronary 
intervention, CABG coronary artery bypass graft, ASA-PS American Society of Anesthesiologists Physical 
Status, TIVA total intravenous anesthesia, ICU intensive care unit. a Data are expressed as No. (%) unless 
otherwise indicated.

Overall (n = 2026) Training/validation (n = 1219) Test (n = 807)

PONV 477 (23.5) 290 (23.8) 187 (23.2)

Age, mean (SD), years 58.5 (19.1) 57.7 (19.6) 59.7 (18.2)

Sex (female) 979 (48.3) 581 (47.7) 398 (49.3)

Non smoker 1090 (53.8) 674 (55.3) 416 (51.5)

PONV or motion sickness history 194 (9.6) 114 (9.4) 80 (9.9)

Hypertension 661 (32.6) 375 (30.8) 286 (35.4)

Diabetes 306 (15.1) 184 (15.1) 122 (15.1)

Psychiatric disease 102 (5.0) 69 (5.7) 33 (4.1)

Malignancy 596 (29.4) 321 (26.3) 275 (34.1)

History of stroke 162 (8.0) 107 (8.8) 55 (6.8)

Asthema 91 (4.5) 55 (4.5) 36 (4.5)

COPD 194 (9.6) 149 (12.2) 45 (5.6)

Coronary disease 49 (2.4) 26 (2.1) 23 (2.9)

Post PCI or CABG 83 (4.1) 51 (4.2) 32 (4.0)

Asynergy 63 (3.1) 36 (3.0) 27 (3.3)

ASA-PS 1 557 (27.5) 371 (30.4) 186 (23.0)

ASA-PS 2 1233 (60.9) 689 (56.5) 544 (67.4)

ASA-PS 3 236 (11.6) 159 (13.0) 77 (9.5)

Anesthesia time, mean (SD), hours 3.4 (2.0) 3.3 (2.0) 3.5 (2.0)

TIVA 266 (13.1) 143 (11.7) 123 (15.2)

Peripheral nerve block 328 (16.2) 177 (14.5) 151 (18.7)

Epidural anesthesia 265 (13.1) 145 (11.9) 120 (14.9)

Continuous opioid infusion 704 (34.7) 415 (34.0) 289 (35.8)

Droperidol bolus 238 (11.7) 131 (10.7) 107 (13.3)

Dexamethasone bolus 756 (37.3) 438 (35.9) 318 (39.4)

Elective surgery 1809 (89.3) 1099 (90.2) 710 (88.0)

Emergency surgery 217 (10.7) 120 (9.8) 97 (12.0)

ICU admission 451 (22.3) 310 (25.4) 141 (17.5)
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provided in Supplementary Table 2. However, there was a small or no correlation between the predicted risk and 
the estimated CATE (Fig. 2), suggesting a lack of association between risk and treatment response.

Clinical implication. The importance of the covariates in CATE estimation was assessed using the Shapley 
additive explanations (SHAP)27 value (Fig. 3). Among the key contributors, anesthesia duration of ≤ 2 h, epidural 
anesthesia, malignancy, and old age changed the model estimate toward negative values. Conversely, young age 
and Apfel score of ≤ 1 in those aged over 70 years changed the model estimate toward positive values.

Goodness‑of‑fit analysis. The propensity score used in the CATE model was predicted by L2-regularized 
logistic regression (AUROC 0.751; 95% CI 0.722–0.781). This score was mainly within the range of 0.05–0.95, 
suggesting reasonable overlap across the treatment and untreated groups (Supplementary Fig. 1).

Uplift curve evaluation. The model performance in identifying responders to treatment was evaluated 
using the area under the uplift curve (AUUC)30,31. A greater positive AUUC indicates better model performance, 
and the AUUC of a null model is zero. The AUUC of the CATE models was significantly greater than zero in 
DML (AUUC 22.4; 95% confidence interval [CI] 6.4–38.5) and DR learner (AUUC 18.4; 95% CI 2.0–34.5) (Sup-
plementary Fig. 2), indicating that the models could identify the responders to prophylactic dexamethasone 
treatment. Sensitivity analysis also supported the results from the uplift curve evaluation of the CATE model 
(Supplementary Figs. 3, 4, and 5).

Discussion
This retrospective cohort study identified the individuals likely to respond to dexamethasone treatment for PONV 
prophylaxis using CATE models, and only a small subset of patients may respond to the treatment. Furthermore, 
predicted risks were not associated with the estimated treatment responses.

Figure 1.  Distribution of the estimated CATE. CATE conditional average treatment effect, DML double 
machine learning, DR doubly robust, GRF generalized random forest.
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Although randomized control trials (RCTs) are considered the gold standard of evidence-based medicine, they 
cannot determine whether a treatment is beneficial to a specific individual. In practice, many clinical guidelines 
recommend risk-based patient selection for  intervention5,8. Risk-stratified subgroup analyses in other clinical dis-
ciplines have suggested an association between risk and treatment  effect32–34. However, a careful interpretation is 
required for subgroup analyses, because insufficient power in stratified samples can result in misleading  results35.

In the current study, the results indicated that predicted risk may lack association with individual treatment 
responses. Prior studies in  nephrology22 and critical  care24 report that treatment effect heterogeneity models 
are superior to the risk prediction models in identifying the responder to the treatment, supporting the current 
results. Furthermore, our results indicate that many patients may be non-responders to dexamethasone treat-
ment. Thus, direct prediction of treatment heterogeneity may be more efficient than conventional risk-based 
strategy.

Previously reported clinical applications of CATE models estimated the treatment effect from the difference 
in the predicted risk between the treatment groups in RCT  data22,24,36. The methods applied in the current study 
were designed for observational data, with confounder adjustments intrinsic to the  algorithm16–20. Modeling 
treatment effect heterogeneity in observational data has a significant advantage, enabling the use of large data-
bases, such as electronic health records, that capture a broad and diverse population.

This study has several limitations. First, the accuracy of the CATE model cannot be evaluated directly because 
the ground truth is unobservable. Thus, we have evaluated the CATE models using surrogate measures of evalu-
ation, including the reproducibility of the results among different CATE algorithms. However, we still cannot 
rule out the possibility of using biased measures for evaluation, which are discussed in further detail below. 
Second, we used observational data, and the estimates of individual treatment responses obtained by the CATE 
models can be biased if the identifying assumptions were violated. CATE models use the propensity score model 
to adjust for the confounders, and we have selected observable potential confounders for the covariates, includ-
ing previously reported risk factors of PONV. The distribution range of the propensity score suggested that the 
positivity assumption holds. Furthermore, the timing of dexamethasone administration was always at anesthesia 
induction, and a previous meta-analysis reported that there was no significant difference in the treatment effect 
within the dosage used in this study (4–8 mg)37. Thus we assumed that Stable Unit Treatment Value Assumption 
(SUTVA) holds. Although we cannot completely rule out the influence of unobserved confounders, we consider 
that the identifying assumptions were reasonably satisfied. Third, results may not be generalizable to all patients 
because our data were derived from a single institution. We performed validation of our model by temporal 
splitting of the  data38. Furthermore, our data include the coronavirus pandemic period, and the splitting point 
is in proximity to the first declaration of a state of emergency in Tokyo. Our results should be more generalizable 
than conventional temporal splitting, considering the environmental changes caused by coronavirus in the test 
set. Fourth, there may be selection bias because we excluded some samples, such as intubated patients, in which 
we could not evaluate the outcome.

The current results demonstrate a framework for identifying the responders to antiemetic dexamethasone 
treatment by applying machine learning-based causal models. Conventional risk prediction models may not be 
suitable for identifying a small subset of treatment responders, and the approach using CATE models may be a 

Figure 2.  Correlation coefficient maps for the Estimated treatment effect and the predicted risk. Color-coding 
and the number in each cell represent the Pearson correlation coefficient between the model estimates. DML 
double machine learning, DR doubly robust, GRF generalized random forest.
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powerful tool for optimizing PONV management. Further prospective validation is needed for application in 
clinical practice.

Methods
Ethics. All data were extracted from institutional electronic health records after approval by the Ethics Com-
mittee of Teikyo University Hospital. All methods were carried out in accordance with the institutional guide-
lines and regulations. Informed consent was obtained from all the participants in the form of opt-out on the 
website. De-identified data were used for analysis.

Datasets. This study followed the Strengthening the Reporting of Observational Studies in Epidemiology 
(STROBE) reporting  guideline39. Analyses were based on a retrospective cohort of adult patients (age ≥ 18 years) 
who underwent general anesthesia at Teikyo University Hospital from January 2020 to June 2020. Extracted 
electronic health record data included demographics, routine preoperative evaluation, anesthesia records, and 
routine postoperative evaluation (Supplementary Table  3). Supplementary Fig.  6 shows the study flowchart. 
Exclusion criteria were open-heart cardiac surgery and intubated or unconscious patients. Patients without extu-
bation or unexpected events within 24 h of surgery (emergency re-operation, intubation, intensive care unit 
[ICU] admission, or patient escape) precluding outcome observation were regarded as censored data and were 
excluded. Patients discharged on postoperative day 1, within 24 h of surgery, were included in the analysis. No 

Figure 3.  Covariate importance determined by SHAP values of CATE estimation models. The bar chart in 
the top row displays the global importance of the covariates on conditional average treatment effect (CATE) 
estimation, represented as the mean absolute Shapley additive explanations (SHAP) value of the covariates 
over all the given samples. The strip plot in the bottom row displays the change in the estimated CATE value 
associated with the covariate. Each dots represent an individual, piled up along the row to show density. 
Binary covariates are displayed as either 1 (High) or 0 (Low). DML double machine learning, DR doubly 
robust, ASA-PS American Society of Anesthesiologists Physical Status, METs metabolic equivalents, TIVA total 
intravenous anesthesia.
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patient was discharged on postoperative day 0. Three patients with missing data (anesthesia duration, 0.15%) 
and 18 patients with dexamethasone treatment dose < 4 mg (0.89%) were also excluded from the analysis.

Data were split temporally into the training/validation set (January–March 2020) and the test set (April–June 
2020). A state of emergency was declared in Tokyo on April 7, 2020, due to the coronavirus pandemic. Less urgent 
elective surgery and postsurgical ICU admission were restricted, and the environment changed dramatically 
from infection control procedures in the test set. We chose temporal splitting to show the generalizability of the 
CATE models in temporally different  datasets38. Random, non-temporal splitting of the datasets was used for 
sensitivity analysis. For cross-validation, the training/validation set was further randomly split into the training 
set and the validation set.

Primary outcome. Outcome Y of interest was nausea or vomiting within 24 h of surgery, assessed on a 
binary scale. The assessment was based on routine postoperative evaluation by anesthesiologists on postopera-
tive day 1 and routine nurse evaluation in the postanesthesia care unit, ICU, or general ward.

Treatment. The treatment T considered was an intravenous bolus of 4–8 mg dexamethasone at anesthesia 
induction on a binary scale, which is the recommended dose in the guideline of PONV  management5. A previ-
ous meta-analysis indicated no significant difference in the incidence of PONV between 4–5 mg and 8–10 mg 
dexamethasone  treatment37.

Conditional average treatment effect models. CATE models use machine learning algorithms to 
estimate treatment effect, conditional on the combination of covariates reflecting patient  characteristics40. There 
is no currently accepted standard algorithm for CATE estimation. Thus, we evaluated multiple algorithms (dou-
ble machine learning  [DML]16, doubly robust [DR]  learner17,18, generalized random forests  [GRF]19, and forest 
 DML20) and compared their performance with the risk prediction models. Let Y denote the outcome of inter-
est, T denote the treatment, X denote the covariates characterizing the individuals, and W denote the observed 
confounders.

We used L2-regularized logistic regression for the nuisance parameter estimation, except for GRF, which is 
designed to use random forest. L2 regularization adds a penalty term weighted by the square of the coefficient 
to avoid overfitting. Ridge regression, which is an L2-regularized linear regression, was used for the final stage 
regression model in DML and DR learner.

Double machine learning (DML). This algorithm estimates CATE θ(X) by combining the outcome prediction 
model and propensity score model into a residual-on-residual regression. Machine learning models are suscepti-
ble to two sources of estimation bias: regularization and overfitting. DML implements a solution for this problem 
by correcting regularization bias by Neyman orthogonality and overfitting via sample splitting. The following 
partially linear model is assumed:

g(X, W) is an arbitrary function for estimating the outcome variable Y, e(X, W) is a propensity score model, and 
m(X, W) is a risk prediction model. ε and κ are error coefficients. The samples are split into K subsamples, then 
m(X, W) = E[Y | X, W] and e(X, W) = E[T | X, W] are predicted in each subsample by arbitrary machine learning 
models. These nuisance parameters are used to create a residuals-on-residuals regression model:

The score function ψ is defined as a dot product of the error term of the residuals-on-residuals regression 
and the error term of the propensity score model e(X, W):

where the observed parameters Z = {Y, T, X, W} and nuisance parameters h = {m (X, W), e(X, W)}. The moment 
 condition41 is satisfied when the score function is zero, indicating that the two error terms are uncorrelated. The 
estimator θ̃ (X) is constructed as the solution to

Estimated CATE θ̃ minimizes the average of expected score functions across all K subsamples.

Doubly robust (DR) learner. This algorithm is a modified version of conventional doubly robust  approach42, 
and estimates CATE θ(X) using the outcome prediction model and propensity score model as the nuisance 
parameters. Parameters conditional to each treatment level are defined for binary treatment T = t ∈ {0, 1}: poten-
tial outcome Yt, risk prediction model mt(X, W), propensity score model et(X, W), and error coefficient γt. The 
following models are assumed:

Y = θ(X)T + g(X, W)+ ε, E[ε|X, W] = 0,

T = e(X, W)+ κ , E[κ|X, W] = 0.

Y −m(X, W) = θ(X)(T − e(X, W))+ ε.

ψ(Z; θ , h(X, W)) = (Y −m(X, W)− θ(X)(T − e(X, W))) · (T − e(X, W)),

1

K

K
∑

k=1

n
∑

i=1

ψ

(

Zi; θ , ĥ(Xi , Wi)

)

= 0.

Yt = mt(X, W)+ γt , E[γ |X, W] = 0,
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Independent and identically distributed samples labeled i = 0, 1, …, n, each consisting of the following param-
eters are defined: the outcome Yi ∈ R , the treatment Ti ∈ {0, 1}, the covariates Xi ∈ R , and the observed confound-
ers Wi ∈ R . The following estimates of potential outcomes YDR

i,t  are constructed for t = 0 and t = 1:

CATE θ(X) is estimated by solving the regression model over a parameter target class �:

Generalized random forest (GRF). This algorithm estimates CATE from the local regression of moment 
 equation41, using data-adapted weight obtained from the modified random forest with splitting criteria which 
maximizes heterogeneity. The confounders are adjusted by residualizing the outcome Y and the treatment T, 
using predicted outcome m(X, W) = E[Y | X, W] and propensity score e(X, W) = E[T | X, W] as the nuisance 
parameters. These parameters are predicted by conventional random forest. Subsequent steps are performed 
on residualized data instead of the original. Subsamples are chosen randomly from the sample without replace-
ment, then split into equal size samples for the splitting phase and estimation phase. Such partitioning is called 
"honest" when the information used for splitting is never used for estimation. Honesty avoids overfitting and 
ensures statistical inference. In the splitting phase, the causal tree is grown by splitting the sample space, maxi-
mizing the heterogeneity of the estimated treatment effect between the child nodes. Numerical approximations 
of heterogeneity based on gradient tree algorithms are made to reduce computational costs. The terminal node 
in which each sample fall represents a cluster with similar propensity. In the estimation phase, samples are fit-
ted to the causal tree to determine which terminal node it falls in. Data-adaptive weight α is calculated as a list 
of neighboring training samples, weighted by the frequency it fell in the same terminal node as the test sample. 
CATE θ̃ is estimated by solving the weighted moment equation using this list of data-adaptive weight and the 
score function ψ:

Forest double machine learning (DML). This algorithm estimates CATE using the moment equation of DML 
in the splitting phase of GRF. The original  study20 used local fitting of the nuisance parameters, but we used a 
modified  version40 with the global fitting of nuisance parameters to reduce computational costs.

Risk prediction models. We created two machine learning-based PONV risk prediction models to com-
pare with CATE models: base risk model with previously reported risk factors of  PONV5,9 (age, anesthesia dura-
tion, sex, history of motion sickness or PONV, nonsmoker, postsurgical opioid infusion) selected as covariates 
and optimized risk model with covariates chosen by stepwise selection. The covariates are provided in Sup-
plementary Table 3. L2-regularized logistic regression was used for both models. We performed fivefold cross-
validation, and the models with the highest area under the receiver operating characteristic curve (AUROC) 
were selected.

Model interpretation. We used Shapley additive explanations (SHAP) to interpret the model  estimation27. 
SHAP is a game theory-based approach to explain the output of a machine learning model. We used SHAP to 
assess the contribution of each covariate in the CATE estimation.

Uplift curve evaluation. The accuracy of the CATE model cannot be evaluated directly because its true 
value is unobservable. Thus, we evaluated the models using the uplift curve, which is a popular metric for evalu-
ating CATE  models30,43. The samples were sorted by the rank of the estimated CATE values, and subsamples 
consisting of top k samples (k = 1, 2, …, n; n, total sample size) were created for each value of k. The uplift curve 
f(k) plots the estimated difference in PONV events between the treated and untreated groups, calculated from 
the observed outcome in each subsample:

The baseline plots the expected uplift curve value when the subsamples consist of a random CATE:

Pr[T = t|X, W] = et(X, W).

YDR
i,t = mt(Xi , Wi)+

Yi −mt(Xi , Wi)

et(Xi , Wi)
· 1{Ti = t}.

argmin
θ∈�

E

[

(

ŶDR
i,1 − ŶDR

i,0 − θ(X)
)2

]

.

n
∑

i=1

αi(X)ψ
(

Zi; θ , ĥ(Xi , Wi)

)

= 0.

f (k) =

(

∑k
i=1 TiYi

∑k
i=1 Ti

−

∑k
i=1 (1− Ti)Yi

∑k
i=1 (1− Ti)

)

k.

baseline =
f (n)

n
k.
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If the value of CATE is estimated correctly, a greater decrease in PONV events should be observed in the 
uplift curve compared to the baseline. For statistical analysis, the area under the uplift curve (AUUC)30,31 was 
calculated as the cumulative difference between the baseline and the uplift curve values:

A greater positive AUUC indicates better model performance in identifying the responder to the treatment. 
The AUUC of a null model is zero. The 95% CI of the AUUC was estimated from 2000 bootstrap resampling.

The uplift curve was originally designed for the evaluation of randomized  data30,43,44. We modified the 
approach by separately adjusting for confounders in all subsamples constituting the uplift curve. The confound-
ers were adjusted using inverse probability weighting (IPW):

or a doubly robust  estimator42:

The propensity score e(W) and risk model conditional on treated m1(W) and untreated m0(W) were predicted 
by L2-regularized logistic regression, using observed confounders W as  covariates45.

Model parameter selection. The samples were split into the training/validation set and the test set. All 
procedures for model parameter selection were performed in the training/validation set, which was further split 
into the training set and the validation set for evaluation. Let X denote the covariates characterizing the indi-
viduals and W denote the observed confounders. The observed confounders W were selected from previously 
reported risk  factors5,9 and expert opinions as fixed parameters. The parameters of CATE models, including 
covariates X, were selected by stepwise selection with threefold cross-validation, and those with the highest 
AUUC in the validation set were used. The parameters of risk prediction models were selected similarly, except 
fivefold cross-validation was used and AUROC was used for performance evaluation. Different fold cross-vali-
dation was used for CATE model and risk prediction model because of the difference in the required sample size 
for evaluation. Candidate and selected covariates are provided in Supplementary Table 3.

Sensitivity analysis. We conducted four sensitivity analyses. First, we created a placebo treatment by post 
hoc assignment of 2000 random binary variables to ensure the lack of heterogeneity in the absence of treatment 
effects. Second, we evaluated the model performance in 2000 random non-temporal splitting of datasets. Third, 
we created samples excluding emergency surgery (n = 217; 10.7%) to ensure that the heterogeneity was not due 
to inadequate presurgical evaluation. Fourth, we evaluated the AUUC excluding sample proportion below 0.3 
or 0.4 in the uplift curve to ensure that the result was not due to insufficient confounder adjustment in a small 
subsample size.

Statistical analysis. All analyses were performed using Python version 3.8.9 and the following add-on 
libraries: Scikit-learn package version 0.24.2 for all machine learning models,  EconML40 version 0.12.0 for all 
CATE models, and  SHAP27 version 0.39.0 for model interpretation. A two-sided P value of < 0.05 was considered 
significant.

Data availability
The deidentified data are available from the corresponding author upon reasonable request.
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