
1

Vol.:(0123456789)

Scientific Reports |         (2023) 13:8224  | https://doi.org/10.1038/s41598-023-34423-1

www.nature.com/scientificreports

Robust multiple‑scroll dynamics 
in memristive‑based generator 
system
A. O. Adelakun * & Y. A. Odusote 

In‑depth analysis of a novel multiple scroll memristive‑based hyperchaotic system with no equilibrium 
is provided in this work. We identify a family of more complicated nth‑order multiple scroll hidden 
attractors for a unique, enhanced 4‑dimensional Sprott‑A system. The system is particularly sensitive 
to initial conditions with coexistence and multistability of attractors when changing the associated 
parameters and the finite transient simulation time. The complexity (CO), spectral entropy (SE) 
algorithms, and 0‑1 complexity characteristics was thoroughly discussed. On the other hand, the 
outcomes of the electronic simulation are validated by theoretical calculations and numerical 
simulations.

For decades, the dynamical transition of system from periodic state to chaos and hyperchaos has attracted a 
great interest and majorly considered as an active area of research with great practical significance. The sensi-
tive dependence is among the basic ideas of chaos and most visible signature of its behavior. Several studies 
have shown that rich dynamics can be deduce from improved systems by introducing new terms, changes to 
initial conditions, increasing the dimension, and nonlinearity  type1. In this regard, an hyperchaotic system is 
defined as a chaotic system with at least two positive Lyapunov exponents, high sensitivity to initial conditions, 
more randomness, higher unpredictability and at least four dimensional phase space. Obviously, hyperchaotic 
systems have wide applications and therefore more preferred than the chaotic systems in recent central topic 
researches including  synchronization2, neural  networks3,  finance4, nonlinear  circuits2–5, chaos-based secure 
 communication28 among others. Such systems exhibits multi-scroll and multi-wings attractors and therefore 
played a vital role in engineering and technology  applications6–8.

Thus, comes the idea to classify the hyperchaotic systems based on their performance and optimization 
purpose. Such special systems have been classified based on number and types of equilibrium which includes: 
(1) hidden attractors with one equilibrium, (2) hidden attractors with line of infinite equilibria, and (3) hidden 
attractors without equilibria or conjugate  equilibria9. These systems contradict the Shilnikov criteria, which 
requires at least one unstable equilibrium for the emergence of  chaos10. Accordingly, systems with equilibrium 
points are purely based on stability criterion, connection with criteria as well as the theorems that determine 
the existence of chaos in Shilnikov chaos, Melnikov function to mention a  few11,12. Loss of equilibrium point, 
however, is an indication that no conventional Shilnikov criteria can be applied to investigate the flow of  chaos9. 
Likewise, it has been established that the basin of attraction does not intersect with small neighborhoods of any 
equilibrium  points13. As seldomly reported, systems without equilibrium usually give birth to hidden attractors, 
which implies that self-excited attractors can be derived from unstable equilibrium if no intersection occurs 
between the basin of attraction and in any open neighborhoods of a stationary  state14–16. Actually, systems with 
a line of  equilibria17 and infinite  equilibria18 have also been modified into systems without equilibrium points 
by adding a simple parameter.

Since the discovery of a simple flow system with no equilibrium  points19, more attention on the dynamical 
behavior and expected application of multi-scroll hidden attractors have been received. For example, a special 
case of Nose-Hoover oscillator “Sprott-A” that has features of been boosted by his state variables has been 
 investigated20. Therefore, changing the DC offset of the variable to any level is said to be conservative and has 
no equilibrium  points9,11,21. Interestingly, the application of such spellbinding hyperchaotic system is therefore 
very vital in engineering when transforming bipolar signal to unipolar signal and vice  versa22,23. Other reported 
modifications to Sprott A systems without equilibrium in recent years include, (1) replacing the y2 term with 
a new |y|24; and (2) x with cubic nonlinearity  term9. In addition, Sprott-D system with a perturbation term to 
non-hyperbolic equilibrium also gives a system with hyperchaotic features even in the absence of no equilibrium 
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 points25. So far, it has been confirmed that some hyperchaotic systems that exhibit multi-scroll and multi-wing 
behaviors have also been proven to carry more complexity than those with few  attractors26. These new findings 
will play a major role and robust application in image  encryption26,  memristors27, and secure communication 
 devices28. Very recently, Jafari et al.26 proposed a 2 by 3 grid multi-scroll and multi-wing attractors with hidden 
attractors from 3D-system without equilibrium by simple state variable modification to the original Sprott-A 
system. Hu et al.29 also discovered a multi-scroll chaotic sea in a simple sine function nonlinear 3D Sprott-A 
system, while a numerical and experimental validation of an improved Jerk hyperchaotic multi-scroll system 
has been reported with infinite number of  equilibrium28. Systems without equilibrium, hidden attractors that 
exhibits multi-scroll and multi-wings has also been discovered in the Lorenz-like system with a designed saw 
tooth wave function 4D system using a state feedback  controller30.

Meanwhile, a safer communication key can be produced by the memristor’s high complexity in hiding the 
chaos, which has major theoretical implications for the advancement of chaotic security technology. Due to its 
low-power processors, high-speed, associative memory, adaptive filter, pattern recognition systems, program-
mable analog integrated circuits, and neural networks, the development of memristor as a replacement for Chua’s 
diode also supports prospective memristor-based  applications24,31,32. Therefore multiple dynamics can coexist 
simultaneously in the operation of memristor and the dynamics of a multistable system. These systems were 
extremely sensitive to initial conditions thereby generating to what is referred to as multi-stability of hidden 
attractors due to coexistence of many infinite  attractors33–38. Inspired with recent findings, we intend to propose 
a new 4D memristive-based Sprott-A system with multiple hidden attractors from specific control parameters 
and simple to implement practically. The organization of this paper is as follows: section “Model and methods” 
gives a mathematical description and the theoretical properties of the proposed model. Section “Results” reports 
the numerical and electronic simulation results. Section “Concluding remarks” concludes this paper.

Model and methods
Memristor‑based 4D Hyperchaotic Sprott‑A system. Though not all nonlinear systems are complex, 
nonlinearity creates opportunities for complex behavior that are not available in linear  systems39,40. In this study, 
we added a fourth passive component with improved nonlinear characteristics. We shall introduce the mem-
ristor W(φ) , a component made up of an electrical charge (q) and a magnetic flux ( φ ) that has been physically 
achieved by Stanley William’s team at HP  labs41–47. Herein, the smooth cubic flux-controlled memristor is hereby 
characterized by a smooth continuous cubic nonlinearity given  by12

where β and ξ are parameters embedded in the memristive-based function, φ is the internal state variable of 
W(φ) . Also note that v is the input voltage while i = f (W , v2) is the output voltage of the memristor W(φ) . The 
state variables correspond to voltages across each capacitor used in the designed circuit i.e x = v1 , y = v2 , z = v3 , 
w = φ , v = v2 and f(w)=W(φ) . It is worth noting that w is the internal state of the memristive device. In this 
section, we examine the main and elementary dynamic properties of the robust memristor-based system (2). 
The system is constructed by a simple modification to the special case of 3-D Nose-Hoover system, Sprott-A17. 
The system is composed of extended state variable z → z + αsinz and the cubic nonlinear function, generally 
meant to model smooth cubic-flux controlled memristor. The new 4-D system can be expressed as:

The nonlinear function f (z) = z + αsinz is introduced to explore the multiple dynamical behaviors with slight 
changes to α . The other parameters a, b, c, ξ and β are carefully chosen when determining the complexity of 
system (2). With a suitable parameter and changes to initial conditions, the system can generate family of multi-
scroll and multi-wing attractors. For example, the phase portrait of attractors can be plotted by setting: a = 0.05, 
b = 0.1, c = 0.01, α = 25 , ε = 1 β = −6e−4 and ξ = 5e−4 , x(0.1), y(0), z(0) and w(0). System (2) is invariant 
under the natural coordinates transformation (x, y, z,w)  → (−x,−y, z,−w) and persists for all values of the 
system parameters.

Complexity and 0‑1 test analyses. In this study, we will quantify the system’s complexity (2) using 
complexity (CO) and information spectrum analysis (SE). The detailed algorithms has been researched in the 
 literature48. The algorithms are a powerful measure of the chaotic properties of the system and may better meas-
ure the structural complexity of the high-dimensional hyperchaotic system as a whole as an excellent algorithm 
in structural complexity. The completeness on the system (2) can be achieved by computing the energy distri-
bution in the Fourier transform domain and combining it with the Shannon entropy (SE), whereas complex-
ity is achieved by decomposing time series into regular and irregular conceptions (C0). The required chosen 
parameter is based on the time series’ irregular evolution. In order to further characterize the robust dynamical 
behavior of the new system, we also explore the 0-1 test  approach49. We used the 0-1 chaos test to assess the 
dynamic properties of the system (2), which offers information on regular and irregular dynamics embedded in 
a deterministic system. The input of the test is 1-dimensional time series φ(n) for n=1,2...,N. The time series data 
is used to derive the 2-dimensional algorithm as follows:

(1)







q(φ) = βφ + ξφ3

W(φ) =
dq(φ)
dφ = β + 3ξφ2

i = W(φ)v.

(2)











ẋ = ay
ẏ = −x + y[bf (z)+ cf (w)]
ż = ε − y2

ẇ = y.
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where c ǫ (0, 2π) is fixed. The underlying bounded p− s motion reveal the regular and asymptotic brownian 
motion of the deterministic system. That is, the asymptotic dynamics in the (p,s)-plane of the 2-dimensional 
Euclidean extensions of a given dynamical system is typically bounded for regular motions and unbounded for 
non-regular motions.

Results
Stability analysis and dynamic properties. Alternatively, the best way of analyzing the proposed sys-
tem is to determine whether the equilibrium point exists or not. Next is to characterize the local dynamical 
behavior of the system orbits near these points, which indicates self-excited attractors, otherwise, hidden attrac-
tors. Firstly, the equilibria can be obtained by equating the differential part of system (2) to zero.

However, it is obvious that the system has no solution, which implies that the system is without equilibrium for 
the chosen parameter value(s). The rate of volume expansion of the system is given as follows;

Therefore, for ∇ = 0 , the system is conservative and as long as ∇ < 0 or ∇ > 0 , then the system is dissipative. For 
example, if the initial conditions in Table 1 are employed for Eq. (5), the system is clearly dissipative with α = 1 , 
b = 0.1 and c = 0.01 (say, ∇ = βc and ∇ = b(0.43)+ c(−6e−5) ), respectively. The adequate information regard-
ing the system clarification on the relationship between different initial conditions will be discussed in the next 
section with fluctuation across the selected range. This implies that the local volumes in the phase space are con-
tracted exponentially with rate βc for hyperchaotic systems at xo, yo, zo,wo = 0.1, 0, 0, 0 and b(0.43)+ c(−6e−5) 
for xo, yo, zo,wo = 0.1, 0.2, 0.3, 0, respectively. Therefore, the systems has an attracting set. We also deduced that 
the system is dissipative by summing their finite-time local Lyapunov exponents for the selected initial condi-
tions, which are greater than zero (see Table 1). The Kaplan-Yorke fractal dimension, DKY , is commonly defined 
as a fractional dimension in which a cluster of initial conditions will neither expand nor contract as it evolves 
with time. Then, DKY can be expressed as

where j is the largest integer satisfying 
∑j

i=1 Li ≥ 0 and 
∑j+1

i=1 Li < 0 . The Kaplan-Yorke calculation for system 
(8) is

In general, sensitivity to initial conditions is one of the determinant factors in specifying the state of chaos 
in a system. Such response can be traced to chaos-hyperchaos transition or dynamic index measurement for 
any oscillators. As shown in Table 1, the chaos-hyperchaos properties for different initial conditions are sum-
marized: for finite-time local Lyapunov exponent values ( L1−4 ), the summation of Lyapunov exponents ( 

∑

L ), 
and Kaplan-Yorke fractals DKY . Table 2 shows some theoretical calculations for higher values of ε that generates 
number of multi-scroll and multi-wing attractors. Therefore, the proposed system exhibits several hyperchaotic 

(3)
{

s(n+ 1) = s(n)+ φ(n) cos (cn)
p(n+ 1) = q(n)+ φ(n) sin (cn).

(4)











0 = ay
0 = −x + y[bf (z)+ cf (w)]
0 = α − y2

0 = y.

(5)∇V(x, y, z,w) =
∂ ẋ
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∂ẇ
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)

(6)DKY = j +
1

|Lj+1|

j
∑

i=1

Li

(7)DKY = 3+
L1 + L2 + L3

|L4|

Table 1.  Proposed dynamic properties for ε = 1.

Initial condition

Lyapunov exponents Dynamic properties

L1 L2 L3 L4

∑
L1−4 DKY State

0.1,0,0,0 0.0811 0.0085 0.0564 − 0.0973 0.0488 4.5013 Hyperchaotic

0.01,0,0,0 0.1321 0.0456 0.0333 − 0.2133 − 0.0023 3.9891 Hyperchaotic

0.1,0.2,0.3,0 0.1195 0.0217 − 0.0117 − 0.2497 − 0.1202 3.5186 Hyperchaotic

0.1,0.1,0.1,0.1 0.1522 − 0.0373 − 0.0061 0.0165 0.1254 3.8683 Hyperchaotic

− 0.1,0.2,0.3,0.1 0.0859 − 0.0035 − 0.0441 0.0752 0.1135 3.5093 Hyperchaotic

0.2,− 0.2,− 0.2,0 0.0567 − 0.0181 0.0112 − 0.1301 − 0.0803 3.3827 Hyperchaotic

0.001,0.001,0.02,0 1.4886 − 0.0193 − 1.3132 − 0.0728 0.0833 5.1456 Chaotic

0.001,0.001,0.001,0 1.4888 − 0.0214 − 1.2438 − 0.0743 0.1493 6.0094 Chaotic
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finite-time properties which are based on the variation to initial conditions and some system parameters. Such 
changes in waveforms indicate chaos and may gives birth to different complex states at time t.

Bifurcation structures and Lyapunov exponents. In chaos theory, bifurcation diagrams and Lyapu-
nov exponents plots are used to provide useful illustrations for variations of a particular system dynamics with 
changes in its parameters. That is, a single system may possess different unstable or stable regions where complex 
dynamical states can be observed. Small changes to system parameters or modification to system dimensions 
may lead to a discontinuous flow in the system properties usually referred to as dynamic transition. In this sec-
tion, the bifurcation diagrams and associated Lyapunov exponents plots from the proposed system (4) is investi-
gated using 4th-order Runge-Kutta algorithm. The number of multiple scroll can be induced based on changes to 
different parameters in the system, specifically, α , and ε . The bifurcation analysis is of two fold: (1) when varying 
the parameter ε and keeping other parameter fixed, and (2) when varying the parameter α . In Fig. 1a and b, the 
α − Xmax plane plots show the respective robust bifurcation structures and corresponding Lyapunov exponents 
when the parameter α is varied. The structures simply predict regions of higher dynamical crises, where numbers 
of scroll can be observed. In addition, weak bifurcation response can be noticed at α < 2.5 , while rich dynamics 
were observed at α > 2.5 . Similarly, the robust multiple scroll were noticed in ε − X bifurcation structure and 
corresponding Lyapunov exponent as displayed in Fig. 1c and d, respectively. For instance, the typical bifurca-
tion and Lyapunov exponent reveal several regions of complexity for ε = 1 and ε = 10 , respectively.

The information pictured in Figs. 2 and 3 also provide good idea and expected complex dynamical behaviors 
from the two-parameter plots. The curve displays considerable swings, indicating that changing the parameters α 
and ε has a significant impact on structural complexity. Simply by changing the settings across a predetermined 
range, dynamical behaviors were completely consistent with the attractors. Figure 2a and b shows a wide range 
of complexity at large value of α . The complexity is replicated by the bifurcation diagram and Lyapunov exponent 

Table 2.  Dynamic properties at different values of ε.

ε

Lyapunov exponents Dynamic properties

L1 L2 L3 L4

∑
L1−4 DKY State

6 0.1840 − 0.0239 0.1836 − 0.4387 − 0.0950 3.7835 Hyperchaotic

10 0.3906 − 0.0593 0.0598 − 0.3872 0.0039 4.0101 Hyperchaotic

15 0.3064 − 0.0058 0.0034 − 0.3957 − 0.0917 3.7683 Hyperchaotic

Figure 1.  Local (a) bifurcation diagram (α − Xmax) and (b) corresponding maximum Lyapunov exponents and 
(c) bifurcation diagram (ε − X) and (d) corresponding maximum Lyapunov exponents.
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in Fig. 1a and b, respectively. When compared complexity in Fig. 2c and d to the bifurcation diagram and cor-
responding Lyapunov exponent in Fig. 1c and d, a similar pattern can also be observed. Therefore, in contrast 
to SE complexity, C0 complexity is accurate and reliable, particularly when a bifurcation point changes. We also 
noticed anomalies when different initial circumstances are applied to system (2) (see Fig. 3). In Fig. 3a and b, we 
show how the 0-1 test is able to detect irregular orbits across p− n plane, even in the chaotic case (a) x0 = 0.1 , 
y0 = 0.2 , z0 = 0.3 , w0 = 0 and hyperchaotic case (b) x0 = 0.1 , y0 = 0 , z0 = 0 and w0 = 0.

Phase portraits of Attractors and Poincáre cross‑section. Feasibility of the arbitrary number of 
multi-scroll and multi-wing hidden attractors from the new modified Sprott-A system were obtained by varying 
the parameter α and when simulation time t increases at ε = 1 . However, n-scroll and butterfly wings can also be 
produced by setting ε > 1 . From the phase portrait in Fig. 4a, the typical 3D view of the new proposed hypercha-
otic 4D Sprott A-type is plotted, while Fig. 4b and c are the time series for the x − t and y − t planes, respectively. 
However, number of multi-scroll and multi-wing hidden attractors and corresponding Poincáre maps could be 
generated from: (1) hyperchaotic with initial condition: (x0 = 0.1, y0 = 0, z0 = 0,w0 = 0) (see Fig.5a–d), and 
(2) chaotic with initial condition (x0 = 0.1, y0 = 0.2, z0 = 0.3,w0 = 0) as shown in Fig. 6a–d. Figure 7 shows the 
transition to bigger number of multi-scroll and multi-wing hidden attractors for the hyperchaotic system when 

Figure 2.  Complexity of the modified Sprott-A system with (i) varying α (a) SE Complexity and (b) CO 
Complexity, and (ii) varying ε , (c) SE Complexity and (d) C0 Complexity.

Figure 3.  Typical p-s diagram for modified Sprott-A system with 0-1 test for initial conditions: (a) x0 = 0.1

,y0 = 0.2 , z0 = 0.3 , w0 = 0 ,  and (b) x0 = 0.1 , y0 = 0 , z0 = 0 and w0 = 0,
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simulation time increases. Meanwhile, further studies on n-scroll attractors were plotted when ε > 1 as shown 
in Fig. 8. For instance, when ε = 6 , the 2× 7 grid is produced. Similarly, for ε = 10 and ε = 15 depicts to 2× 9 
grid and 2× 11 grid were generated, respectively. In addition, birth and death of multiple hidden attractors were 
also developed when varying the parameter, α , (see Fig. 9) as reported in hyperchaotic bifurcation diagram and 
Lyapunov exponent in Fig. 1a and b.

Experimental realization. To further verify the correctness of the proposed multi-scroll and multi-wing 
hyperchaotic system with hidden attractors, the corresponding analog circuit experiment is carried out in this 
section. The exact circuitry realization of the proposed system and the simulation results must validate the 
numerical and theoretical findings after properly chosen circuitry parameters. We design and implement the 
circuit topology on the Pspice breadboard, and the results are presented accordingly. The set-up is displayed 
in Fig. 10. The analog implementation of the differential form in Eq. (2) is carried out with trigonometry sine 
function, operational amplifier (TL081CD), multiplier (AD633JN), power supply at ±15V  . The circuit equa-
tion can be expressed as; where the transformed function f (vz) = vz + αsin(vz) and the memristive function 
f (vφ) = W(φ) = −β + 3ξv2φ , vx = x , vy = y , vz = z and vφ = w . The state variables vx , vy , vz , and vφ are asso-
ciated accordingly with the voltages across the proposed system.

The electronic simulation results in Fig. 11 is consistent with the numerical simulation results in Fig. 5 for 
initial condition x0 = 0.1, y0 = 0.2, z0 = 0.3,w0 = 0 . The electronic version in Fig. 12 also validate the numeri-
cal simulation in Fig. 6 of initial condition: x0 = 0.1, y0 = 0, z0 = 0,w0 = 0 . The electronic time series version 
of Vx and Vy against time were plotted in Fig. 13a and b, respectively. Finally, the memristor-based topology 
with multiple attractors is likely convenient to boost the chaos generation and found important application in 
biometric authentification, broadband signal generators, pseudo-random number generators, synchronization 
as well as secure communication.

Figure 4.  Typical plots for (a) modified new Sprott-A attractor on x-y-z plane, (b) x vs t time series and (c) y vs 
t time series.
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Concluding remarks
In summary, we have examined and analyzed the robust hyperchaotic behaviors emanated from a new modi-
fied memristive-based 4D Sprott-A system. The new proposed model reveals no equilibrium point, sensitive to 
initial conditions, and transition from chaos to hyperchaos state with coexistence and multistability of attractors. 
Various multi-scroll and multi-wings attractors from the proposed system have been deduced from a control 
parameter. We also discovered time variance hyperchaotic hidden multi-scroll and multi-wing phase portraits 
when varying a number of scroll determinant parameter α . The n-scroll multiple scroll generator is also reported 
when the parameter ε is changed. The comparative results convincingly show that the complicated irregulaties 
within the selected parameters are shown by SE complexity, C0 complexity, and p− s motion. Finally, there is 
excellent agreement between the calculated results and the observed results from the actualized electrical circuit.

Figure 5.  The observatory Multi-scroll attractors and corresponding Poincáre maps for (a) z–x, (b) z–y, (c) y–x 
and (d) w–z with initial condition: 0.1, 0, 0, 0, α = 25 and t=6000s.
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Figure 6.  The observatory Multi-scroll attractors and corresponding Poincáre maps for (a) z–x, (b) z–y, (c) y–x 
and (d) w–z with initial condition: 0.1, 0.2, 0.3, 0, α = 25 and t = 6000 s.
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Figure 7.  Typical multi-scroll transitions: (a) 1-double-scroll and 2-wings (1 × 2 grid) at t = 1000 s, (b) 
2-double-scroll and 4-wings (2 × 2 grids) at t = 1330 s, (c) 3-double-scroll and 6-wings (2 × 3 grids) at t = 1400 
s, (d) 4-double-scroll and 8-wings (2 × 4 grids) at t = 5000 s and (e) 5-double-scroll and 10-wings (2 × 5)at 
t ≥ 5000s with initial condition: (0.1,0,0,0) and at α = 25.

Figure 8.  Typical multi-scroll and (a) seven-wings at ε = 6 , (b) nine-wings at ε = 10 , (c) eleven-wings at 
ε = 15 with initial condition: 0.1,0,0,0 at time t = 20,000.
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Figure 9.  Typical multi-scroll transitions: (a) two-scroll torus (1 × 2 grid) at α = 0 , (b) (2 × 3 grid) chaotic at 
α = 5 , (c) 3-double-scroll and 6-wings (2 × 3 grids) at α = 15 , (d) 3-double-scroll and 6-wings (2 × 3 grids) 
at α = 26 and (e) 3-double-scroll and 6-wings (2 × 3 grids) at α = 30 and (f) two-scroll chaotic (1 × 2 grid) at 
α = 34 with initial condition: (0.1,0.2,0.3,0).

Figure 10.  Experimental circuit diagram.
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Figure 11.  The simulation phase portraits attractor for hyperchaotic oscillator with initial condition, 
xo = 0.1, yo = 0, zo = 0,wo = 0 , in blue color: (a) Vz vs Vx , (b) Vz vs Vy , (c) Vy vs Vx and (d) Vw vs Vz , 
respectively at α = 25.

Figure 12.  The simulation phase portraits attractor for hyperchaotic oscillator with initial condition 
( xo = 0.1, yo = 0.2, zo = 0.3,wo = 0 ) in brown color: (a) Vz vs Vx , (b) Vz vs Vy , (c) Vy vs Vx and (d) Vw vs Vz , 
respectively at α = 25.
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