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Lifelong nnU‑Net: a framework 
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As the enthusiasm surrounding Deep Learning grows, both medical practitioners and regulatory 
bodies are exploring ways to safely introduce image segmentation in clinical practice. One frontier 
to overcome when translating promising research into the clinical open world is the shift from 
static to continual learning. Continual learning, the practice of training models throughout their 
lifecycle, is seeing growing interest but is still in its infancy in healthcare. We present Lifelong nnU-
Net, a standardized framework that places continual segmentation at the hands of researchers 
and clinicians. Built on top of the nnU‑Net—widely regarded as the best‑performing segmenter for 
multiple medical applications—and equipped with all necessary modules for training and testing 
models sequentially, we ensure broad applicability and lower the barrier to evaluating new methods 
in a continual fashion. Our benchmark results across three medical segmentation use cases and five 
continual learning methods give a comprehensive outlook on the current state of the field and signify 
a first reproducible benchmark.

Deep Learning methods for medical use cases continue to be evaluated in a static setting, where all available 
data is shuffled and the model is tested on a subset of in-distribution samples. This stands on the unrealistic 
assumptions that (a) all training data is available in a central location, and (b) the acquisition conditions do not 
change over time after clinical  deployment1. Evaluating in this manner creates a considerable gap between the 
reported performance of new methods and their usability in  practice2–4, which hinders the vital deployment of 
lifelong learning agents in dynamic clinical  environments5.

Continual learning does not neglect the temporal dimension of the data and trains models in a sequential 
fashion, as illustrated in Fig. 1. The goal hereby is to adapt to new environments without losing performance 
on previously observed training conditions and subject groups. Distributed federated learning methods have 
been explored in multi-clinical settings and also do not require sharing data between  institutions6,7. However, 
they neither address temporal restrictions on data availability nor provide a framework for agents that continu-
ously adapt to shifting population dynamics. Continual learning in healthcare, which tackles these concerns, 
is receiving growing  enthusiasm8–11 and regulatory procedures are being actively  debated5,12,13. Currently, re-
approval is required each time a model is adapted during deployment, but there are initiatives from both the 
FDA and European Commission for a lifecycle regulatory protocol that allows the use of continuously adapting 
 algorithms14. These pursuits may lead us to the rare situation where the regulatory guidelines are in place while 
the technology is still in its infancy.

Technical literature of continual learning for simpler computer vision tasks is plagued by controversies about 
the lack of a standardized evaluation  setup15–17. Recently, the Avalanche18 project has emerged as a solution to 
this problem for continual classification by providing a unified code base. The field is not as mature for continual 
segmentation, which assigns a label to each pixel in the image and is arguably the primary AI task in the clinical 
domain. Though more work has been done in recent  years8,10,19–23, it neither (1) builds on top of high-performing 
segmentation pipelines nor (2) examines how popular methods transfer to image segmentation for multiple 
open-source benchmarks.

In this work, we present Lifelong nnU-Net, a standardized framework for training and evaluating segmenta-
tion models in continual settings. We build our code on top of the nnU-Net pipeline, which is widely popular 
and state-of-the-art for 33 medical segmentation tasks—and competitive for twenty additional ones—across 
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11 international biomedical segmentation  challenges24. This ensures the high usability and performance of our 
extended framework. Our contributions are:

• The introduction of an open-source continual learning framework built on top of the nnU-Net
• A performance and run-time comparison for training sequentially under different settings, and
• Open-source implementations for five continual learning methods, allowing the fast evaluation of the state-

of-the-art and accelerating the development of new approaches.

Our experiments on publicly available data for three different segmentation problems show that:

• None of the explored continual learning methods consistently achieve positive backward transfer for segmen-
tation, exhibiting the need for new solutions,

• In accordance with previous research, rehearsal-based methods display the least amount of forgetting while 
maintaining model plasticity, and

• The practice of maintaining task-specific heads, common in continual learning literature, is only minimally 
relevant for segmentation.

The goal of Lifelong nnU-Net is to ensure high technical standards and reproducible results while the community 
is translating continual learning to medical image segmentation. By releasing our code and trained models for 
open-source datasets, we establish a benchmark for evaluating future continual learning methods on segmenta-
tion models.

Results
We start this section by examining the results of training models statically with one dataset. Afterward, we explore 
sequential learning and five popular continual learning strategies: Rehearsal, Elastic Weight Consolidation25 
(EWC), Learning without Forgetting26 (LwF), Riemannian Walk27 (RW) and Modeling the Background28 (MiB). 
We hereby regard the datasets of each anatomy (hippocampus, prostate, or heart) as n tasks T1 , ..., Tn and train 
the model of each use case sequentially with all respective tasks.

We quantify segmentation performance with the Dice coefficient and report backward transfer (BWT), 
which measures the degree of forgetting older tasks, and forward transfer (FWT), which assesses the ability to 
learn new knowledge.

Finally, we analyze the difference between using single- versus multi-head architectures, briefly illustrate the 
importance of task orderings and provide a summary of our training times.

Static results and inter‑task performance. To put continual learning results into context, we first 
observe the performance of independent models trained solely on one dataset. These are illustrated in Fig. 2. On 
the diagonal from the lower left to the upper right corner, we see static evaluations on in-distribution data. In 
this setting, all models achieve at least an 86% Dice.

The inter-task matrices also allow us to see how effectively each model performs on out-of-distribution 
data. These differences in performance are due to both the inherent dissimilarity between datasets in terms of 
acquisition and patient population and to model robustness caused by larger and more diverse training data. The 
assumption is that if a model trained on T1 is later trained on T2 , the amount of forgetting for T1 will be lower 
the more similar the data distribution and the higher the initial performance of the model on T2.

For prostate segmentation (first heatmap), I2CVB is a clear outlier. In the case of hippocampus, the model 
trained on HarP performs worse on DecathHip and the other way around. While the HarP model achieves a 
86% Dice on Dryad, the Dryad model only reaches 50% on HarP. This is likely due to the much larger size of 
HarP (see Table 4). In the case of right ventricle segmentation, the model trained on Siemens performs well on 
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Figure 1.  In a static setting (left), all training data is brought together. Continual settings (right) consider the 
time of acquisition and train the model sequentially.
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Table 1.  Continual learning performance as Dice coefficient. The first row shows the upper bound of training 
a model statically with all training data of the respective anatomy. We then see the performance of sequential 
training with and without (Seq.) several continual learning strategies (EWC, LwF, Reh., MiB and RW). The Dice 
performance is reported of the final model (after training with all tasks). The best-performing values are in 
[bold].

Prostate Hippocampus

UCL I2CVB ISBI DecathProst HarP Dryad DecathHip

Static 70.91 (± 6.02) 93.05 (± 0.29) 92.27 (± 0.26) 91.90 (± 0.36) 90.48 (± 1.71) 94.12 (± 0.05) 93.99 (± 0.45)

Seq. 85.16 (± 1.24) 21.04 (± 5.63) 93.09 (± 0.36) 91.91 (± 0.38) 20.20 (± 5.55) 57.19 (± 1.02) 90.92 (± 1.08)

EWC 86.87 (± 0.49) 58.53 (± 4.73) 88.43 (± 0.61) 87.79 (± 0.83) 88.01 (± 3.47) 86.09 (± 0.59) 31.93 (± 6.09)

LwF 85.30 (± 0.82) 22.89 (± 4.82) 92.37 (± 0.36) 91.48 (± 0.33) 3.90 (± 1.97) 46.00 (± 1.62) 90.85 (± 1.08)

MiB 86.31 (± 0.62) 48.87 (± 6.55) 92.96 (± 0.39) 92.11 (± 0.27) 82.45 (± 2.94) 85.27 (± 0.32) 20.75 (± 6.99)

RW 84.08 (± 1.66) 26.51 (± 6.13) 93.18 (± 0.32) 92.07 (± 0.41) 7.33 (± 3.77) 34.87 (± 1.86) 91.07 (± 1.03)

Reh. 85.94 (± 0.76) 90.64 (± 0.77) 93.39 (± 0.28) 91.55 (± 0.34) 88.17 (± 3.63) 92.07 (± 0.15) 91.16 (± 1.17)

Table 2.  Continual learning performance on the cardiac use case as Dice coefficient. We report the results of 
the last model state (after training with both tasks) for sequential training, four privacy-preserving continual 
learning methodologies, each for three different hyperparameter settings, and training with rehearsal. The 
best-performing values are in [bold].

Siemens Philips

LV MI RV LV MI RV

Seq. 80.5 (± 5.0) 68.5 (± 3.8) 64.8 (± 10.1) 96.1 (± 0.5) 87.0 (± 0.6) 93.2 (± 1.0)

EWC � = 0.1 95.2 (± 0.7) 85.1 (± 1.2) 90.3 (± 1.5) 94.1 (± 0.4) 81.5 (± 1.6) 88.9 (± 1.3)

EWC � = 0.2 95.4 (± 0.7) 85.1 (± 1.2) 89.9 (± 1.6) 94.5 (± 0.3) 81.7 (± 1.4) 89.9 (± 0.8)

EWC � = 0.4 92.9 (± 2.7) 83.2 (± 2.3) 88.0 (± 2.5) 93.6 (± 1.0) 82.0 (± 1.8) 87.0 (± 3.2)

LwF T = 2 74.2 (± 7.8) 64.0 (± 4.7) 60.6 (± 10.7) 96.0 (± 0.7) 86.8 (± 0.8) 92.2 (± 1.3)

LwF T = 5 69.3 (± 11.4) 61.2 (± 9.5) 54.7 (± 11.1) 96.0 (± 0.3) 85.4 (± 0.8) 91.3 (± 0.7)

LwF T = 10 74.7 (± 9.7) 50.3 (± 6.9) 61.7 (± 11.2) 96.1 (± 0.3) 85.8 (± 0.6) 92.3 (± 0.8)

MiB α = 0.8 94.5 (± 1.2) 85.1 (± 1.3) 90.5 (± 1.6) 94.9 (± 0.2) 83.3 (± 1.4) 90.6 (± 0.8)

MiB α = 0.9 91.5 (± 2.0) 80.3 (± 1.7) 80.5 (± 5.3) 95.9 (± 0.6) 86.7 (± 0.9) 92.4 (± 1.5)

MiB α = 1.0 92.7 (± 1.4) 84.1 (± 1.2) 88.4 (± 1.6) 94.5 (± 0.3) 83.0 (± 1.3) 89.9 (± 1.0)

RW � = 0.4 82.8 (± 5.8) 71.0 (± 3.5) 67.3 (± 9.2) 96.1 (± 0.6) 86.7 (± 0.7) 93.1 (± 1.2)

RW � = 0.8 74.8 (± 12.5) 67.4 (± 9.3) 69.6 (± 8.7) 96.1 (± 0.4) 85.8 (± 0.7) 91.6 (± 0.5)

RW � = 1.0 74.8 (± 12.4) 65.4 (± 9.7) 71.1 (± 8.5) 96.0 (± 0.3) 85.4 (± 0.7) 91.7 (± 0.6)

Reh. 93.9 (± 0.9) 83.6 (± 1.2) 84.5 (± 4.5) 96.0 (± 0.7) 86.6 (± 1.0) 92.9 (± 1.3)

Figure 2.  Performance of models trained independently solely on one dataset. On the (lower left to upper 
right) diagonal we find the Dice coefficient of evaluating models on the test cases of the dataset used for training. 
In the remaining cells, we see how these models transfer to other datasets. For the cardiac data, we report the 
right ventricle segmentation performance.
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Philips, but the Philips model only reaches a 50% Dice on the Siemens data, likely resulting for less variation 
among the training cases.

Continual learning methods. Next, we inspect the performance when models are trained in a sequential 
fashion, summarized in Table 1 for the prostate and hippocampus anatomies and in Table 2 for cardiac. In the 
first row, we report the upper bound of a static model trained with all shuffled training data from the respective 
anatomy. The following row shows the result of training a model sequentially in a trivial manner, and further 
rows are for different continual learning strategies which attempt to dampen the amount of forgetting. Reported 
is the Dice of the final model after training in the orders UCL → I2CVB → ISBI → DecathProst (prostate), 
HarP → Dryad → DecathHip (hippocampus) and Siemens → Philips (cardiac).

Over all anatomies, the Rehearsal29 (Reh.) method is effective at preventing forgetting. This is consistent with 
previous  research29. However, this strategy cannot always be used as it requires samples to be stored from previ-
ous tasks in order to interleave them in future training. This is not possible in many scenarios, where rehearsal 
would be an additional upper bound. In these cases, EWC and MiB reliably reduce the amount of forgetting 
in early tasks. In contrast, LwF and RW do not seem to translate well to the task of semantic segmentation. We 
directly illustrate the forgetting as inverse backward transfer in Fig. 3 (y-axis), where we see that EWC (▼), MiB 
( ) and Rehearsal (✖) maintain high backward transfer scores.

Note, however, that this often comes at the cost of a loss of model plasticity, reducing the performance on 
later tasks. For instance, while the sequential model shows a Dice of 91.91% in DecathProst (the last task), it 
decreases to 87.79% for EWC. For hippocampus segmentation, this behavior is much more pronounced. The Dice 
on DecathHip falls from 90.92% to 31.93% for EWC and 20.75% for MiB. For the cardiac data, the performance 
deterioration on the initial Siemens task for LwF and RW and plasticity loss on Philips data for EWC and MiB are 
particularly noticeable for the more challenging myocardium (MI) and right ventricle (RV) classes. The loss of 

Figure 3.  Relative backward (y-axis) and forward (x-axis) transfer for the continual segmentation of three use 
cases, averaged over all the respective data. Each marker corresponds to a training stage and anatomic stucture. 
Backward transfer is the inverse forgetting and forward transfer measures how well the model adapts to future 
tasks. For both metrics, higher is better, and results near zero can be realistically expected.

PROSTATEHIPPOCAMPUS

Figure 4.  Learning trajectories for hippocampus and prostate segmentation, the last in two different orders, 
namely UCL → I2CVB → ISBI → DecathProst and ISBI → UCL → DecathProst → I2CVB . The vertical 
lines mark task boundaries. Each tasks is displayed with a different color. We compare trivial Sequential training 
(solid lines) to EWC (dashed) and Rehearsal (dotted).
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plasticity is illustrated as forward transfer (x-axis) in Fig. 3, where EWC shows negative values while Rehearsal 
remains close to zero.

We further analyze the behavior of trivial sequential training alongside the best-performing Rehearsal method 
and EWC by observing the training trajectories in Fig. 4.

The solid lines for sequential training mostly depict a rapid fall after task boundaries. Both Rehearsal and 
EWC considerably reduce the amount of forgetting. However, the decreased plasticity manifesting as a nega-
tive forward transfer for EWC is evident, with the dashed lines of a new task often starting below the sequential 
equivalents most notably in Fig. 4 for DecathHip at the third hippocampus stage.  

For the prostate experiments in the order UCL → I2CVB → ISBI → DecathProst , we notice an unexpected 
recovery for UCL (cyan) after training with I2CVB (second stage) is concluded. However, this is likely due to the 
inherent good performance of models trained with ISBI and DecathProst on UCL (see Fig. 2).

we repeat the experiment in the oder ISBI → UCL → DecathProst → I2CVB , we see a behaviour more 
similar to that observed for the hippocampus, where there is a continual deterioration of performance for older 
tasks and a lost of model plasticity for EWC manifested in a low starting performance for the last task, I2CVB.

This shows how important task orderings are when comparing continual learning methods. Ideally, all order-
ings should be considered, but this can be computationally prohibiting when training 3-dimensional segmenta-
tion architectures. Alternatively, static in-distribution and inter-task performance results should be taken into 
account. Nevertheless, this can only be done for retrospective studies. Prospectively, the order of the tasks is 
given, and the user must train with tasks as they become available, without any knowledge on how related these 
are to data that will become available later on.

Tuning the plasticity/rigidity trade‑off. Most continual learning methods allow the tuning of model 
rigidity through some hyperparameters. For instance, the EWC � decides how much the divergence from previ-
ous model states should be penalized. A larger � prioritizes knowledge preservation whereas a smaller � allows 
the model to adapt more easily to the new distribution.

Unfortunately, unlike in static training settings where hyperparameters can be tuned with a validation set, in 
a real continual setting we have no access to samples from previous tasks and no information on which data the 
model will receive later on. It is therefore extremely difficult to decide on good hyperparameters, and we must 
follow the guidelines in the literature, preliminarly observe the loss trajectories in the current task or guide our 
settings through the results of other experiments. That is the strategy we follow in this work.

In Table 2, we include retrospective results across three hyperparameter setting for each continual learning 
method. These include the default settings used in Table 1 ( � = 0.4 for EWC, T = 2 for LwF, α = 0.9 for MiB and 
� = 0.4 for RW) and others that we deemed reasonable after analyzing those results. Particularly, we notice that 
a lower � for EWC and lower α for MiB are beneficial, allowing for more model plasticity while still preserving 
knowledge. Other settings did not improve results for LwF or RW.

We highlight that this does not translate to higher performance on the use cases of prostate and hippocampus. 
In fact, though EWC and MiB lower the plasticity of the models as seen in Table 1, they are not too rigid, as we 
also notice some forgetting (e.g. for ISBI, HarP and Dryad). Setting hyperparameters for real deployment or 
prospective studies is extremely challenging and one problem when applying continual learning methodologies 
in real dynamic settings, as a rigidity/plasticity trade-off cannot be reliably selected by observing the results on 
other use cases.

Multi‑head architectures. In previous experiments, we assumed that the entire model was sequentially 
trained. Continual learning is sometimes evaluated in a multi-head setting where the last network layer is kept 
task-dependent and not updated after training with its respective  task15. During inference, the corresponding 
head is used alongside the shared body. Further, there are two alternatives in terms of body updating: the body 
can remain plastic and thus be updated as time goes on or be frozen after the first training stage.

If the task precedence is not known for a sample during inference, it can be inferred from image characteristics 
such as the distribution of intensity values or the ability of an autoencoder to reconstruct  it19,30. In this work, we 
assume that this information is available.

In Fig. 5, we explore the four possibilities of training vs. freezing the shared body and maintaining one vs. 
task-independent heads. We observe that the difference between maintaining one vs. separate heads (and select-
ing the appropriate one during inference) is minimal. In contrast, the practice of freezing the body prevents 
forgetting on the early Siemens task, though at the cost of slightly lower performance on the second Philips task 
(as would be expected due to plasticity loss). Looking at Fig. 2, the model trained only on Siemens data performs 
quite well on Philips. This indicates that the loss of plasticity could have a greater effect on the performance for 
a different data corpus.

Qualitative evaluation. In the following, we illustrate visually how continual learning affects the integrity 
of the segmentation masks. Unlike image classification, segmentations may give a direct indication of when and 
how a model is failing. Figure 6 displays examples from the UCL and HarP datasets, which are the first tasks for 
the prostate and hippocampus use cases, respectively.

The first and second columns show the ground truth and the segmentation produced by the model right 
after finishing training with the corresponding task. Further columns show the prediction of the final model 
with different continual learning strategies. As when trivially training the model in a sequential fashion (Seq. 
at Tn ), methods LwF and RW produce scattered segmentation masks with additional connected components. 
EWC maintains the integrity of the hippocampus segmentation, but not the prostate one. This is likely due to 
the increased rigidity of the hippocampus model, which in turn results in negative forward transfer (see Fig. 3). 
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Rehearsal generally maintains the correct shapes, though the prostate mask is larger than should be and includes 
one additional connected component. Finally, MiB successfully produces reasonable masks in both cases, though 
slightly lower-segments the prostate.

Hardware and run times. Our experiments were carried out in a system with 8 NVIDIA Tesla T4 (16 GB) 
GPUs, 2 Intel Xeon Silver 4210 CPUs, and 256 GB DDR4 RAM. Experiments were run in parallel, each taking 
up one GPU with the exception of the LwF experiments for the prostate use case, where 2 GPUs were used in 
tandem.

Table 3 provides an overview of the training times needed for one epoch for each method and anatomy. The 
hippocampus experiments were the fastest due to the lower resolution. MiB requires significantly more time that 

Figure 5.  Four settings for training and constructing a model: allowing the model to adapt and keeping task-
dependent heads (Plastic MH, pink) or sharing one head (Plastic LH, orange), freezing the body after the first 
task and keeping task-dependent heads (Frozen MH, light blue) or sharing one head (Frozen LH, green). The 
Dice is reported for three cardiac structures.

Figure 6.  Qualitative deterioration of segmentation performance when training models sequentially for UCL 
and HarP, for which we display region-of-interest crops of axial views and 3D renderings produced with ITK-
SNAP31.

Table 3.  Seconds required for completing one epoch of training. We report the mean and standard deviation 
over each anatomy, and in the case of the cardiac experiments, over both training orders.

Prostate Hippocampus Cardiac

Seq. 214.3 (± 3.1) 117.3 (± 20.6) 194.5 (± 24.6)

EWC 215.25 (± 3.9) 131.0 (± 5.2) 197.3 (± 24.1)

LwF 423.3 (± 591.5) 233.3 (± 252.2) 174.7 (± 87.3)

MiB 365.5 (± 99.1) 212.0 (± 72.0) 281.5 (± 90.5)

RW 223.5 (± 1.3) 136.1 (± 1.0) 202.3 (± 26.0)

Reh. 206.0 (± 3.16) 140.3 (± 21.6) 195.5 (± 22.6)
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sequential training, and the duration of a LwF epoch increases heavily as the length of the task sequence grows 
(noticeable for the four-task prostate experiments), even as part of the network is frozen.

Particularly for medical image segmentation, where hardware requirements are significant and potentially 
prohibitive, the computational overhead should be considered when selecting a continual learning strategy. In 
particular, it may be wise to avoid methods that increase the duration of each epoch linearly with the length of 
the task sequence.

Discussion
In dynamic clinical environments, models are needed that can adapt to changing imaging protocols and disease 
patterns. While the importance of continual learning for medical imaging segmentation is being recognized, 
our community lacks the reporting standards and benchmark datasets that researchers employ for natural image 
classification.

With the Lifelong nnU-Net, we establish a framework for the standardized evaluation of continual segmentation. 
We extend the popular nnU-Net pipeline with all components needed for training and evaluating segmentation 
architectures in a sequential fashion, including five popular continual learning strategies and metrics specific 
to continual paradigms.

Our evaluation across three different segmentation use cases allows us to gain valuable insights. Consistent 
with previous  research29, Rehearsal leads to the best results, considerably decreasing forgetting by interleaving 
a subset of cases from previous tasks in the training data. In our experiments, we interleave a fixed percentage 
of the past training data, but many strategies exist for optimizing the memory buffer or replicating cases when 
some tasks are under-represented. Of course, a rehearsal-based strategy is only feasible if this data can be stored. 
For scenarios where this is not the case due to patient privacy considerations, the EWC and MiB methods prove 
to be suitable alternatives, effectively reducing forgetting though at the cost of reducing the ability of the model 
to adapt to new tasks. Finally, the LwF and RW methods do not appear to be well-suited to our setup. Though 
they could be further tuned to allow for more knowledge preservation in retrospective experiments, this is not 
feasible during actual deployment, as model deterioration on previous tasks cannot be measured.

One disappointing takeaway in our study is that no method resulted in positive backward transfer (BWT). 
This is clearly illustrated in Fig. 3, where we see that even the best methods only manage to prevent forgetting, 
reaching a BWT of zero. This means that no knowledge acquired from later tasks improves performance on earlier 
tasks. Therefore, maintaining wholly independent models and using the corresponding model during inference 
would outperform all explored continual learning methods. We also only saw positive forward transfer in the 
prostate experiments. This means that preceding training with earlier tasks and then fine-tuning only minimally 
improves performance when compared to training a model with the corresponding task from scratch.

In addition, we found that the practice of maintaining task-specific heads, common in the continual learning 
literature, do not significantly affect the performance for continual segmentation in medical images. This is the case 
both when the body is frozen after the first stage just as when it remains plastic. Further studies should look into 
leaving a greater portion of the network task-specific.

We have identified several limitations in our study. Firstly, we limited our study to the full-resolution patch-
based 3D nnU-Net variant, which is suggested for most applications. We did not repeat our experiments on the 
slice-by-slice or 3D down-sampled networks. Our evaluation also focuses on the incremental domain learning 
scenario which is most relevant in the context of medical  imaging8.

Secondly, as of now, there is a limited catalog of continual learning methods in the Lifelong nnU-Net frame-
work. We looked to have sufficient representation of individual approaches across different strategies, and imple-
mented a mixture of highly popular but older methods (simple Rehearsal, EWC and LwF) and newer approaches 
(MiB and RW). In the future, we hope this catalog grows both from our efforts and the contributions of other 
members of the community.

Methods
An effective framework for continual image segmentation has the following requirements: 

1. It has all components for achieving high-quality static segmentation results and supports both two- and 
three-dimensional architectures (like the nnU-Net),

2. Simplifies the evaluation of incremental domain scenarios by relying on widely accepted dataset formats and 
the alignment of label characteristics across datasets,

3. Includes integrated evaluation logic that tracks the performance of the model for different tasks during 
training with appropriate metrics, and

4. Supports existing state-of-the-art continual learning solutions, including the training of multi-head models 
that maintain both shared and task-independent parameters.

We start this section by introducing the three segmentation use cases that we explore, as well as our notation. 
We then outline how we approach each one of the requirements stated above to ensure that the Lifelong nnU-Net 
framework provides a solid foundation for medical continual learning research. Finally, we describe the continual 
learning methods used and briefly state details of our experimental setup.

Datasets. We explore the problem of continual image segmentation for three very different use cases. To 
ensure reproducibility, we use only openly available datasets and align the label characteristics according to the 
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process outlined below. For each anatomy, we select an array of datasets that act as our tasks T1...Tn . Table 4 
provides an overview of data and label characteristics for all datasets.

The first use case we approach is the segmentation of the prostate in T2-weighted MRIs, for which we use a 
corpus of four data sources. We utilize the data as provided in the Multi-site Dataset for Prostate MRI Segmenta-
tion Challenge32,33 for sites A (ISBI34), C (I2CVB35) and D (UCL36). Lastly, we use the data provided as part of the 
Medical Segmentation Decathlon37 (DecathProst). Some segmentation masks contain two labels representing the 
peripheral zone and central gland, which we join into one prostate label to ensure consistency across the corpus. 
Prostate segmentation is a rather easy problem, though crucial for determining the possible location of tumor-
ous tissue preceding a biopsy, and the shape of the prostate varies very little between different patients. Figure 7 
shows examples of the four datasets.

The second is the segmentation of the hippocampus in T1-weighted MRIs, for which we include three data 
sources. The Harmonized Hippocampal Protocol  data38, henceforth referred to as HarP, contains senior healthy 
subjects and patients with Alzheimer’s disease. The Dryad39 dataset has fifty additional healthy patients. As a third 
data source, we use the images provided as part of the Medical Segmentation Decathlon37 (DecathHip), from both 
healthy adults and schizophrenia patients. For the segmentation of the hippocampus, Dices of over 90% can be 
 expected24. Exemplary image slices from all three datasets can be found in Fig. 8.

Finally, we explore the segmentation of the left and right ventricles (LV and RV) and the myocardium (MI) 
in cardiac MRIs. We make use of the data released for the Multi-Centre, Multi-Vendor & Multi-Disease Cardiac 
Image Segmentation Challenge (M &Ms)40, which includes 75 labeled cases acquired with Siemens and 75 cases 
acquired with Philips scanners. This entails the additional difficulty of being a multi-class problem, which allows 
us to observe how the performance of different anatomical structures varies depending on the shape and size of 
the region of interest. Exemplary slices can be observed in Fig. 9.

We select these three problem settings to ensure variability across modality, shape and size of the segmentation 
masks, and difficulty of the task at hand. Of course, our framework allows for the fast evaluation of further use 
cases. For all datasets, we divide 20% of the data for test purposes and maintain this split across all experiments. 
We make the splits publicly available alongside our code.

Notation. Consider n tasks T1 , ..., Tn . Model F2 is trained only on the training data of task T2 . Model 
F[1,2,3] was trained sequentially on tasks T1 , T2 and T3 , in that order. F{1,2,3} is instead a static model, trained 
with shuffled training data from all three tasks. Finally, we use Fi(Tj) to refer to the performance of model Fi 
applied to the test data of task Tj.

Aligning label characteristics. Very often, segmentation datasets that explore similar problems are not 
uniform in terms of label structure. Continual learning is only feasible if the annotations are consistent through-
out datasets. Therefore, before a model can be trained in a continual fashion, a crucial pre-processing step 
involves aligning label characteristics.

Consider, for instance, the problem of prostate segmentation. Dataset T1 may include annotations for the 
prostate class, distinguishing prostate voxels (which take value 1 in the segmentation mask) from the background 
marked with zeros. Dataset T2 may instead include annotations for the central gland (label 1) and peripheral 
zone (label 2), two regions that together make up the prostate. Yet another dataset, T3 , may include annotations 
for both the prostate (label 1) and bladder (label 2). We can align these labels to take up the structure of dataset A 
by converting annotations for labels 1 and 2 to class 1 (prostate) in dataset B and converting label 2 (bladder) to 
class 0 (background) for dataset C. This process is visualized in Fig. 10. Of course, an alternative scenario would 
be incremental label learning, where the number of labels grows over time. In this case, one would maintain the 
separate bladder label in T3.

Aligning these characteristics is crucial for obtaining enough open-source data for a meaningful evaluation of 
different use cases. In Lifelong nnU-Net, we have included a pre-processing script that easily performs these steps.

Multi‑head models. The natural alternative to training a model sequentially—under our data availability 
constraints—is maintaining one model per task and selecting which model to use for each subject during infer-

Table 4.  Image and label characteristics; including the number of cases, mean resolution and spacing, and 
mean percentage of voxels labeled as the region-of-interest (ROI).

Dataset # Cases Resolution Spacing ROI %

UCL 13 [24 384 384] [3.3 0.5 0.5] 0.01

I2CVB 19 [64 384 384] [1.3 0.5 0.4] 0.01

ISBI 30 [19 384 384] [3.7 0.5 0.5] 0.03

DecathProst 32 [19 316 316] [1.0 1.0 1.0] 0.03

HarP 270 [48 64 64] [1.0 1.0 1.0] 0.01

Dryad 50 [48 64 64] [1.0 1.0 1.0] 0.02

DecathHip 260 [36 50 35] [1.0 1.0 1.0] 0.05

Siemens 75 [12 239 209] [1.3 1.3 9.2] 0.02/0.01/0.02

Philips 75 [11 307 307] [1.3 1.3 9.9] 0.01/0.01/0.01
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ence. This option ensures that no forgetting occurs, though it leaves out any possibility for backward and forward 
transfer and increases the memory requirements linearly with the number of tasks. Several continual learning 
methods adopt an intermediate approach: earlier layers are shared but the last layers are kept task-specific25,26. 
The intuition is that multi-head models allow earlier parameters to learn from new data while the last network 
layers conserve task-specific information.

We implement this behavior in the Lifelong nnU-Net framework as visualized in Fig. 11. For the first task, the 
training proceeds as usual. Before training takes place with the second task, the model head is replicated. Train-
ing then goes on with the shared body and the new head. This process is repeated for all tasks. During inference, 
a head is selected for each image and combined with the shared body. Additionally, we include the option of 
freezing the shared body after the first training stage, and only updating the head(s). Which parameters make 

DecathProstI2CVB ISBIUCL

Figure 7.  Exemplary slices for four subjects from the prostate segmentation datasets.

Figure 8.  Exemplary slices for three subjects from the hippocampus segmentation datasets.

Figure 9.  Exemplary slices for subjects from the two cardiac datasets. Segmented are the left ventricle (red), 
myocardium (green), and right ventricle (blue).

ORIGINAL ALIGNED ORIGINAL ALIGNED

Figure 10.  Alignment of label characteristics for prostate (merging the central gland and peripheral zone) and 
hippocampus (merging head and body).
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up the head is determined by the user. For the experiments on multi-head architectures, we use seg_outputs as 
a split point.

Evaluation logic and metrics. The nnU-Net includes methods for dataset preparation, training and per-
forming inference. The performance on a validation set is monitored with the Dice coefficient, which measures 
the intersection of voxels segmented for a class in the prediction A and the ground truth delineation B, normal-
ized by the total number of voxels in that class.

Considering the requirements of continual learning, we expand on this logic with:

• An evaluation module for testing on all datasets of interest, to be run after training has concluded, and
• The extended behavior of tracking the performance during training on several different validation sets. This 

gives the user insight into how the training with any task Ti gradually affects the training with task Tj , and 
allows them to export expressive training trajectories as that visualized in Fig. 4.

These modifications allow for quick validation of continual learning settings and simplify the validation on out-
of-distribution data without needing to store all model states.

In addition to observing the segmentation performance in the form of the Dice coefficient , we explore metrics 
from continual learning research that provide a more intuitive way of understanding the results.

The primary goal of continual learning in the open world, where distribution shifts are commonplace, is to 
avoid overfitting to image characteristics in the last batches so that the final model can cope with samples from 
all seen sources. Besides avoiding the dreaded catastrophic forgetting, the model should ideally achieve both 
backward and forward transfer41 and ensure reliable performance across all subject groups.

Forgetting and backward transfer (BWT). we measure the difference between the performance of a model in 
task Ti right after training with that task and after training with further tasks. If the result is negative, this 

(1)Dice =
2|A ∩ B|

|A| + |B|

TRAINING INFERENCE

Figure 11.  During training, the shared body is sequentially modified while the model head remains task-
specific. During inference, the corresponding head is merged with the final state of the shared body to extract a 
prediction.

Figure 12.  Command-line directive for performing training with rehearsal. An optional seed argument can also 
be used to select samples from previous tasks in a deterministic manner.
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implies forgetting has occurred. If, instead, the result is positive, then the desirable property of backward transfer 
was achieved, e.g. training with tasks Ti+1 improves the performance on task Ti.

Forward transfer (FWT). we calculate how advantageous the fine-tuning process is for a certain task, i.e. the 
difference between the continual model state right after training with task Ti and model Fi trained solely on 
task Ti . A positive result implies that preceding training with data from other tasks improves the performance 
of the model after fine-tuning, and a negative result signifies that the model is unable to adapt to Ti . This second 
case may occur when using certain continual learning methods that reduce model plasticity. Though other defi-
nitions consider this metric for all future tasks, we focus on the corresponding task and define:

For both metrics, we report the relative performance change with respect to the right-hand side of the subtraction. 
This allows us to compare the performance across anatomies with different segmentation difficulties.

Inter-task performance. We train one separate model for each task and visualize how each model performs 
on the other tasks (see Fig. 2). This helps us estimate the compatibility between tasks, which should facilitate 
continual learning.

Continual learning methods. We hereby briefly describe the methods we compare in this work. We refer 
the reader to our code base and documentation for further details on the implementation.

Rehearsal. The simplest form of lifelong learning entails interleaving samples from previous tasks into the 
training data. The size of the memory buffer determines how many of such samples are stored. The Lifelong nnU-
Net framework allows the user to perform this type of training with only one line of code, specifying the tasks and 
size of the memory buffer. The necessary command is exemplified in Fig. 12. Rehearsal is a very effective strategy 
that consistently ensures good performance, though not admissible in settings that do not allow the storage of 
training samples.

Running other methods proceeds in a similar manner, although with different hyperparameters.

Elastic Weight Consolidation. Regularization-based approaches assess the importance of each training param-
eter and penalize the divergence from the previous state weighted by the importance. The � parameter weights 
the magnitude of this regularization loss and the target loss (in our case for image segmentation). The main 
difference among regularization-based methods consists in how the importance is calculated. The popular EWC 
 method25 utilizes the Fisher Information Matrix, which measures how far model outputs are from the one-hot 
encoded predictions.

Learning without forgetting. The LwF  method26 consists of three training stages. (1) After the training phase 
for task Ti , and before starting task Ti+1 , model outputs F i

[i](Ti+1) are recorded and a new head is created 
for Ti+1 . (2) Then, shared parameters are frozen and only the new head is trained. (3) Finally, the shared body 
alongside all heads is fine-tuned. The outputs recorded in the first step are used for training previous heads.

Riemannian walk. A combination of the previously introduced EWC with Path Integral forms RW27. The main 
difference to EWC is the online calculation of the Fisher Information Matrix for assessing the importance of each 
parameter. With this modification, the additional forward pass at the end of the training to obtain the Fisher 
values can be omitted.

Modeling the background. The MiB28 method—specifically developed for semantic segmentation—uses a mod-
ified cross entropy loss in combination with a knowledge distillation term. The knowledge distillation is used to 
force the activation of the current network Fθ to be similar to the previous network Fθi−1

.

Experimental details and hyperparameters. We train the full-resolution version of the nnU-Net 
which is recommended for most  applications24. This is a patch-based, three dimensional network. For each of 
our three use cases, models are trained with every dataset for 250 epochs.

The nnU-Net automatically configures hyperparameters for the network architecture and training process—
such as the number of encoding blocks, learning rate and patch size—from the training data. It is possible that 
these parameters differ between datasets of the same use case. In our framework, we always use the configura-
tion chosen for the first dataset, which is the most realistic choice as in a real continual setting only this data is 
available when building the architecture.

Unless otherwise stated, we select hyperparameters used in previous work or which showed reasonable loss 
trajectories in preliminary experiments with a fraction of the epochs. For the cardiac experiment, we test several 
settings in Table 2. For Rehearsal, we state the number of cases from previously seen tasks to be included in the 
current task to 25%. For EWC, we use the default value of � = 0.4 to weigh the regularization term. In the case 
of LwF, we set the knowledge distillation temperature to 8 for hippocampus and 64 for prostate. For RW, � = 0.4 

(2)BWT = F[...,i,...](Ti)−F[...,i](Ti)

(3)FWT = F[...,i](Ti)−Fi(Ti)
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for regularization and α = 0.9 for calculating the Fisher values are used. MiB hardifies the soft labels with α = 0.9 
for hippocampus and α = 0.75 for prostate.

We refer the reader to our code base and documentation for further details.

Data availability
All datasets used in this work are openly available and downloading instructions can be found under the respec-
tive references.

Code availability
Our code is available under https:// github. com/ MECLa bTUDA/ Lifel ong- nnUNet. Upon request, we can facilitate 
access to the trained models.
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