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Adaptive fuzzy sliding mode 
control of an actuator powered 
by two opposing pneumatic 
artificial muscles
Minh‑Duc Duong 1,3, Quang‑Thuyet Pham 1, Tuan‑Chien Vu 1, Ngoc‑Tam BUI 2 & 
Quy‑Thinh Dao 1,3*

Pneumatic artificial muscle (PAM) is a potential actuator in human–robot interaction systems, 
especially rehabilitation systems. However, PAM is a nonlinear actuator with uncertainty and a 
considerable delay in characteristics, making control challenging. This study presents a discrete-time 
sliding mode control approach combined with the adaptive fuzzy algorithm (AFSMC) to deal with the 
unknown disturbance of the PAM-based actuator. The developed fuzzy logic system has parameter 
vectors of the component rules that are automatically updated by an adaptive law. Consequently, the 
developed fuzzy logic system can reasonably approximate the system disturbance. When operating 
the PAM-based system in multi-scenario studies, experimental results confirm the efficiency of the 
proposed strategy.

In recent years, the PAM has been one of the most promising actuators for applications requiring the simulation 
of human-like movements. The PAM consists of a long tube made of rubber and covered with braided yarn. 
PAM stiffens and contracts in radial and longitudinal directions when supplying compressed air. Conversely, it 
will soften and lengthen when we release the air. That contraction is similar to the principle of operation of the 
muscle bundles of living things. PAMs are usually utilized in industrial applications due to their advantages of 
quick reaction, extremely lightweight, high power-to-weight and power-to-volume ratios, inherent safety, clean-
ness, ease of maintenance, pliability, and low-cost1–5. Some prominent applications include manipulators4,6–8 to 
enhance the safety of humans who interact with robots, rehabilitation systems9–14, and medical devices15,16 to 
assist patients in restoring motor function. However, PAM is a nonlinear system with a huge latency, and regulat-
ing it with good performance always attracts great attention from researchers.

Furthermore, determining a nonlinear mathematical model of PAM is extremely challenging, resulting in 
a bias in the estimation of the PAM-based system’s parameters. As a result, PAM-based systems have a lot of 
unknown disturbances. Many control methods have been proposed to solve the problems of the pneumatic 
muscle actuator. Many early studies chose the Proportional-Integral-Derivative (PID) controller and its modified 
versions. A nonlinear PID-based controller17–21 for enhancing correction of non-linear hysteresis phenomenon 
and increased robustness. A fuzzy PID controller22–25 is proposed to improve trajectory tracking performance. 
Most of the mentioned controllers have decent performance. They are inadequate to deal with PAM’s hysteresis 
and nonlinearity.

To overcome the drawbacks of the PID controller and its improved variants, nonlinear control approaches 
such as sliding mode control (SMC), dynamic surface control, adaptive control, interactive learning control, and 
intelligent control have been presented in the literature. More specifically, conventional sliding mode control is 
applied in Refs.26,27 for trajectory tracking of a PAM system. Different types of discrete-time sliding mode control 
are used for robust position control of a PAM system28,29. In addition, dynamic surface control that uses first-
order filter to improve the system response is also applied to tracking control of PAM systems30. Moreover, In 
Ref.31, the authors recommend adaptive control to estimate unknown system parameters online, which achieves 
satisfactory control performance.

Interactive learning control and intelligent control that can learn the nonlinearity and estimate unknown 
parameters are also prominent approaches to controlling the PAM system. The authors of Ref.32 proposed a 
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robust iterative learning control algorithm to address a PAM system’s uncertainties and state constraints. Fuzzy 
control in combination with fractional PID control25, with sliding mode control33, and with model predict 
control34 are proposed for control of the PAM system. In these articles, fuzzy logic plays a role in adjusting the 
control parameters. Reference35 proposed an adaptive fuzzy sliding mode control approach to regulate a PAM 
system without a pre-defined model, in which the unknown parameters are estimated using fuzzy functions. 
Similarly, Ref.36 employed the same idea, but instead of fuzzy logic, a neural network was utilized to estimate the 
unknown functions. Moreover, reinforcement learning is also considered to optimize the control performance 
of the PAM system37. Most of the aforementioned approaches can bring robustness to the system. Some of them 
try to improve the system performance by estimating the unknown parts and disturbances with very complicated 
estimation algorithms. These algorithms are theoretically effective, but their implementation is very difficult with 
much computation. Thus, the requirement for an effective control algorithm is still an open problem.

Based on the favorable research findings of fuzzy and adaptive-based controllers, we tackle the control of a 
nonlinear PAM system with unknown disturbance by treating it as a linear system with unknown disturbance. 
We propose an adaptive fuzzy algorithm combined with a sliding mode control law to estimate and compensate 
for the disturbance while addressing approximation errors and model uncertainties. To enable practical imple-
mentation, we design the algorithm in the discrete domain, making it feasible for programming on a digitally 
embedded device. Our paper makes several contributions to the field of control engineering for nonlinear sys-
tems, particularly in the context of PAM systems with unknown disturbances as follow

•	 Proposes an adaptive fuzzy sliding mode control algorithm to control a nonlinear PAM system with unknown 
disturbance by considering it as a linear system with unknown disturbance.

•	 The proposed approach has the advantage of using fuzzy logic to estimate unknown parameters, making it 
more effective in handling complex and nonlinear systems.

•	 Designs the AFSMC algorithm in the discrete domain for practical implementation on a digitally embedded 
device.

System description
The system structure is shown in Fig. 1. The system includes an air compressor that supplies air to two artifi-
cial muscle bundles (with 23× 10−3 (m) of diameter, 40× 10−2 (m) of nominal length). When being inflated 
and deflated to the artificial muscle system through two proportional valves (SMC, ITV-2030-212S-X26), one 
muscle bundle contracts, and the other relaxes, causing the pulley to rotate around its center. The rotational 
angle produced is measured by the potentiometer (WDD35D8T). The myRIO-1900 embedded controller from 
National Instrument was utilized in this experiment to compute the feedback angle from the potentiometer and 
generate the control signal to the proportional valves, while the LabVIEW software was used for monitoring 
the entire process.

Figure 2 shows a schematic diagram of the working principle of a pneumatic artificial muscle, which describes 
each relationship between the air pressure, the motion of the artificial muscles, and the deflection angle of the 
pulley. Initially, the pressure in the muscle bundles is set at P0 = 0.2 MPa. Equation (1) describes the internal 
pressure of two PAMs in operation.

where P1 and P2 are the pressures of the two PAMs, P0 is the initial pressure, and �P is the pressure difference 
between the two PAMs. The dynamical model of a single Pneumatic Artificial Muscle (PAM) can be expressed 
using Reynolds’s model39 as:

with

(1)
{

P1 = P0 +�P
P2 = P0 −�P

(2)Mẍ + B(P)ẋ + K(P)x = F(P)−Mg

Figure 1.   The experiment platform of two opposing PAMs actuator38.
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where x is the contraction in the length of PAM. The model components representing the spring, damping, and 
contractile elements are represented by K, B, and F, respectively. Ki and Fi (i = 0,1) are constants. Bi,j are linear 
functions. The value of j represents whether the PAM is contracting ( j = 1 ) or deflating ( j = 2 ). In a configura-
tion where two PAMs act antagonistically, they generate a torque T on the pulley, which has an inertia moment 
J. The expression for the torque T is as follows:

where r represents the pulley’s radius. The forces FPAMe and FPAMf  created by each PAM can be expressed as:

The contractions of the PAMs xe and xf  in Eq. (5) can be obtained by using the initial contraction ( x0 ) and 
the pulley’s angle ( θ ), as shown below:

Assuming that the two PAMs have similar mechanical parameters, we can use Eqs. (3), (4), (5), and (6) to 
derive the following expression:

or

in which c1 =
2(F1 − K1x0)r

J
 , c2 =

[

B0e + B0f + (B1e + B1f )P0
]

r2

J
 , and c3 =

2(K0 + K1P)r
2

J
.

To facilitate the design of the controller on a real-time processor, we consider the following discrete-time 
formulation of the model (Eq. 8).

The control signal uk represents the different pressure �P applied to the PAM system, while yk represents 
the pulley’s angle deflection θ . The disturbance and unknown uncertainties in the system are denoted by pk , 
and the model parameters are represented by ai and bj , m = n = 2 . The identified model parameter values are 
shown in Table 1.

Controller design
This section outlines the construction of the proposed AFSMC for the PAM system, which involves several 
steps. Initially, a sliding mode controller is developed with a control signal containing a variable p̂k to estimate 
the system disturbance and improve the control performance. Next, an adaptive fuzzy algorithm is designed to 
compute the variable p̂k . Finally, the stability of the adaptive fuzzy sliding mode controller is demonstrated based 
on the Lyapunov stability condition. Figure 3 illustrates the block diagram of the system controller.

To design the SMC control, the sliding surface is chosen as

(3)







K(P) = K0 + K1P
B(P) = B0j + B1jP
F(P) = F0 + F1P

(4)T = J θ̈ (t) = (FPAMe − FPAMf )r

(5)
FPAMe = Fe − Beẋe − Kexe

FPAMf = Ff − Bf ẋf − Kf xf

(6)xe,f = x0 ± rθ

(7)T = 2(F1 − K1x0)r�P(t)−
[

B0e + B0f + (B1e + B1f )P0
]

r2θ̇ (t)− 2(K0 + K1P0)r
2θ(t)

(8)c1�P(t) = θ̈ (t)+ c2θ̇ (t)+ c3θ(t)

(9)yk = −

n
∑

i=1

aiyk−i +

m
∑

j=1

bjuk−j + pk ,

Figure 2.   The structure schematic of two opposing pneumatic artificial muscles.
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In the equation, α denotes a design parameter that satisfies the condition 0 < α < 1 , and ek represents the 
tracking error between the measured trajectory yk and its desired value y∗k . Using the single-input single-output 
model of the PAMs system given in Eq. (9), we can express the tracking error as:

Replace ek from Eq. (11) into Eq. (10), we have

To guarantee the sliding variable is driven to the sliding surface. We consider the following discrete-time 
reaching law

or

where Ksw > 0 is control gain. By replacing sk from Eq. (14) into the Eq. (12), the control signal uk can be 
obtained as

This algorithm’s control signal uk includes an uncertain disturbance element pk . To implement the control 
algorithm effectively, it is necessary to accurately determine the value of pk . This paper proposes an adaptive 
fuzzy algorithm for estimating pk . This algorithm ensures system stability and enhances the controller’s overall 
effectiveness. With the estimated value p̂k of pk , the control signal uk is calculated using the following equation:

(10)sk = ek + αek−1

(11)

ek = y∗k − yk

= y∗k +

n
∑

i=1

aiyk−i −

m
∑

j=1

bjuk−j − pk

(12)sk = y∗k +

n
∑

i=1

aiyk−i −

m
∑

j=1

bjuk−j − pk + αek−1

(13)�sk = sk − sk−1 = −Kswsk

(14)sk = (1+ Ksw)
−1sk−1

(15)uk =
1

b1
[ y∗k +

n
∑

i=1

aiyk−i −

m
∑

j=1

bjuk−j − pk + αek−1 − (1+ Ksw)
−1sk−1 ]

(16)uk =
1

b1
[ y∗k +

n
∑

i=1

aiyk−i −

m
∑

j=1

bjuk−j − p̂k + αek−1 − (1+ Ksw)
−1sk−1 ]

Table 1.   System parameters.

Parameters Values

a1 −1.9345± 9.2× 10
−3

a2 0.9765± 12.8× 10
−3

b1 0.0126± 1.3× 10
−3

b2 0.0124± 4.9× 10
−3

Figure 3.   Block diagram of the proposed adaptive fuzzy sliding mode controller.
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The subsequent subsections will provide a detailed explanation of the proposed adaptive fuzzy algorithm.

Fuzzy logic system.  In this study, a fuzzy system is utilized to estimate the output signal of a system. The 
fuzzy system operates based on a set of If-Then fuzzy rules related to the known input signals. These rules have 
the following form:

where i = 1, . . . ,N with N is the number of fuzzy rules of the system; sj(k) (j = 1, . . . , n) are the input signals, 
p̂ik(k) are the corresponding output signal.

Due to their high accuracy, the Takagi-Sugeno (TS) fuzzy rules are frequently employed to model nonlinear 
systems. This study utilizes the Takagi-Sugeno-Kang (TSK) model of order 0. The If-Then fuzzy rules for this 
model can be represented as follows:

Assuming that each rule assigns a numerical value to the output pik = Di
k , we can calculate the estimated 

value of p̂k using a weighted average:

or, similarly,

where, Dk = [D1
k ,D

2
k , . . . ,D

N
k ]

T  is the vector containing the attributed values Di
k for rule i; 

W(sk) = [W1(sk),W2(sk), . . . ,WN (sk)]
T is a normalized weight vector with Wi(sk) =

wi
∑N

j=1 wj

 and wi is the 

firing strength of each rules. The following subsection will introduce an adaptive law to update the vector Dk , 
representing the most accurate approximation of pk . This update will enhance the performance of the system.

Adaptive law.  In order to ensure that the estimated value p̂k accurately reflects the disturbance pk , we intro-
duce an adaptation law to update the parameter vector Dk . This adaptation law is given by:

where ϕ represents a strictly positive constant associated with the adaptation rate. It is worth noting that:

Equation (22) also indicates that there is no adaptation occurring when the states are on the sliding surface.

Stability analysis of adaptive fuzzy sliding mode control.  In this section, we will demonstrate the 
stability of the proposed algorithm using the Lyapunov stability condition. This analysis will allow us to deter-
mine the range of parameters for the AFSMC controller. Let D∗

k denote the ideal vectors, from which the distur-
bance value pk can be calculated as pk = D∗T

k W(sk) . We define the approximation error as follows:

Simultaneously, we consider fuzzy parameter errors

It is obvious that

Employ the differential calculus with the equation of (Eq. 25) to get the following method

(17)

If
[

s1(k) is S
i
1, . . . , sn(k) is S

i
n

]

then
[

p̂ik = Di
k

]

(18)

If

[s(k) is Si]

then
[

p̂ik = Di
k

]

with i = 1 . . .N

(19)p̂k =

∑N
i=1 wip̂

i
k

∑N
i=1 wi

(20)p̂k = DT
k W(sk)

(21)Dk = Dk−1 − ϕskW(sk)

(22)�Dk = Dk − Dk−1 = −ϕskW(sk)

(23)�Dk = 0 for sk = 0

(24)p̃k = pk − p̂k

(25)D̃k = D∗
k − Dk

(26)p̃k = W(sk)D̃k

(27)�D̃k = �D∗
k −�Dk



6

Vol:.(1234567890)

Scientific Reports |         (2023) 13:8242  | https://doi.org/10.1038/s41598-023-34491-3

www.nature.com/scientificreports/

According to the theory of adaptation rules shown in Eq. (23), when states exist on a sliding surface, no 
adaptation occurs, as the results �D∗

k+1 = 0, therefore �D̃k+1 is assigned as follows

To demonstrate the stability of the system using the proposed algorithm, we will consider the Lyapunov 
candidate function:

Then,

To compute �Vk , we will first examine its first component:

In addition,

Substituting uk from Eq. (15) into Eq. (32), �sk can be obtained as

Then, Eq. (31) becomes

Next, we consider the second part of �Vk

Therefore,

Therefore, we have shown that the proposed adaptive fuzzy sliding mode control guarantees the asymptotic 
stability of the system.

Experimental results
In this section, we describe a series of experiments that were conducted to assess the performance of the sug-
gested controller with varying trajectories. The main objective of these experiments was to evaluate the control-
ler’s effectiveness under different conditions. We employed the Gaussian membership functions for Si outlined 
below to accomplish this.

(28)�D̃k = −�Dk = ϕskW(sk)

(29)Vk =
1

2
s2k +

1

2ϕ
D̃T
k D̃k

(30)
�Vk = Vk − Vk−1

=
1

2
s2k −

1

2
s2k−1 +

1

2ϕ
D̃T
k D̃k −

1

2ϕ
D̃T
k−1D̃k−1

(31)�1 =
1

2
s2k −

1

2
s2k−1 = �sksk −

1

2
(�sk)

2

(32)�sk = sk − sk−1 = y∗k +

n
∑

i=1

aiyk−i −

m
∑

j=0

bjuk−j − pk + αek−1 − sk−1

(33)

�sk = −p̃k + (1+ Ksw)
−1sk−1 − sk−1

= −p̃k − Ksw(1+ Ksw)
−1sk−1

= −p̃k − Kswsk

(34)

�1 = (−p̃k − Kswsk)sk −
1

2
(�sk)

2

= −p̃ksk − Ksws
2
k −

1

2
(�sk)

2

= −W(sk)D̃ksk − Ksws
2
k −

1

2
(�sk)

2

(35)

�2 =
1

2ϕ
D̃T
k D̃k −

1

2ϕ
D̃T
k−1D̃k−1

=
1

ϕ
�D̃kD̃k −

1

2ϕ
(�D̃k)

2

=
1

ϕ
(ϕskW(sk))D̃k −

1

2ϕ
(�D̃k)

2

= W(sk)D̃ksk −
1

2ϕ
(�D̃k)

2

(36)�Vk = �1 +�2 = −Ksws
2
k −

1

2
(�sk)

2 −
1

2ϕ
(�D̃k)

2 ≤ 0
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The graph for these membership functions is shown in Fig. 4.
Experiments were conducted with input signals such as sine and various sine waves in two scenarios—with 

and without load. The control approach was implemented using the LabVIEW/MyRIO toolkit and then embed-
ded into the MyRIO-1900 controller with a sampling time of 5ms. The performance of the proposed AFSMC 
approach and the conventional SMC approach were compared in terms of trajectory tracking. Table 2 presents 
the parameters for AFSMC and SMC after fine-tuning.

Experimental with sinusoidal trajectories.  The effectiveness of both control strategies, AFSMC and 
SMC, was first evaluated for the no-load scenario using sine signals with a frequency range of 0.1–1.0 Hz as 
desired trajectories. The experimental results, shown in Fig. 5, demonstrate that both controllers offer excellent 

(37)







































u1 =
1

1+ e5(s+3)

u2 = e−0.25(s+1.5)2

u3 = e−0.25s2

u4 = e−0.25(s−1.5)2

u5 =
1

1+ e−5(s−3)

Figure 4.   The membership functions of the fuzzy set.

Table 2.   Parameters of the AFSMC and SMC controllers.

Parameters Ksw α ϕ

SMC 0.5 0.1

AFSMC 0.5 0.1 0.04

Figure 5.   Experimental results for tracking sinusoidal trajectories without load.
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tracking performance, but their effectiveness decreases as the frequency increases. Nevertheless, the AFSMC 
controller exhibits better tracking performance with a smaller deviation than the SMC controller. Specifically, 
in the case of 0.1 Hz reference signal, at the steady-state, the SMC controller shows the highest deviation of the 
dynamic performance at nearly 6.0◦ , whereas the deviation value for AFSMC is much smaller, around 2.2◦ , and 
consistently converges to 0 ◦ . In the case of 1.0 Hz reference signal, the maximum error values for SMC and 
AFSMC are around 10.0◦ and 4.0◦ , respectively.

In the second scenario, a 5 kg load was introduced to the system. This load is equivalent to the leg part of Asian 
humans40. The results of tracking performance and tracking errors are shown in Fig. 6. With 0.1 Hz reference 
signal, the maximum error values for AFSMC and the SMC at steady-state are around 2.0◦ and 4.0◦ , respectively. 
When the frequency of the reference signal increases, the error also increases. With 1.0 Hz reference signal, 
the maximum error values for AFSMC and the SMC at steady-state are around 4.0◦ and 10.0◦ , respectively. 
Remarkably, even with the presence of an external disturbance component, the AFSMC controller continues to 
demonstrate superior performance compared to SMC as the root mean square tracking error (RMSE) are pre-
sented in Table 3. This is due to the accurate estimation of the disturbance element pk , a function of the sliding 
surface variable sk determined using an adaptive fuzzy algorithm. Further analysis of the estimation accuracy 
will be discussed in the next subsection.

Experimental with mixed sinusoidal trajectories..  Besides using sinusoidal trajectories, the tracking 
performance of AFSMC and SMC controllers are also evaluated using a mixed sinusoidal reference trajectory 
as described by the following equation: θ(t) = 20 sin 2π f + 12.8 sinπ f  . The reference signal’s basis frequency f 
ranges from 0.1 to 0.8 Hz in this experiment.

The first scenario involves the unloaded system, and the tracking performance of the two controllers is shown 
in Fig. 7. With 0.1 Hz reference trajectory, the maximum steady-state error for SMC is approximately 4.5◦ , 
whereas AFSMC is much lower at around 2.0◦ . With 0.5 Hz reference trajectory, the maximum steady-state error 
for SMC and AFSMC is approximately 9.8◦ and 4.1◦ , respectively. Additionally, AFSMC’s tracking performance 
remains effective with 0.8 Hz reference trajectory. Notably, AFSMC exhibits orbital tracking with a maximum 
error of approximately 6.5◦ , while SMC’s value is around 10.5◦ . This confirms that SMC is less capable of adapt-
ing to high-frequency orbitals, particularly with complex trajectories. On the other hand, AFSMC continues to 
perform well when tracking complicated trajectories such as mixed sinusoidal signals. This experiment further 
demonstrates the effectiveness of the adaptive fuzzy algorithm in compensating for the systematic noise of the 
nonlinear model, i.e., the artificial muscle system.

Figure 6.   Experimental results for tracking sinusoidal trajectories with an added load of 5 kg.

Table 3.   RMSE of two controllers when tracking sinusoidal orbital input.

Frequency

Without load Load (m = 5 kg)

AFSMC SMC AFSMC SMC

0.1 Hz 0.71 1.15 0.74 1.18

0.5 Hz 2.23 3.92 2.68 4.21

1.0 Hz 3.13 5.40 3.48 6.64
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In the loaded system scenario, both the SMC and AFSMC controllers experience a performance decrease. 
However, the AFSMC controller demonstrates superior performance due to its ability to adapt to the system’s 
disturbances. With 0.8 Hz reference trajectory, the maximum steady-state error values for SMC and AFSMC were 
approximately 15.0◦ and 8.0◦ , respectively. The control quality of both SMC and AFSMC controllers is illustrated 
in Fig. 8, while RMSE for both controllers in both loaded and unloaded test scenarios are summarized in Table 4.

One of the main benefits of the proposed control approach is its ability to adapt to external disturbances 
effectively. To demonstrate this, the system was first operated to track a mixed sinusoidal signal with a basic 

Figure 7.   Experimental results for tracking a mixed-sine trajectory without a load.

Figure 8.   Experimental results for tracking a mixed-sine trajectory with a load (m = 5 kg).

Table 4.   RMSE of two controllers when tracking a mixed-sine trajectory.

Basis frequency f

Without load Load (m = 5 kg)

AFSMC SMC AFSMC SMC

0.1 Hz 0.99 2.07 1.18 4.13

0.5 Hz 4.26 6.43 4.17 7.34

0.8 Hz 6.14 7.99 6.76 8.38
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frequency of f = 0.5 Hz without any load until reaching steady state. Next, a load was suddenly added to the 
system, and data was collected for a total of 45 s for further analysis. The results showed that the PAMs controlled 
by AFSMC had superior adaptation to the moment of load shift compared to SMC.

Figure 9 illustrates the difference between the AFSMC and SMC controllers when a load is suddenly added 
to the system. The time from the system startup when the load is added is around 23 s and 30 s for the AFSMC 
and SMC controllers, respectively. Both controllers exhibit slight fluctuations in their trajectories. However, the 
AFSMC quickly returns to track the desired value by manipulating its control output. This is due to the estima-
tion of the disturbance component pk using the adaptive fuzzy algorithm with immediate adaptation. In contrast, 
the SMC cannot accurately estimate pk as the AFSMC does. As a result, the control output of the SMC slightly 
changes and cannot return to track the desired trajectory.

Conclusion
This work proposes an adaptive fuzzy sliding mode control approach for the PAM-based system to improve track-
ing performance by estimating and compensating for external disturbances. The disturbance component pk is 
estimated using the Takagi-Sugeno fuzzy algorithm, and the output variable D̂ values are updated automatically 
by an adaptive law. The proposed AFSMC controller is evaluated through experiments with sine signal inputs 
ranging from 0.1 to 1.0 Hz. The results show improved tracking accuracy compared to the traditional sliding 
mode control approach. For instance, the RMSE value with load at 0.5 Hz is 2.68◦ for AFSMC and 4.21◦ for SMC. 
Moreover, when a load is suddenly added to the system, the AFSMC controller demonstrates better adaptability 
than the SMC approach. The AFSMC controller quickly returns to track the desired value by manipulating its 
control output, while the SMC cannot reach a highly accurate estimation of pk and its control output slightly 
changes, resulting in an inability to return to the desired trajectory. The experimental results demonstrate that the 
proposed AFSMC approach adapts to external disturbances more than the traditional SMC approach. However, 
the proposed AFSMC approach shows weakness in the transitional period, where chattering may occur as p̂k 
approaches p̂∗k . Further studies are needed to address this issue and improve the quality of the AFSMC controller.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author upon 
reasonable request.
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Figure 9.   The investigation of the disturbance estimation when the load is suddenly added.
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